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Abstract
The scattering support is an estimate of the support of a source or scatterer,
based on a limited set of far field measurements. In this paper, we suppose that
the far field is measured at all wavenumbers, but only at a few, say N, angles
θi ∈ �. From these measurements, we produce a �-convex polygon (a convex
polygon with normals in the θi directions). We show that this polygon must
be contained in the smallest �-convex polygon which contains the source. We
also show by explicit construction that, if (and only if) that polygon has almost
2N faces, there really is a source, supported in the �-convex scattering support,
which exactly produces these measurements.

1. Introduction

In this paper we are concerned with locating and estimating a general source (or scatterer)
from broadband observations made by a few sensors (i.e. a sparse array) in the far field.
We choose the far field because it provides a mathematical simplification and begin with the
inverse source problem and the Born approximation to the inverse scattering problem because
these problems are linear.

For the source problem (1), the far field is exactly the Fourier transform of source (4),
restricted to a few lines through the origin (one line for each sensor located in our array) or,
equivalently, the Radon transform of the source in a few directions (5) . This is a small set
of data. As we will indicate in proposition 4 below, the corresponding far field operator has
a large kernel, so it is impossible to uniquely reconstruct the source, or even to find an upper
bound on its support. Nevertheless, any attempt to estimate (approximate) the source from
this sort of data by a pseudo, regularized, or penalized inverse, must begin with some a priori
decision as to where the source is supported . For example, we might choose to seek a source,
F, supported on a set K, as the minimizer of the regularized functional

‖F̂ (τθi) − fi(τ )‖2 + ‖∇F‖2
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where fi(τ ) are the data measured from direction θi . If we decide to minimize over the
subspace L2(K); existence, uniqueness, well-posedness and the solution itself will clearly
depend on our choice of K. Choosing that domain too large results in ill-posedness, while
choosing it too small can make it impossible to fit the data. To the best of our knowledge, all
such inverses tend to produce sources with supports as big as the a priori assumption allows
them to be.

Our analysis below provides a convex set on which to produce such a regularized inverse,
along with necessary and sufficient conditions on the data that guarantee the existence of
a source, supported there, which fits that data. We will show that, although the data does
not uniquely determine the source or any upper bound on its support, it does determine this
unique smallest convex set. In the final section, we will provide a few examples to show
that, while we generically find an approximation to the convex hull of the support of the
source, in some cases this set may be much smaller than we would expect. Our main focus in
this paper is theoretical, to show that even for such a small data set, we can make a meaningful
statement about size and location. Nevertheless, we end the paper with a simple numerical
computation to demonstrate that this meaningful set remains meaningful in the presence of
noise.

Specifically, we find a lower bound on Kf (�), the �-convex hull of the support (the
smallest polyhedron, with normals in the directions of observations, which contains the
support) of the source. That is, from the far field measured in (i.e. the Fourier or Radon
transform restricted to) a collection of directions θi ∈ �, we compute another �-convex
polygon, KRf (�), which we prove must be a subset of the �-convex hull of the support
of any source f which radiated that far field. We call this minimal polygon the �-convex
scattering support of the (restricted) far field. The development here parallels that used in [4]
to define the convex scattering support of a far field measured at all angles but at only one
wavenumber. See [7] for a method of computing that support using a regularized sampling
method, and [5] for a different method that uses neither sampling nor regularization.

In contrast to the fixed wavenumber case, it may not be possible to construct a source
supported in KRF (�) that reproduces the sparse broadband data we consider here. However, if
the polyhedron KRF (�) has two faces for each θi ∈ �, as it should generically, then a source,
supported in KRF (�), that reproduces the data always exists. This is an open condition,
expressible as a finite number of strict inequalities. We will show that the closure of the
this condition (i.e. allowing equality), (26), is both necessary and sufficient to guarantee the
existence of a source, supported in KRF (�) which exactly reproduces the data. The condition
depends only on the data, and if it is not satisfied we need to exclude one or more directions
θi until it is satisfied.

2. Far fields and the Helmholtz equation

A scalar time harmonic wave radiated by a source in a homogeneous medium is modelled as
a solution to the inhomogeneous Helmholtz equation:

(� + k2)u(x) = F(x), x ∈ R
n. (1)

Equation (1) has a unique outgoing solution, u = G+
0F , which satisfies the limiting absorption

principle, or equivalently, the Sommerfeld radiation condition (see e.g. [8], p 147). It is given
by the formula

u(x) =
∫

1

4i

(
k

|x − y|
) n−2

2

Hn−2
2

+(k|x − y|)F (y) dy
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∼ 2ik
n−1

2
eik|x|

|x| n−1
2

∫
eik�·yF (y) dy (2)

where Hn−2
2

+ denotes a Hankel function and ∼ means the large |x| asymptotics. Thus the
outgoing solution to the inhomogeneous Helmholtz equation has asymptotics of the form

G+
0F ∼ 2ik

n−1
2

eik|x|

|x| n−1
2

α(θ). (3)

We call α = F+
k F (θ) the far field of the source F at wavenumber k and note that, according

to (2), the far field of the source F is just its Fourier transform

F+
k F = F̂ (kθ). (4)

We specify a far field sensor array by

� = {θi ∈ Sn−1}
where each unit vector θi denotes a sensor positioned at the point rθi (for some large r > 0)
pointing at the origin . The data we observe are the {F̂ (kθi)|θi ∈ �}. Now,

F̂ (kθ) =
∫

R
n

e−ikθ ·xF (x) dx

=
∫ ∞

−∞
dτ e−ikτ

∫
θ ·x=τ

F (x) dS

=
∫ ∞

−∞
dτ e−ikτ [RF ](τ, θ) (5)

where RF is the Radon transform of F. The calculation above, which shows that the one-
dimensional Fourier transform of the Radon transform is the n-dimensional Fourier transform
is called the central slice theorem [6, p 11]. Since we may easily compute the one-
dimensional Fourier transform analytically or numerically, our data are equivalent to
{[RF ](τ, θi)|θi ∈ �}.

The Born approximation for scattering from an inhomogeneous medium gives rise to the
same sort of far field data, although the θi that arise incorporate both source and receiver
directions. When we observe the far field of a wave scattered by an inhomogeneous medium,
the mathematical model we use is the Helmholtz equation for an inhomogeneous medium:

(� + k2n2(x))u = 0.

We now have an array of sources and an array of receivers (usually the same) in the far field.
If we excite the source in the far field in the direction φ ∈ Sn−1, we express u in the form

u = eikφ + usc

where eikφ is called the incident wave and usc, the scattered wave, is the unique outgoing
solution to

(� + k2)usc = k2q(x)(eikφ + usc) (6)

with q(x) = 1 − n2(x). The Born (or weak scattering) approximation is valid when usc is
small enough to be ignored on the right-hand side of (6). Thus the Born approximation, uB ,
to usc satisfies

(� + k2)uB = k2q(x) eikφ

which is just (1) with F = k2q(x) eikφ . If we observe the far field at a sensor in the direction
ψ ∈ Sn−1, the far field we see is the shifted Fourier transform of q, i.e.

B(φ,ψ) = k2(̂q(k(φ − ψ)))

= k2(̂q(k̃(θ))) (7)
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where

k̃ = k‖φ − ψ‖
= k

√
2 − 2φ · ψ (8)

and

θ = φ − ψ

‖φ − ψ‖ . (9)

Thus, both the inverse source problem and the Born approximation to the inverse scattering
problem, with a sparse (i.e discrete) array in the far field, are equivalent to the mathematical
problem of estimating the support of a function F from its Fourier transform restricted to a set
of lines through the origin. We set about this task in the following section.

3. The Θ-scattering support

In this section we introduce the notion of support that we will relate to our far field observations.
Let � be a region in R

n. The convex hull of region � is the intersection of the half planes

Hs,θ = {x|x · θ � s}
which contain it, where θ varies on the unit sphere. That is,

ch � =
⋂

θ∈Sn−1

{x · θ � s�(θ)}

where

s�(θ) = sup
x∈�

x · θ

is the supporting function of �. For convenience, the supporting function is extended to all
ξ ∈ R

n by requiring it to be positively homogeneous of degree 1. For a source (i.e. a function
or distribution defined on R

n) we shall write

sF (ξ) := ssupp F (ξ).

Many properties of convex hulls are conveniently encoded in the supporting function.
Every positively homogeneous convex function of degree 1, s, defines a convex set K via

Ks =
⋂
ξ∈R

n

{x · ξ � s(ξ)}.

It is a simple consequence of the Hahn–Banach theorem that the support function of Ks is
equal to s [2]. That is,

sKs
(φ) := sup

x·θ�s�(θ)

for all θ

x · φ

= s�(φ)

so there is a unique correspondence between convex sets and supporting functions (positively
homogeneous convex functions of degree one).

In the previous section we noted that the far field of a source was just its restricted Fourier
transform. The Paley–Wiener theorem [2] describes the way in which the supporting function
is manifested in the Fourier transform of the source.
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Theorem 1 (Paley–Wiener theorem). If F is a compactly supported distribution, F̂ (ξ) extends
to a holomorphic function F̂ (ζ ) (ζ ∈ C

n) that satisfies

|F(ζ )| � C(1 + |ζ |)m esF (Im(ζ )). (10)

Conversely, if F̂ (ζ ) is holomorphic and satisfies an estimate of the form (10), then F has
compact support and sF is the smallest supporting function for which (10) holds.

In our scattering problem, because we have only a sparse (i.e. finite) array of sensors in
the far field, we will have observations in a finite number, N, of directions (unit vectors). For
such a collection of directions,

� = {θi ∈ Sn−1}
we will define the �-convex hull of a region � by

Ks�
(�) =

⋂
θi∈�

{x · θi � s�(θi)}.

The �-convex hull is a polyhedron with faces whose normals belong to the collection of
angles �. It is the smallest such polyhedron that contains �. Ks�

(�) has its own supporting
function

sKs�
(�)(θ) = sup

x·θi�s�(θi )

θi∈�

x · θ. (11)

Our far field data will provide us with a positively homogeneous function, σ , of degree one
which will play a role similar to that of s�, but will not necessarily be convex. Nevertheless,

Kσ(�) =
⋂
θi∈�

{x · θi � σ(θi)}

still defines a convex polyhedron with supporting function

sKσ (�)(θ) = sup
x·θi�σ(θi )

θi∈�

x · θ. (12)

The difference between (11) and (12) is that, in the first case, the two support functions
agree on the θi , i.e.

sKs�(�)
(θi) = s�(θi) (13)

while, if σ is not convex,

sKσ (�)(θi) � σ(θi) (14)

but equality may not hold. This distinction will play a role in (26) of theorem 7. Both (13)
and (14) are consequences of the lemma below.

Lemma 2. Let σ be any homogeneous function of degree 1. Then sKσ (�) is the largest
supporting function satisfying

s(θi) � σ(�i) for all θi ∈ �. (15)
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Proof. Let β be a supporting function that satisfies (15). According to (10)

β(φ) = sKβ
(φ)

= sup
x·θ�β(θ)

for all θ

x · φ

� sup
x·θi�β(θi )

θi∈�

x · φ

� sup
x·θi�σ(θi )

θi∈�

x · φ

= sKσ (�)(φ) �

Our σ of interest arises from our far field observations (5) as follows. For each fixed θ ,
σ(θ) will be the supporting function of the one-dimensional function [RF ](·, θ). That is,

σ[RF ](τθ) = sup
t∈supp[RF ](·,θ)

tτ.

σ[RF ] is always homogeneous of degree 1, but will not in general be convex. KσRF
(�) provides

a lower bound for the �-convex hull of the support of F, i.e.

Theorem 3.

σRF (θ) � sF (θ) (16)

or, equivalently

KσRF
(�) ⊆ KsF

(�).

Proof. The definition of the Radon transform

[RF ](τ, θ) =
∫

θ ·x=τ

F (x) dS

shows clearly that

τ � sF (θ) �⇒ [RF ](τ, θ) = 0 �⇒ τ � σRF (θ)

i.e.

σRF (θ) � sf (θ)

for every θ , which implies the desired conclusion on the corresponding convex sets they define.
�

One might hope to do better than merely a lower bound, but the following observation
shows that, in the absence of ancillary information about f , no upper bound is possible.

Proposition 4. Let 
 be any compactly supported smooth function and let θ⊥
i denote some

non-zero vector perpendicular to θi for each i = 1, . . . , N . If H is the Nth-order derivative of

 given by

H = ∇θ⊥
1

. . . ∇θ⊥
N

 (17)

then the restriction of Ĥ (ξ) to all of the lines ξ = τθi vanishes identically.

Remark 5. In the two-dimensional case, the kernel of the map from sources to restricted far
fields is exactly the span of the functions of the form H. In dimensions 3 and higher, an exact
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description of the kernel is more complicated, depending in a detailed way on the geometry
of the directions θi (how many are co-planar, e.g.).

Proof. Simply observe that

Ĥ (ξ) =
∏

i

(
ξ · θ⊥

i

)

̂

has at least one linear factor which vanishes when ξ = τθi . �

Corollary 6. Given any compactly supported function F, any finite set of directions �, and
any compact set � ⊂ R

n, there exists a function G such that

Ĝ(τθi) = F̂ (τθi) � ⊂ ch supp G. (18)

Proof. Let G = F + H where H is of the form (17), with 
 chosen to be smooth and with
support in �\supp F . Note that because 
 is smooth and compactly supported, ch supp H =
ch supp 
. �

Having established our lower bound, we might want to use it to find an approximate
or regularized source. Our next order of business is to show that, under a condition that is
generically satisfied and can be checked from the data, the �-convex scattering support of
F,KσRF

(�), is in some sense the biggest set we can hope to identify. We will show that there
exists an F̃ supported in KσRF

(�) witĥ̃F(τθi) = F̂ (τθi)

for all θi ∈ �, if and only if

σRF (θi) = sKσRF
(�)(θi). (19)

We refer to condition (19) as the property that Kσ(�) has almost 2N faces1. To explain the
relationship between (19) and the faces of KσRF

(�), we point out that, according to (12),
the boundary of KσRF

(�) may consist only of faces which are subsets of the hyper-planes
{x ·θi = σ(θi)}. If that intersection contains an open subset of that hyper-plane, it is genuinely
a face of the polyhedron with outward pointing normal θi . This means that KσRF

(�) is strictly
smaller than KσRF

(�\{θi}), or equivalently, that the support function of the former is strictly
smaller than the support function of the latter. Combining this with (14), we see that

sKσ (�\{θi })(θi) > sKσ (�)(θi) � σ(θi)

so that KσRF
(�) has 2N nontrivial faces if and only if, for each θi ∈ �

sKσ (�\{θi })(θi) > σ(θi). (20)

Now, because it involves fewer conditions,

sKσ (�\{θi })(θi) � sKσ (�)(θi)

which combines with (14) to show that

sKσ (�\{θi })(θi) � σ(θi) (21)

follows from (19). Because (21) tells us that

Kσ(�) = Kσ(�\{θi}) ∩ {x · θi � σ(θi})} ⊂ {x · θi � σ(θi})}
1 Even though (19) is really a condition on the pair (σ,�), not the polygon Kσ (�).
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which is just the geometric statement of (19), we see that (21) and (19) are equivalent. Thus
any (σ,�) pair satisfying (19), satisfies (21), and is therefore a limit of pairs with 2N faces,
i.e. has almost 2N faces.

Theorem 7. Let {θi} be a set of N distinct unit vectors and let fi(τ ) be a corresponding set of
compactly supported distributions defined on R. Define

� = {±θi}
and

σ(±θi) = sup
τ∈supp fi (±τ)

τ (22)

then there exists a compactly supported distribution F defined on R
n satisfying

F̂ (kθi) = f̂ i(k) (23)

supp F ⊂ Kσ(�) (24)

if and only if there is an Nth degree polynomial satisfying

P N(τθi) = f̂ i(τ ) + O(τN+1) (25)

and

σ(±θi) = sKσ
(±θi) (26)

i.e. Kσ(�) has almost 2N sides.

Remark 8. Condition (25) is called the moment2 condition for the Radon transform or the
Helgason–Ludwig consistency conditions [6, p 36].

Proof. One direction of the proof is easy. If we start with (23) and (24), then we may satisfy
(25) by choosing P N to be the Nth-order Taylor polynomial of F̂ , which is analytic because
F has compact support. To establish (26), note that (23) implies that, at each θi ,

σ(θi) = σRF (θi) � sF (θi) (27)

the final inequality following from (16). On the other hand, (24) guarantees that, for any θ

sf (θ) � sKσ (�)(θ) (28)

which, according to lemma 2

�σ(θ). (29)

Combining (27)–(29) shows that all the inequalities must be equalities at the θi and establishes
(26).

The converse requires more work. We will construct F̂ from the f̂ i with the help of the
following lemma.

Lemma 9. Let fi(τ ) be supported in [σ(−θi), σ (θi)] and

f̂ i(k) = O(kN) at k = 0. (30)

Let 
 be a unit vector that is not perpendicular to θi and c a vector of arbitrary length that is
perpendicular to θi .

2 The Taylor coefficients of the Fourier transform at the origin are the moments,
∫

tnRf (t, θ) dt , of the Radon
transform.
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Define

F̂ i(ξ) =
N∏

j=1

[(
θ⊥
j · ξ

)
(θi · 
)(

θ⊥
j · θi

)
(ξ · 
)

]
f̂ i

(
ξ · 


θi · 


)
eiξ ·c (31)

then Fi(x) is a distribution supported on the line segment

γ (t) = t
 + c

between the planes

x · θi = −σ(−θi) (32)

x · θi = σ(θi) (33)

and

F̂ i(kθi) = f̂ i (k) F̂ i(kθj ) = 0 for j �= i. (34)

Proof of lemma. Since fi(τ ) has compact support, its one-dimensional Fourier transform f̂ i

extends to be holomorphic in C. Because of (30), f̂ i (k)

kn extends to be holomorphic as well.
This implies that F̂ i , as defined in (31), extends to be holomorphic in C

n.
The (one-dimensional) support function of fi is given by

sfi
(t) =

{
σ(θi)t t > 0

σ(−θi)t t � 0.

According to the Paley–Wiener estimate (10),

f̂ i(z) � C(1 + |z|)m esfi
(Im(z)).

Therefore, according to formula (31)

F̂ i(ζ ) � C(1 + |ζ |)M esfi
(Im(ζ )·
)+Im(ζ )·c

so that

sFi
(η) � η · c +

{
σ(θi)η · 
 η · 
 > 0

σ(−θi)η · 
 η · 
 � 0
(35)

and the right-hand side of (35) is the support function of the line segment described in the
lemma. �

We will prove the only if part of theorem 7 by finding

F̂ = F0 +
N∑

i=1

Fi. (36)

The Fi will come from the lemma. In order to use it, we must replace each fi with an f̃ i that
satisfies (30). To do this, let d be a point in Kσ and recall P N(ξ) from (25). We define

F0 = QN(ξ) eiξ ·d (37)

with Q chosen so that

QN(ξ) eiξ ·d = P N(ξ) + O(ξN+1)

near ξ = 0. Now we apply the lemma to f̃ i defined bŷ̃f i = f̂ i − QN(kθi) eikθi ·d .
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It follows from the lemma that F as defined in (36) satisfies (23). Each Fi can be constructed
to have support on a line segment with one endpoint on each of the planes (32) and (33).
Condition (26) guarantees that at least one point in each plane, and hence the line segment
connecting them, belongs to the convex set Kσ , and thus completes the proof. �

If we replace the compactly supported distributions in theorem 7 by smooth functions
C∞

0 , the only if part of the theorem remains true as stated. However, we must modify the if
part of the theorem slightly:

Theorem 10. Let the θi and fi be as in theorem 7, and assume in addition that fi ∈
C∞

0 (R), if

(1) There exists an Nth degree polynomial P N(ξ) satisfying

P N(τθi) = f̂ i (τ ) + O(τN+1).

(2) Kσ(�) has almost 2N faces (i.e. σ(±θi) = sKσ
(±θi))

then, for any ε > 0, there exists an F ∈ C∞
0 (Rn) satisfying

(1) F̂ (kθi) = f̂ i(k)

(2) supp F ⊂ Nε(Kσ (�))

where Nε(Kσ ) denotes an ε neighbourhood of Kσ .

Proof. We indicate the changes that need to be made to the construction of F̂ in the proof of
theorem 10 to ensure that F is smooth. Let φε be an even smooth function of a single variable
supported in {|τ | � ε} with enough vanishing moments that

φ̂ε(k) = 1 + O(kN+1)

near k = 0. We replace F̂ 0 in (37) and each F̂ i constructed in lemma 3 by

F̂ 0 
→ F̂ 0φ̂ε(|ξ |) F̂ i 
→ F̂ i φ̂ε(|ξ − (ξ · θi)θi |). (38)

These changes ensure that F is smooth, but do not change the values of the expansion of F̂ 0

near 0 or the values of the Fi(τθj ). They spread the support of F0 and each Fi to within an
ε-neighbourhood of what they were before, which is enough to prove the theorem.

If we look a little more closely, we see that while the support of F0 spreads in all directions
to a ball about the point d, the support of each Fi spreads away from the original line segment,
but only in directions parallel to the planes {x · θi = σ(θi)}. Thus, in the case that KσRf

(�)

has an interior point (which we may choose as d) and 2N faces (rather than almost 2N faces),
we may take ε = 0 (i.e. we do not need the ε-neighbourhood). �

4. Examples

In the table below, we include a few examples of Ksf
(�) and KσRf

(�) for a simple function.
We take

f = χr(x − p1) − χr(x − p2) + χr(x − p3) (39)

where χr is the indicator function on the ball of radius r(= 0.2), and the pi are (−1, 1), (1, 1)

and (0, 0), respectively. In the plots, the light circles indicate the supports of the individual
summands, the plus or minus signs indicate whether that summand is added or subtracted
in (39).

In the first example, � includes the x-axis and the diagonal, in the second the y-axis
and the anti-diagonal and in the third there are three directions, both coordinate axes and the
diagonal. See figure 1.
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Ksf (Θ) KσRf
(Θ) Comments

–3 –2 –1 0 1 2 3

–1.5

–1

–0.5

0

0.5

1

1.5

2

2.5

3

3.5

+

+

–

–3 –2 –1 0 1 2 3

–1.5

–1

–0.5

0

0.5

1

1.5

2

2.5

3

3.5

+

+

Ksf (Θ) = KσRf
(Θ).

This is the generic case.

–2.5 –2 –1.5 –1 –0.5 0 0.5 1 1.5

–1

–0.5

0

0.5

1

1.5

2

+

+

–2.5 –2 –1.5 –1 –0.5 0 0.5 1 1.5

–1

–0.5

0

0.5

1

1.5

2

+

+

KσRf
(Θ) ⊂ Ksf (Θ).

KσRf
(Θ)has 2N (4)

faces, so we can find
a source supported in
KσRf

(Θ) that interpolates
f̂ in both directions.

–1 –0.5 0 0.5 1

–0.5

0

0.5

1

1.5

+

+

–1 –0.5 0 0.5 1 1.5 2

–0.5

0

0.5

1

1.5

+

+

KσRf
(Θ) ⊂ Ksf (Θ).

KσRf
(Θ) does not have

almost 2N faces. The
thin lines represent the two
missing faces. There can
be no source supported in
KσRf

(Θ) that interpolates
f̂ in all three directions.

–

––

–
–

Figure 1. Three examples of the �-convex scattering support.

In the generic example, Ksf
(�) and KσRf

(�) are equal and approximate the convex hull
of the support of f . The approximation gets better as we increase the number of θ . The last
two examples are non-generic because f averages to zero along certain planes with normals
in the direction of the y-axis and the anti-diagonal. We happen to have chosen one or more θ

in precisely those directions.
Keep in mind when looking at these examples that if we have only the data in hand we

see only KσRf
(�), and neither Ksf

(�) nor the true supports (i.e. the three circles). In the last
example, theorem 9 tells us that we must drop a direction before we can try to construct f̂ .
Any direction will do. If we choose to drop the (0, 1) direction, we wind up back at the first
example.

A closer examination of the second example shows that the three sources at the corners
of the parallelogram produce exactly the same far field data (in the two θi directions) as a
single source at the only corner of the parallelogram which has no true source. In this case,
KσRf

(�) actually shows us the location of this ghost source, which is as far from the three
true sources as it could be without contradicting theorem 3. Such a situation becomes more
and more unlikely as the number of observation directions θi grows. Indeed, it is proved in [3]
that for any fixed configuration of point sources, there is a large enough far field sensor array
(i.e. enough directions θi) to uniquely identify that configuration among all configurations of
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Figure 2. Numerical computations for the three examples in figure 1.

point sources. See also [1] for a description of the kernel of the map from point sources to a
linear array of near field sensors.

Finally, we show a numerical computation for each of the three examples, illustrating
one possible method for computing the polygon KσRf

(�) and its performance in the presence
of noise. While the support function served as a useful theoretical tool, we do not attempt
to actually compute it. Instead we tensor the far field restricted to the line with direction θi

with the dirac distribution, δθi
, of that line3 to produce a two-dimensional distribution. We

then compute the inverse Fourier transform of each such distribution, which is a plane wave,
and make an image plot to show the support of each function. KσRf

(�) is the intersection of
the convex hulls of these supports, each of which is a strip. We do not explicitly mark the
intersection in the image plot.

To produce the figures in the table we evaluated the source f on a 512 × 512 rectangular
grid with spacing 0.05 and added normally distributed random noise with mean 0 and standard
deviations 0.1, 0.2, or 0.3 for each column, respectively. A two-dimensional discrete Fourier
transform (DFT) of the source produced the values of the far field on the dual grid. We formed
the discrete analogues of the distributions discussed above by setting the far field to zero at all

3 〈δθi
, h〉 = ∫ ∞

−∞ h(tθi ) dt .
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grid points that were more than 1.5 times the grid spacing (0.04 on the dual grid) from all of
the lines in �. Finally, we computed the inverse DFT, took absolute values and made image
plots. We could have, but did not, filter the result. We expect that everyone would agree that
the supports are clearly visible at the 10% noise level and no longer visible at the 30% noise
level. See figure 2.
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