
A ’range test’ for determining scatterers

with unknown physical properties.

Roland Potthast 1, John Sylvester 2, Steven Kusiak 3

Abstract

We describe a new scheme for determining the convex scattering support of an
unknown scatterer when the physical properties of the scatterers are not known. The
convex scattering support is a subset of the scatterer and provides information about
its location and estimates for its shape. For convex polygonal scatterers the scattering
support coincides with the scatterer and we obtain full shape reconstructions. The
method will be formulated for the reconstruction of the scatterers from the far field
pattern for one or a few incident waves. The method is non-iterative in nature and
belongs to recent type of generalized sampling schemes like the ’No response test’ of
Luke-Potthast.

The range test operates by testing whether it is possible to analytically continue
a far field to the exterior of any test domain Ωtest. By intersecting the convex hulls
of various test domains we can produce a minimal convex set , the convex scattering
support which must be contained in the convex hull of the support of any scatterer
which produces that far field.

The convex scattering support is calculated by testing the range of special integral
operators for a sampling set of test domains. The numerical results can be used as an
approximation for the support of the unknown scatterer. We prove convergence and
regularity of the scheme and show numerical examples for sound-soft, sound-hard and
medium scatterers.

We can apply the range test to non-convex scatterers as well. We can conclude that
an Ωtest which passes the range test has a non-empty intersection with the infinity-
support (the complement of the unbounded component of the complement of the
support) of the true scatterer, but cannot find a minimal set which must be contained
therein.

1 Introduction

We consider the scattering of time-harmonic acoustic waves by some possibly multiply
connected scatterer Ω in Rm for m = 2, 3. An incident wave ui is scattered into the
scattered field us with far field pattern u∞. The inverse problem is to reconstruct the
location, shape and properties of the unknown scatterer.

The main purpose of the paper is to introduce a new scheme, which we call range test,
for determining information about the location and estimates for the shape of unknown
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Method for shape reconstruction Year data needed
Colton-Kirsch / Linear Sampling Method 1995/96 all waves
see [2]
Kirsch / Factorization Method 1998 all waves
see [10]
Ikehata / Probe Method 1998 all waves
see [8]
Potthast / Singular Sources Method 1999/2000 all waves
see [19]
Luke-Potthast / No-Response Test 2002 one wave
see [14]
Potthast-Sylvester-Kusiak / Range Test 2002 one wave

Table 1: Methods for reconstructing the shape of an unknown scatterer when the physical
properties of the scatterer are not known.

scatterers when the physical properties of the scatterers are not known. Due to the lack of
knowledge about the boundary condition, in this situation most conventional schemes like
Newton’s Method, the Kirsch-Kress potential fit or the point-source method of Potthast
(see [20] and [3]) cannot be applied. The scattering support is a subset of the unknown
scatterer and thus provides some general information about its location. For convex polyg-
onal we show that the scattering support coincides with the scatterer and, thus, the range
test provides full reconstructions of convex polygonal scatterers. In general, there might
be special situations where the range test delivers only one single point in the interior of
the unknown scatterer. However, our numerical experiments confirm that for most prac-
tical situation it provides a rather good (however still rough) estimate for the shape and
size of the scatterer from the far field pattern of one scattered time-harmonic plane wave.

The range test uses an approach different from former schemes like the ’no response
test’ of Luke-Potthast [14], the singular sources method of Potthast [19], the ’probe
method’ of Ikehata [9], the ’factorization method’ of Kirsch [10] or the ’linear sampling
method’ of Colton-Kirsch [2]. The singular sources method, the probe method and the
linear sampling method need to know the far field pattern for all plane waves for recon-
structions. The range test, however, needs only one or a few far field patterns to provide
reasonable results. Table 1 gives a survey about the different reconstruction methods
which do not use the physical optics or the Born approximation. The range test is partic-
ularly suited for inverse scattering in the resonance region, since it does not perform any
high- or low-frequency approximations for the scattering problem like recent methods of
Bucci, Capozzoli and Elia [1].

The basic idea of the range test is to determine the convex scattering support, the
minimal convex set, such that the scattered field may be analytically extended to its
complement. This set will be a subset of the convex hull of the unknown scatterer Ω. The
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method will not deliver full reconstructions of the shape of scatterers, but reconstruct a
subset of the convex hull of the obstacle, based on one or more far field patterns scattered
from one or more incident waves. The determination of the convex scattering support
will be efficiently carried out using integral equations of the first kind on a number of test
domains, where the integral equation

(1.1)
∫

∂G
eiκx̂·dg(d) = u∞(x̂), x̂ ∈ Sm−1,

has a solution in L2(∂G) if and only if the scattered field can be analytically extended
up to the boundary ∂G of the test domain G. Since this tests the range of the integral
operator the method is called range test.

A range test for the extension of u∞ into us could be performed by expansion of the
scattered field and far field pattern with respect to spherical harmonics (see Theorem 2.16
of [3]). Here, we prefer the integral equation approach. Also, implicitly the ’factorization
method’ of Kirsch [10] carries out a range test. However, the method of Kirsch needs to
know the far field pattern for all plane waves, where for our range test algorithm it is
sufficient to know u∞ for scattering of one plane wave.

The plan for this paper is as follows. In Section 2 we provide some basic material about
the scattering problems under consideration. In Section 3 we define the convex scattering
support cSκsupp u∞ of a far field pattern u∞. We will also define the D-convex scattering
support, SDsuppΩ, of a scatterer Ω illuminated by a collection of plane waves D, to be the
union of the convex scattering supports of the individual scattered waves. We prove some
basic properties of solutions of integral equations of the first kind and use these properties
to derive a range characterization which can be used to decide whether cSκsupp u∞ is
a subset of some test domain G. In Section 4 the range test is described and we prove
convergence and regularity of the scheme to reconstruct Sκsupp u∞ from the far field
pattern u∞ for scattering of one incident wave. In Section 5 we describe some efficient
implementation of the range test and show numerical examples for the reconstruction
of sound-soft obstacles, sound-hard obstacles or medium scatterers when the boundary
condition and physical properties of the scatterer are not known.

Finally, we would like to provide some remarks about the measurement domain. The
far field is an analytic function, so that its restriction to an arbitrary open subset of Sm−1

is theoretically enough to determine the entire far field. Here, we will assume that the
far field pattern is known on the whole unit sphere Sm−1. For a pilot paper about a new
method this is a simple and well-known setting in which the method can be compared to
a number of other schemes (see [3]). We expect to be able to apply the method in many
related settings, for example, when the measurements are taken on a line or a plane (or
even an open subset of that line or plane) Γ on one side of the scatterer. In this case,
the scattered field us|Γ uniquely determines the field us in Rm \Ω and thus the scattering
support. In this case the far field operator S∞ : L2(∂G) → L2(Sm−1) can be replaced by
the operator single-layer operator S : L2(∂G) → L2(Γ) and the whole theory will work
analogously.
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2 Obstacle and medium scattering problems.

This section serves to briefly review the key elements of scattering by bounded objects or
media, and to provide some tools for the inversion scheme described in section 4.

Let vi be an incident field that satisfies the Helmholtz equation,

(2.1) 4v + κ2v = 0,

equation
with wave number κ > 0 on Rm. The incident field produces a scattered field vs that

solves the Helmholtz equation on the exterior of the scatterer Ω and is radiating, i.e. it
satisfies the Sommerfeld radiation condition

r
m−1

2

( ∂

∂r
− iκ

)
v(x) → 0, r = |x| → ∞

uniformly in all directions. For impenetrable scatterers we consider cases where the scat-
terer is either sound-soft (a perfect conductor), sound-hard (a perfect reflector) or some
mixture of these. Each of these types of scatterers is modeled by a total field,

v = vi + vs,

that satisfies either Dirichlet, Neumann or impedance boundary conditions. These bound-
ary conditions are given respectively as

v|∂Ω = 0,
∂v

∂ν
|∂Ω = 0,

∂v

∂ν
|∂Ω + λv|∂Ω = 0,

with the impedance function λ ∈ C(∂Ω). We also treat penetrable scatterers, where the
inhomogeneity is modeled by a refractive index n ∈ L∞(Ω) (Ω ⊂ Rm) and where n(x) := 1
for x ∈ Rm \ Ω. Then the total field v ∈ H2

loc(Rm) solves the Helmholtz equation for an
inhomogeneous medium,

4v + κ2nv = 0,

in Rm, and vs = v − vi satisfies the Sommerfeld radiation condition.
For the solution of the Dirichlet problem we represent the scattered field as a combined

single- and double layer potential

vs(x) =
∫

∂Ω

{
∂Φ(x, y)
∂ν(y)

− iΦ(x, y)
}
ϕ(y)ds(y), x ∈ Rm \ ∂Ω,

where Φ(x, y) denotes the free-space fundamental solution to the Helmholtz equation in
two or three dimensions, respectively. For this representation of the scattered field and
the boundary condition, the density ϕ must satisfy the integral equation

(2.2) ϕ+Kϕ− iSϕ = −2vi,
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where S is the single-layer operator,

(2.3) (Sϕ)(x) := 2
∫

∂Ω
Φ(x, y)ϕ(y)ds(y), x ∈ ∂Ω

and K is the double-layer operator,

(Kϕ)(x) := 2
∫

∂Ω

∂Φ(x, y)
∂ν(y)

ϕ(y)ds(y), x ∈ ∂Ω.

The equation (2.2) has a unique solution that depends continuously on the right-hand side
in C(∂Ω).

For the Neumann problem we use the modified approach due to Panich [15]

(2.4) vs(x) =
∫

∂Ω

{
Φ(x, y)ϕ(y) + i

∂Φ(x, y)
∂ν(y)

(S2
0ϕ)(y)

}
ds(y), x ∈ Rm \ ∂Ω,

where S0 denotes the single layer operator in the limit as κ→ 0. For this representation of
the scattered field, the density ϕ can be shown to satisfy the boundary integral equation

(2.5) ϕ−K ′ϕ− iTS2
0ϕ = 2

∂vi

∂ν

where
(K ′ϕ)(x) := 2

∫
∂Ω

∂Φ(x, y)
∂ν(x)

ϕ(y)ds(y), x ∈ ∂Ω,

and
(Tϕ)(x) := 2

∂

∂ν(x)

∫
∂Ω

∂Φ(x, y)
∂ν(y)

ϕ(y)ds(y), x ∈ ∂Ω.

Both Eq.(2.2) and Eq.(2.5) have unique solutions that depend continuously on the incident
field in C(∂Ω).

For the impedance boundary value problem we follow the same approach using the
representation (2.4). An application of the jump relations leads to the equation[

I −K ′ − iTS2
0 − λS − iλ(I +K)S2

0

]
ϕ = 2

∂vi

∂ν
+ 2λvi.

Under suitable assumptions on the impedance λ (basically ensuring uniqueness of the
impedance scattering problem) the integral equation Eq.(2.6) has a unique solution which
depends continuously on the incident field in C(∂Ω).

For the penetrable inhomogeneous medium we use the volume potential approach

v(x) =
∫

Ω
Φ(x, y)(1− n)(y)ϕ(y)dy, x ∈ Rm.

Then the scattering problem can be reduced to the Lippmann-Schwinger equation

(2.6)
(
I + κ2V (1− n)

)
v = vi
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in C(Ω) with the volume potential operator

(V ψ)(x) :=
∫

Ω
Φ(x, y)ψ(y)dy, x ∈ Ω.

The Lippmann-Schwinger equation has a unique solution in C(Ω) that depends continu-
ously on the incident field vi.

3 The scattering support

Let u∞ be the far field pattern of the scattered (radiating) field us, defined in the exterior
of some ball BR with R > 0. Because it satisfies (2.1), the scattered field us is a real ana-
lytic function on Rm\BR, and therefore may be analytically continued (e.g. by translating
its power series expansion) to (possibly) larger unbounded connected open sets. Because
this continuation is real analytic, the extension of us continues to solve (2.1) wherever it
is defined.

We say that a test domain Ω supports u∞ if u∞ can be continued to solve the free
Helmholtz equation in Rn \ Ω.

Lemma 3.1 If Ω1 and Ω2 are convex sets which support the same far field u∞. Then
Ω1

⋂
Ω2 supports u∞.

Proof. Suppose that we have two continuations, one which defines a continuation u1

outside Ω1 and another which defines u2 outside Ω2. Rellich’s lemma and the unique
continuation theorem for the homogeneous Helmholtz equation ([3] ) guarantee that the
two continuations agree on the unbounded open component of Rn \ (Ω1

⋃
Ω2). If Ω1 and

Ω2 are convex, then this set has just one component and therefore

u12 =

{
u1 on Rn \ Ω1

u2 on Rn \ Ω2

is well defined and satisfies the free Helmholtz equation outside Ω1
⋂

Ω2. Thus Ω1
⋂

Ω2

supports u∞. �

Definition 3.2 We call the intersection of all convex Ω which support u∞ the convex
scattering support of the far field u∞ or cSκsupp u∞.

We describe some simple properties of the convex scattering support in the lemma
below (see [12] for a more elaborate discussion).

Lemma 3.3 The convex scattering support has the following properties:
1. If u∞ 6= 0, then cSκsupp u∞ is not empty.
2. Suppose u∞ is the far field pattern produced by a scatterer with convex hull Ω when

it is illuminated by an incident field ui. Then cSκsupp u∞ ⊂ Ω.
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3. The convex scattering support cSκsupp u∞ contains all the singularities of the
scattered field us in the closure of the unbounded component of the complement of the
convex hull of the support of the scatterer. In particular, this includes all corners of
sound-soft or sound-hard scatterers which are on the boundary of the convex hull of the
support of the scatterer.

Proof. If cSκsupp u∞ is empty, then there exist a finite number of convex Ω’s with
empty intersection. According to lemma 3.1 us extends to a solution to the free Helmholtz
equation (2.1) in all of Rm, but the only radiating solution to the free Helmholtz equation
is identically zero. This proves 1.

Item 2. is a direct consequence of the definition.

The scattered field, us has a unique real analytic continuation to the complement of
cSκsupp u∞, so is a fortiori bounded in a neighborhood of any x in that open set. The
hypothesis of item 3 implies that x is in the closure of that set, and that the unique real
analytic continuation is unbounded in any neighborhood of x. �

So far, we have defined the convex scattering support of a single far field pattern u∞.
Suppose now that it is possible to illuminate some scatterer Ω with several incident plane
waves, ui(x, d) = eiκx·d with wavenumbers κ and direction d, or superpositions thereof. To
simplify notation, we let D = κd and let D denote the collection of D’s that parameterize
these incident waves. Also we denote the corresponding scattered fields by us

κ(·, d) and
their far field patterns by u∞κ (·, d).

Definition 3.4 The convex scattering support of a scatterer Ω, illuminated by a collec-
tion of plane waves D, is defined to be the union of the convex scattering supports of the
scattered waves, that is,

(3.1) cSDsuppΩ :=
⋃

D∈D
cSκsupp u∞κ (·, d),

In the following section, the determination of the convex scattering support of a far
field will be based on the following property of the Tikhonov regularization for integral
equations of the first kind. We will formulate the result in a general form.

Theorem 3.5 Let G be a bounded domain with boundary of class C2. We consider an
injective linear integral operator with continuous kernel and dense range

(3.2) (Aϕ)(x) :=
∫

∂G
k(x, y)ϕ(y)ds(y), x ∈ Sm−1,

from the Hilbert space X = L2(∂G) into the Hilbert space Y = L2(Sm−1). Then, for the
Tikhonov solution

(3.3) ϕα := (αI +A∗A)−1A∗f
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with regularization parameter α of the equation

(3.4) Aϕ = f

we obtain the behaviour

(3.5) lim
α→0

||ϕα|| =
{
∞, if f 6∈ A(X),
||ϕ∗|| <∞, if Aϕ∗ = f.

Proof. First, assume that f ∈ A(X), i.e. there is ϕ∗ ∈ X such that Aϕ∗ = f . Then,
according to Theorem 15.23 and (15.5) of [11], for the Tikhonov equation we have

lim
α→0

ϕα = lim
α→0

(αI +A∗A)−1A∗f

= lim
α→0

(αI +A∗A)−1A∗Aϕ∗

= ϕ∗,(3.6)

which proves the second line of (3.5).
Second, assume that f 6∈ A(X). Assume that there is a constant C such that ϕα is

bounded for sufficiently small α > 0. Then there is a sequence αj → 0 for j →∞ such that
the weak convergence ϕj ⇀ ϕ̃, j →∞ holds, where we set ϕj := ϕαj . The linear integral
operator A maps the weakly convergent sequence into a strongly convergent sequence, i.e.
we obtain

(3.7) Aϕj → Aϕ̃ =: f̃

with some f̃ ∈ A(X) ⊂ Y . Passing to the limit j →∞ in

(3.8)
(
αjI +A∗A

)
ϕj = A∗f

we obtain

(3.9) A∗Aϕ̃ = A∗f̃ = A∗f.

The density of the range of A is equivalent to the injectivity of A∗, which implies that
f̃ = f . But this yields the contradiction f ∈ A(X) and the proof is complete. �

Now, consider the operator

(3.10) (S∞ϕ)(x̂) :=
∫

∂G
γme

−iκx̂·yϕ(y)ds(y), x̂ ∈ Sm−1,

with

(3.11) γm :=

{
eiπ/4
√

8πκ
, m = 2,

1
4π , m = 3,

which maps some density ϕ ∈ L2(∂G) onto the far field pattern of the single layer potential

(3.12) v(x) =
∫

∂G
Φ(x, y)ϕ(y)ds(y), x ∈ Rm \G,

in the exterior of G.
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Lemma 3.6 Let G be be an open C2domain such that the interior homogeneous Dirichlet
problem for the Helmholtz equation has only the trivial solution. If G supports u∞, then
u∞ is in the range of the operator S∞. Conversely, if u∞ is in the range of S∞, then G
supports u∞.

Proof. If G supports u∞, then the field us with far field pattern u∞ can be analytically
extended into the open exterior of the domain G and into a neighborhood of ∂G. We now
solve the equation

(3.13) Sϕ = us on ∂G,

which has a unique solution since S maps L2(∂G) bijectively into H1(∂G). On ∂G, the
single layer potential v now coincides with us and by the solution of the exterior Dirichlet
problem for the domain G it coincides with us in Rm \G. Thus, the far field pattern S∞ϕ
of v and u∞ coincide as well and we have proven that u∞ is in the range of S∞.

Now, assume that u∞ is in the range of S∞. Then there is a function ϕ ∈ L2(∂G)
such that S∞ϕ = u∞. We define the single-layer potential v with density ϕ and obtain an
analytic extension of us into Rm \G. Thus G supports u∞. �

As a consequence of the preceding result we derive the following test.

Theorem 3.7 (Range characterization.) If G supports u∞, then

(3.14) lim
α→0

∣∣∣∣∣∣(αI + S∞,∗S∞)−1S∞,∗u∞
∣∣∣∣∣∣ < ∞.

If (3.14) is true for the test domain G, where the homogeneous interior Dirichlet problem
for G has only the trivial solution, then G supports u∞.

In particular, if G is convex, then (3.14) implies cSκsupp u∞ ⊂ G and cSκsupp u∞ ⊂ G
implies (3.14).

Proof. We combine Theorem 3.5 and Lemma 3.6 to obtain the statement. �

4 The range test, its convergence and regularity

The main goal of this section is to formulate the range test and show convergence and
regularity for the reconstruction of the convex scattering support of some far field pattern
u∞. Later, we will use the algorithm of the range test to determine the support of unknown
scatterers given the far field pattern for scattering of one incident wave.

We set up the range test as follows.

Algorithm 4.1 (Range Test.) The range test calculates an estimate for the convex
scattering support cSκsupp u∞ of some far field pattern u∞ in the following steps.
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1. Choose a set of convex test domains N := {Gj : j ∈ J } with boundary of class C2

such that the homogeneous interior Dirichlet problem for Gj, j ∈ J , does have only
the trivial solution. Here, J denotes some index set, which for numerical purposes
needs to be finite.

2. Choose regularization parameters α, c > 0.

3. For each Gj ∈ N , j ∈ J , calculate

(4.1) µ(α,Gj) :=
∣∣∣∣∣∣(αI + S∞,∗S∞)−1S∞,∗u∞

∣∣∣∣∣∣
L2(∂Gj)

.

4. Calculate an estimate Mα,c for cSκsupp u∞ by

(4.2) Mα,c :=
⋂

µ(α,Gj)<c

Gj .

The calculation of the functional µ can be performed by standard means of integral
equations, see for example [11]. We will describe some efficient way to deal with sets of
domains in the following section. Here, we first study convergence for exact data and the
behavior of the range test for data with error δ > 0.

Theorem 4.2 (Convergence of the range test.) Given some far field pattern u∞ we
have the convergence for the range test described by Definition 4.1 in the sense that for each
test domain G we can decide whether cSκsupp u∞ ⊂ G or cSκsupp u∞ 6⊂ G. Further, using
appropriate increasing sets of sampling domains N , there exists a decreasing sequence Mk,
k ∈ N, of domains Mk such that cSκsupp u∞ ⊂Mk and

(4.3) for each domain M with cSκsupp u∞ ⊂M we have Mk ⊂M

for all sufficiently large indices k ∈ N.

Remark. The above theorem states the existence of suitable sampling domains such
that the unknown scattering support is approximated up to a given precision. For practical
construction of these domains here it seems to be necessary to construct a very large set
of test domains to be able to come close to the true scattering support. In section 5
we describe a procedure to reduce the number of test domains by methods from image
algebra. Another simple method to reduce the number of test domains, called ’set-handling
approach’, can be found in [21].

Proof. Given some test domain G, the convergence of the decision about the statement
cSκsupp u∞ ⊂ G is obtained from Theorem 3.7 and equation (3.5) as follows. Assume that
cSκsupp u∞ ⊂ G. If c is chosen such that for the true solution ϕ∗ of the equation S∞ϕ =
u∞ we have c > ||ϕ∗||, then the range test will deliver the right answer cSκsupp u∞ ⊂ G
for sufficiently small α > 0. Also, if cSκsupp u∞ 6⊂ G, then the range test will always
deliver the right answer for α sufficiently small.
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To construct the sequence Mk, k ∈ N, we need to define increasing sets of sampling
domains Nl, l ∈ N, such that they contain a decreasing sequence of sets Mk which contain
cSκsupp u∞ and have the property (4.3) stated in the theorem. Using the standard
Hausdorff distance in Rm it is clear that these sampling sets exist, for example using

(4.4) M̃k :=
{
y ∈ Rm : d(y, cSκsupp u∞) ≤ 1

k

}
and using appropriate sets M̃k ⊂Mk ⊂ M̃k−1 to satisfy the condition on the homogeneous
interior Dirichlet problem and to obtain boundaries of class C2. Thus, the second part of
the theorem is proven. �

For some inverse problem A(ϕ) = fδ with data fδ, regularity studies the convergence
of regularized solutions ϕ(δ) = Rα(δ)fδ towards the exact solution ϕ for δ → 0. Here, we
assume that the data error ||fδ − f || is bounded by

(4.5) ||fδ − f || ≤ δ,

and f is the exact data corresponding to ϕ.

Definition 4.3 A reconstruction scheme Rα with regularization parameters α depending
on δ is called regular, if for ϕ(δ) = Rα(δ)fδ we have

(4.6) ϕ(δ) → ϕ, δ → 0.

We will now show in what sense there is a regular choice of the regularization param-
eters for the range test to obtain the convergence of the type (4.6).

Theorem 4.4 (Regularity of the range test, part 1.) Consider the measured far
field pattern u∞δ of the scattered field us with far field pattern u∞, where we assume

(4.7) ||u∞δ − u∞||L2(Sm−1) ≤ δ.

For a finite set of sampling domains N there is a constant c = c(δ, u∞), c > 0, and a
parameter α = α(δ, u∞), α > 0, such that for sufficiently small δ > 0 the range test
delivers the right answer to the question whether

(4.8) cSκsupp u∞ ⊂ G or cSκsupp u∞ 6⊂ G

for all G ∈ N .

Proof. We use the boundedness of

(4.9) (αI + S∞,∗S∞)−1S∞,∗

for fixed α > 0 as follows. First, for a finite set of sampling domains N there is a subset
N ′ ⊂ N of domains such that µ(α,G) remains bounded for α → 0 for all G ∈ N ′ and
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µ(α,G) →∞ for G ∈ N\N ′. Then, there are constants c, α0 > 0, such that µ(α,G) < c/2,
α ∈ (0, α0], for all G ∈ N ′ and µ(α,G) > 2c, α ∈ (0, α0], for all G ∈ N \N ′. We abbreviate

R̃α := (αI + S∞,∗S∞)−1S∞,∗(4.10)
c̃ := ||R̃α0 ||

and choose α = α0. With the operator R̃α0 we calculate for G ∈ N ′ the estimate

µ(α0, G) = ||R̃α0u
∞
δ ||

≤ ||R̃α0u
∞||+ ||R̃α0(u

∞
δ − u∞)||

≤ c/2 + c̃ · δ
≤ c(4.11)

for 0 ≤ δ ≤ c/2c̃. Analogously, we estimate the functional µ(α0, G) for G ∈ N \ N ′.

µ(α0, G) = ||R̃α0u
∞
δ ||

≥ ||R̃α0u
∞|| − ||R̃α0(u

∞
δ − u∞)||

≥ 2c− c̃ · δ
≥ 3c/2(4.12)

for 0 ≤ δ < c/2c̃. In these cases the range test delivers the right decomposition of N into
N ′ and N \N ′ and the proof is complete. �

According to the preceding regularity theorem, for each finite set of domains N we
obtain some δ > 0 such that for data with error less than δ the range test finds exactly
those domains which contain cSκsupp u∞. There exist arbitrarily fine finite coverings N
of the set of all domains to obtain results up to some prescribed error ε in the Hausdorff
metric.

We expect the dependence of the parameter δ on ε to be such that δ → 0 as ε → 0,
since the norm of R̃α tends to infinity as α→ 0. Finally, we obtain the following important
result.

Theorem 4.5 (Regularity of the range test, part 2.) For each ε > 0 let N (ε) be a
finite set of domains such that

(4.13) min
G∈N (ε)

d(G, cSκsupp u∞) ≤ ε.

We use the range test to determine the smallest set M(ε) in N (ε) which contains cSκsupp u∞

from measured data u∞δ for δ sufficiently small. Then, we can choose ε to depend on the
data error δ such that we obtain

(4.14) d(M(ε), cSκsupp u∞) ≤ ε(δ) → 0, δ → 0

for the Hausdorff distance d between M(ε) and cSκsupp u∞.
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Proof. We consider the function δ(ε) as constructed above. It can be chosen as a
monotonicly increasing function with δ(ε) → 0 for ε → 0. We invert this function to
obtain a function ε(δ) such that for all data u∞δ with error less than δ the range test for
N (ε) delivers the right decision about the question (4.8). Choosing the smallest set M(ε)
in N (ε) which contains cSκsupp u∞ we obtain (4.14) and the proof is complete. �

5 Numerical examples

In this last section we show numerical examples using the range test to determine the
support of obstacles or medium scatterers. We describe an efficient implementation of the
method and a streamlined treatment of the test domains. We describe how we choose the
cut-off parameter c for reconstructions. Finally, we will suggest modifications of the range
test to enhance the contrast of the reconstructions.

We show examples of sound-soft obstacles, sound-hard obstacles and medium scatter-
ers, with reconstructions calculated from the far field pattern of one wave. We do not
utilize any a priori information about the boundary condition or physical nature of the
scatterer under consideration.

The following algorithm is a realization of the method described in the convergence
and regularity theorems due to the following two arguments. First, we remark that there
is no need to test the intersection G := G1∩G2 of two test domains, if the test for G1 and
G2 has been performed and has been positive (i.e. µ(G1) < c and µ(G2) < c). If us can be
analytically extended into Rm \G1 and into Rm \G2, then it can be analytically extended
into Rm \ (G1∩G2). Thus the test for G1∩G2 will be positive as well. Second, if we know
some sets which are in the exterior of the scattering support, then the union of these sets
will be in the exterior of the scattering support. If the complement M of this union is an
isolated domain in Rm, then the field us can be analytically extended into M c and the
range test for this set M should give a positive result, i.e. we can use M as an upper bound
for the scattering support. Thus, by taking intersections of domains G(z) or (as carried out
here) unions of subsets of the complement of the scattering support we construct special
sets M = Mc,α for which we derived existence and convergence statements in section 4.

First, we describe details of our special implementation for the range test which was
introduced by Definition 4.1.

1. We choose some rectangular sampling grid G which covers the unknown scatterer.
For each point z ∈ G we construct a test domain from some reference domain G0 by

(5.1) Gz := G0 + z, z ∈ G,

where G0 is chosen with the conditions stated in Definition 4.1, part 1, and such that
0 ∈ ∂G0. Choosing test domains which are translates of one fixed domain gives us a very
quick way to calculate the solution of the corresponding integral equations. To this end
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(a)

Figure 1: Demonstration of an image Il for one rotation as described in 3., where the test domain
G0 is a circle of radius r = 4 and center (0, 4). The images shows the result for a sound-soft
scatterer Ω indicated by the black line. The points z such that Ω ⊂ Gz can clearly be found by the
blue area. The blue area is part of the exterior of the unknown scatterer, where the special form
of the blue area is a consequence of the form of the approximation domain G(z). We show three
different translated versions of G(z). For the rotation shown, z is the lowest point on the circle
which is the boundary of G(z). As long as Ω ⊂ G(z) we obtain blue (=small) values, otherwise we
observe red (=large) values.

we remark that

(S∞[Gz]ϕ)(x̂) =
∫

∂Gz

e−iκx̂·yϕ(y)ds(y),

= e−iκx̂·z
∫

∂G0

e−iκx̂·yϕ̃(y)ds(y)

= e−iκx̂·z(S∞[G0]ϕ)(x̂)(5.2)

where ϕ̃(y) := ϕ(y + z) for y ∈ ∂G0. Using (5.2) we can calculate

(αI + S∞,∗
z S∞z )−1S∞,∗

z u∞

= (αI + S∞,∗
0 S∞0 )−1S∞,∗

0

(
eiκx̂·zu∞(x̂)

)
,(5.3)

i.e. for each reference domain G0 we need to solve only one equation with different right-
hand sides given by

(5.4) eiκx̂·zu∞(x̂), x̂ ∈ Sm−1.

2. We choose the regularization parameter α by trial and error. For our examples, we
worked with α = 10e− 9. The constant c is determined using the far field pattern u∞0 for
some known reference domain Ω0 and determining

(5.5) c := ||R̃αu
∞
0 ||L2(∂Gz̃)
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(a) (b)

(c) (d)

(e) (f)

Figure 2: Reconstructions of sound-soft obstacles (a) and (b), of sound-hard obstacles (c) and
(d) and medium scatterers (e) and (f) (the jagged lines indicate the support of the scatterer) with
p = 3. Here we used the wave number κ = 2, aperture opening θ = 1.8π;, regularization parameter
α = 10−9 for an incident wave with direction d = (−1, 0). The far field pattern contains 1-2%
errors. For these images the same algorithm with identical parameters is applied to different data
sets.
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with R̃α defined by (4.10) for the domain Gz̃ where z̃ is a point on ∂Ω0. All images have
been normalized by multiplication with 1/c.

3. For each domain Gz we calculate µ(α,Gz) by (4.1) as discussed in Definition 4.1.
For our simple choice of domains , the images are produced as follows. We choose G0

to be a circle or ellipse, respectively. These domains are only suitable to reconstruct the
convex hull of scatterers, but are sufficient to demonstrate the feasibility of the method.
The values µ(α,Gz) are mapped onto a the grid G by z 7→ µ(α,Gz) (as demonstrated
in Figure 1). In principle, this image could be used to find the scatterer by taking the
intersection of all domains Gz where z is in the blue area. This approach is worked out in
[21].

Instead, we repeat the calculations above with several new rotations G(l)
0 for l = 1, ..., L

of the domain G0 around the origin. For each rotation an image Il is produced by

(5.6) Il := {min(µ(α,Gz), c) : z ∈ G},

see for example Figure 1, where the test domain G0 is located in the upper half space. We
will use a simple trick to obtain this intersection using the other images Il, l = 1, ..., L. The
main idea of the trick is as follows: Instead of taking the intersection of those domains G(z)
where µ(G(z)) < C, we can take the union of its complements. The blue area in Figure
1 is a subset of this complement. Thus we obtain a lower estimate for the complement
of the unknown scatterer by taking the union of the blue areas which arise when rotating
the domain of approximation. This corresponds to taking the minimum over the images
under consideration. This is formalized as follows.

4. We perform the operation (4.2) by taking the minimum over all images Il, l =
1, ..., L, where the rotation angles βl are chosen as

(5.7) βl :=
2π(l − 1)

L
, l = 1, ..., L.

A number of examples for

(5.8) I := min {Il : l = 1, ..., L}

is shown in the figures below.

Finally, we would like to discuss some slight modifications of the range test to obtain
better contrast. Instead of the functional µ(α,G) defined by (4.1) we define

(5.9) µ2(α,G) :=
∣∣∣∣∣∣(αI + S∞,∗S∞)−pS∞,∗u∞

∣∣∣∣∣∣
L2(∂Gj)

for p ∈ N. For p = 1 this coincides with the functional µ(α,G). For p = 2 it calculates
the norm of the derivative

(5.10) ϕ′α :=
∂ϕα

∂α
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of

(5.11) ϕα := (αI + S∞,∗S∞)−1S∞,∗u∞

and for higher p it is the norm of the (p− 1)st derivative modulo some constants. For all
pictures in this paper we used p = 3. We remark that ||ϕα|| → ∞ yields ||ϕ(p−1)

α || → ∞,
p ∈ N. In general ||ϕα|| ≤ c does not yield the boundedness of the derivatives, but we
expect the rate of divergence of these derivatives for α→ 0 to be smaller if cSκsupp u∞ ⊂ G
than for cSκsupp u∞ 6⊂ G, which is confirmed by the numerical results.

Figure 2 shows the reconstruction of several scatterers of different size, location and
physical nature. For all these reconstructions we used the same algorithm with fixed
parameters. For all images we chose κ = 2 and considered one wave with direction of
incidence d = (−1, 0). We measured the far field pattern at 121 points.

The influence of the size of the sampling domains and the value of the cut-off parameter
c is shown in Figure 3. The size of the sampling domain does not significantly change the
reconstructions. However, the influence of the cut-off parameter is large. Strategies to
choose the this cut-off parameter in dependence of the data and the reconstructions need
to be part of future research.
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