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Abstract.

In this paper we discuss one dimensional scattering and inverse scattering for the Helmholtz equa-
tion on the half line from the point of view of the layer stripping. By full or nonlinear scattering, we
mean the transformation between the index of refraction (actually half of its logarithmic derivative)
and the reflection coefficient. We refer to this mapping as nonlinear scattering, because the mapping
itself is nonlinear. Another appropriate name is multiple scattering, as this model includes the affects
of multiple reflections.

By linear scattering we mean the Born, or single scattering, approximation. This is the Frechet
derivative of the full scattering transform at the constant index of refraction, which can be calculated
to be exactly the Fourier transform.

In [6], we introduced a variant of layer stripping based on causality and the Riesz transform,
rather than on trace formulas – see [2], [3],[4],or [7],for other approaches to layer stripping. A by-
product of our layer stripping formalism was the discovery of a nonlinear Plancherel equality, which
plays a role in the analysis of the inverse scattering problem, analogous to that played by the linear
Plancherel equality in developing the theory of the Fourier transform.

That linear-nonlinear analogy sets the theme for this work. In the next section, we review the
main results of [6], including a brief derivation of the nonlinear Plancherel equality. We show how
this equality suggests a natural metric for measuring the distance between reflection coefficients and
show that the scattering and inverse scattering maps become homeomorphisms when we use this
metric.

In section 2, we exhibit a nonlinear Riesz transform , which plays for the nonlinear inverse
scattering problem the same role in enforcing causality as the linear Riesz transform 1 plays in signal
processing. We then construct a numerical inverse scattering algorithm 2 based on the nonlinear
Riesz transform. A rough statement of the results there (compare theorems 2.1 and 2.2 with theorems
2.3 and 2.4) is that the inverse scattering transform is a Fourier decomposition, with the addition of
Fourier modes replaced by the composition of these modes as conformal maps of the unit disk. Notice
that such a composition rule preserves the nonlinear constraint that the modulus of the reflection
coefficient remain less than one.

In the final section we prove two linear and nonlinear Paley-Wiener theorems and a Shannon
sampling theorem. One of our Paley- Weiner theorems (theorem 3.2) appears to be new even in the
linear case.
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1. Introduction. We begin with the Helmholtz equation,

d2u

dz2
+ ω2n2(z)u = 0 (1.1)

and assume that the index of refraction is constant and equal to 1 in z ≥ 0 As in
[6], we transform into travel time coordinates by introducing the new independent
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1The Riesz transform is perhaps less well known to the signal processing community than the

Hilbert transform, which is the principal value integral Hf(ω) = 1
π

∫ f(η)
η−ω

dη. The Riesz transform

is a projection built from the Hilbert transform via the formula, P+ = 1
2
(I + iH).

2A matlab GUI implementation is available at www.math.washington.edu/∼ sylvest/
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variable

x =
∫ z

0

n(s)ds.

as well as the variation in the index of refraction with respect to travel time:

α(x) =
n′(x)
2n(x)

This definition of α is differs from the one used in [6] by a factor of two. This has the
effect of making the linear scattering map exactly the Fourier transform of α, rather
than the Fourier transform of α/2, and thus simplifies a lot of the following notation.
It is worth mentioning an equivalent definition of α, namely,

α(x) =
1
2

dc(z)
dz

∣∣∣∣∣
z=z(x)

That is, α is just half the derivative of the local wave-speed (c = 1
n ) with respect to

the depth, z, viewed as a function of the travel time depth, x. This formula has the
practical advantage that there is an exact correspondence between piecewise linear
c(z) and piecewise constant α(x). In travel time coordinates, (1.1) becomes

u′′ + 2α(x)u′ + ω2u = 0 (1.2)

There is a unique solution to (1.2) which has the asymptotics

u(x, ω) ∼ e−iωx

as x → −∞. Because n ≡ 1 for x > 0, α ≡ 0 for x > 0; so that, for x > 0, u has the
representation

u(x, ω) =
1

t(ω)
(
e−iωx + r0(ω)eiωx

)
(1.3)

Equation (1.3) serves as a definition for the reflection coefficient, r0(ω), as well as the
transmission coefficient t(ω). We confine our attention to r0(ω) here, and we denote
the scattering map by S

α
S7→ r0(ω)

The layer stripping approach is based on the observations that:

1) r0(ω) can be naturally extended to r(x, ω), defined for any x ≤ 0.
2) r(x, ω) satisfies a Ricatti type ordinary differential equation.

To see 1), check first that

r0(ω) =
−iω + u(0,ω)′

u(0,ω)

−iω − u(0,ω)′

u(0,ω)

(1.4)
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and then define

r(x, ω) =
−iω + u(x,ω)′

u(x,ω)

−iω − u(x,ω)′

u(x,ω)

(1.5)

A straight forward calculation, using (1.2) will verify that

r′ = 2iωr + α(1− r2) (1.6)
r(−∞, ω) = 0 (1.7)
r(0, ω) = r0(ω) (1.8)

In [6], the forward scattering problem is treated by analysis of the initial value prob-
lem, (1.6-1.7), while inverse scattering is treated by studying the initial value problem
(1.6-1.8). Before summarizing this approach, we examine this formulation of single
scattering. The Frechet derivative, at α ≡ 0, of the scattering map S is called the Born
(or single scattering) approximation. To calculate this, let α = εa and ρ = dr

dε

∣∣
ε=0

;
then differentiating (1.6-1.7-1.8) yields

ρ′ = 2iωρ + a (1.9)
ρ(−∞, ω) = 0 (1.10)
ρ(0, ω) = ρ0(ω) (1.11)

which has the explicit solution

ρ(x, ω) =
∫ x

−∞
e2iω(x−y)a(y)dy (1.12)

= (Hy<0a(y + x))∧ (1.13)

where Hy<0 denotes the indicator function of the left half line. At x = 0, this is just
the Fourier transform (we use −2iω in the exponent for convenience) of Hy<0a.
Notice that, for each x, ρ(x, ω) belongs to the Hardy space, H2(C+).

We recall, following [5], that

H2(C+) = {ρ | ρ holomorphic in C+ and sup
b>0

‖ρ(·+ ib)‖L2 < ∞}

As a is real valued, ρ will have an additional symmetry, so we define

H2(C+) = {ρ ∈ H2(C+) | ρ(−ω) = ρ(ω)} (1.14)

With H2(C−) defined similarly and L2 denoting L2 functions with f(−ω) = f(ω),
we have

L2(R) = H2(C+)⊕H2(C−) (1.15)

In fact, H2(C±) are exactly the Fourier transforms of real valued L2 functions sup-
ported on the negative (resp. positive) half line (see [5]). Thus the initial value
problem (1.9-1.10) has a unique solution among the continuous maps from the inter-
val (−∞, 0) into H2(C+).
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If we turn to the initial value problem (1.9 – 1.11), we see that it has the explicit
solution

ρ(x, ω) = ρ0(ω)e2iωx +
∫ x

0

e2iω(x−y)a(y)dy (1.16)

Now, while ρ(x, ω) ∈ H2(C+) for every x, neither of the two terms in (1.16) do. In
fact, the second term is in H2(C−). If we apply the projections P+ and P−, which
project orthogonally onto the first and second factors in (1.15), to (1.16), we obtain

ρ(x, ω) = P+ρ0(ω)e2iωx (1.17)
(Hx<y<0a)∧ = e−2iωxP−ρ0(ω)e2iωx (1.18)

We may restate (1.12) and (1.17–1.18) as theorems about initial value problems for
(1.9); namely,

Theorem 1.1 (Single Scattering).
Forward Scattering For any a(x) in L2(−∞, 0), there exists a unique solution ρ(x, ω)
in C((−∞, 0);H2(C+)) satisfying (1.9) and (1.10).

Inverse Scattering For any ρ0(ω) in H2(C+), there exists a unique pair (a(x), ρ(x, ω))
in L2(−∞, 0)⊕ C((−∞, 0);H2(C+)) satisfying (1.9) and (1.11).

The point of the theorem is that, when we add causality (i.e. ρ0(ω) ∈ H2(C+)) to
(1.9), the upward propagation for the ODE (1.9) remains an evolution for ρ, but the
downward initial value problem becomes an evolution for both ρ and a. Thus the
inverse problem is solved by merely propagating the differential equation in the other
direction. The main theorem in [6] is that the same is true for the full scattering
problem. That is:

Theorem 1.2 (Multiple Scattering).
Forward Scattering For any α(x) in L2(−∞, 0), there exists a unique solution r(x, ω)
in C((−∞, 0);HE(C+)) satisfying (1.6) and (1.7).

Inverse Scattering For any r0(ω) in HE(C+), there exists a unique pair (α(x), r(x, ω))
in L2(−∞, 0)⊕ C((−∞, 0);HE(C+)) satisfying (1.6) and (1.8).

The only difference between the two theorems is that the second makes use of the the
Hardy space, HE(C+), defined by

HE(C+) = {r | r holomorphic in C+, sup
b>0

E(r) < ∞, and r(−ω) = r(ω)}

which replaces the L2 norm with

E(r) :=
∫

e(r)dω :=
∫

(− log(1− |r|2))dω (1.19)

The appearance of the space HE(C+) is a consequence of the Plancherel theorem.



Inverse Scattering 5

Theorem 1.3 (Plancherel Theorems).
For ρ(x, ω) satisfying (1.9) and (1.10), and for r(x, ω) satisfying (1.6) and (1.7),

∫ ∞

−∞
|ρ(x, ω)|2dω = π

∫ x

−∞
|a|2dx (1.20)∫ ∞

−∞
− log(1− |r(x, ω)|2) dω = π

∫ x

−∞
|α|2dx (1.21)

Warning 1. The reader should be warned that, while (1.20) does not depend on a
being real valued, (1.21) and Theorem 1.2 do depend on the reality of α. We are as-
suming the reality of α in the rest of this paper.

For a careful proof of theorem 1.3 we refer to [6], but we include a sketch below:

Proof:
We start with (1.6), multiply by r, and take real parts to obtain

|r|2
′
= α (r + r) (1− |r|2) (1.22)

Dividing by 1− |r|2 gives

− log(1− |r|2)′ = α (r + r) (1.23)

The formal expansion r(x, ω) = α(x)
2iω + O

(
1

ω2

)
for large ω, suggests that∫ ∞

−∞
r(ω)dω =

πα(x)
2

so that, integrating (1.23) with respect to ω gives(
−
∫ ∞

−∞
log(1− |r(x, ω)|2)dω

)′
= π|α|2.

Integrating with respect to x gives (1.21). We may obtain (1.20) by an analogous
argument, or from (1.21) by setting α = εa and letting ε → 0. �

The Plancherel equality (1.21) suggests a metric to measure distance between two
reflection coefficients and hence view HE(C+) as a complete metric space. In this
topology, the scattering map S becomes a homeomorphism. We need a little notation
to describe this metric:

E(r, s) :=
∫

e(r, s)dω =
∫

(− log(1− rs))dω (1.24)

D2
E(r, s) := E(−r ◦ s)

:= E
(

s−r
1−rs

)
=:

∫
de(r, s)dω

=
∫

e
(

s−r
1−rs

)
dω

(1.25)
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We will call (1.24) the E-inner product, and (1.25) the distance in the E-metric. As
justification for the previous definitions, we offer the theorem below 3:

Theorem 1.4. The scattering map is a homeomorphism from L2(R−) onto HE(C+),
i.e. if rn = Sαn, then

‖αn − α‖L2 → 0

if and only if

DE(rn, r) → 0.

The following results verify that DE is indeed a metric and provide sufficient infras-
tructure to prove theorem 1.4 and facilitate the analysis necessary in section 3.

Lemma 1.5. The metrics, de, and therefore DE, are conformally invariant; i.e. for
any conformal map F of the unit disk onto itself

de(r, s) = de(F (r), F (s)).

Proof A conformal map of the unit disk, F (z) has the form

F (z) = eiθ a− z

1− az
(1.26)

where θ ∈ R and a belongs to the unit disk. We use the notation Fa to refer to the
map in (1.26) with θ = 0. Now

de(b, c) = e(−b ◦ c)
= e(Fb(c))

while

de(G(b), G(c)) = e(FG(b)(G(c))).

Now

FG(b)(G(z)) : b 7→ 0

so that, according to (1.26),

FG(b)(G(z)) = eiθFb(z)

for some θ, so

de(G(b), G(c)) = e(eiθFb(c))
= e(Fb(c))

�

3A weaker version of continuous dependence was stated in [6]. L. Päivärinta has pointed out an
error – a term is missing in (83) – which invalidates the proof given there. Theorem 1.4 provides a
correction to that proof, as well as a stronger result.
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Theorem 1.6 (Cauchy Schwartz and Triangle Inequalities).

|E(r, s)| ≤ E(r)
1
2 E(s)

1
2 (1.27)

DE(r, s) ≤ DE(r, τ) + DE(τ, s). (1.28)

Proof

E(a, b) =
∫

log(1− ab)dw

=
∫ ∞∑

k=1

ab

k

k

dw

≤
∫ ( ∞∑

k=1

|a|2k

k

) 1
2
( ∞∑

k=1

|b|2k

k

) 1
2

dw

≤

(∫ ∞∑
k=1

|a|2k

k
dw

) 1
2
(∫ ∞∑

k=1

|b|2k

k
dw

) 1
2

= E(a)
1
2 E(b)

1
2

D2
E(a, b) = E(−a ◦ b)

= E(a) + E(b)− 2ReE(a, b)

≤ E(a) + E(b) + 2E(a)
1
2 E(b)

1
2

= (E(a)
1
2 + E(b)

1
2 )2

= (DE(a, 0) + DE(0, b))2.

Now, given any C, choose F conformal and mapping 0 to C. Then

DE(a, b) = DE(F−1(a), F−1(b))
≤ DE(F−1(a), 0) + DE(0, F−1(b))
= DE(a, c) + DE(c, b).

�

Theorem 1.7 (Weak and Strong Convergence). Suppose that, for all g ∈ HE(C+)

E(rn, g) → E(r, g)

and that

E(rn) → E(r)

then

DE(rn, r) → 0.

In other words, weak convergence plus convergence of norms implies strong conver-
gence.
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Proof

DE(rn, r) = E(rn) + E(r)− 2Re E(rn, r)

which converge to
→ E(r) + E(r)− 2Re E(r, r)
= 0

�

We shall see in §3 that the topology induced by E occurs naturally when we con-
sider a reflection coefficient as a mapping from C+ into the Poincaré disk. In fact,
de(r, s) is only slightly different from the Poincaré metric on the unit disk. Specifically,

Lemma 1.8. Let de = de(a, b) denote e-distance between any two points in the
Poincaré disk and dp = dp(a, b) denote the corresponding Poincaré distance, then

C1

[
dpHdp≥log 5 + d2

pHdp≤log 5

]
< de < C2

[
dpHdp≥log 5 + d2

pHdp≤log 5

]
(1.29)

with Hdp<log(5) representing the indicator function of the set {dp < log(5)},i.e the
Poincare ball of radius log(5). In particular, the e-distance can tend to zero if and
only if the Poincare distance does.

Proof
The Poincaré distance is defined by:

dp(a, 0) := log(
1 + |a|
1− |a|

) (1.30)

dp(a, b) := dp((Fb)a, 0) (1.31)

We refer to [1] for details about the Poincaré metric. We will establish below the
equivalence of the de and dP .
For 0 < r < 1

de(r, 0) = log(
1

1− r
)− log(1 + r)

dp(r, 0) = log(
1

1− r
) + log(1 + r)

For 0 < r < 2
3 , expanding the series for log gives

r − r2

2
< log(1 + r)< r − r2

2
+

r3

3

r +
r2

2
< log(

1
1− r

)< r +
r2

2
+

r3

3(1− r)

so that
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7
9
r2 < r2 − r3

3
<de(r, 0)< r2 +

r3

3(1− r)
<

5
3
r2

2r <dp(r, 0)< 2r +
r3

3
(1 +

1
1− r

) <
70
27

r

which gives
81
700

d2
p(r, 0) <de(r, 0)<

5
12

d2
p(r, 0)

For 0 < r < 2
3 . For 2

3 < r < 1, alias dp(r, 0) > log(5),

log(1 + r) < log(2)

log(3) < log(
1

1− r
)

(1− log(2)
log(3)

) log(
1

1− r
) < de(r, 0)

dp(r, 0) < (1 +
log(2)
log(3)

) log(
1

1− r
)

1− log(2)
log(3)

1 + log(2)
log(3)

dp(r, 0) < de(r, 0) < dp(r, 0)

Combining the estimates for r < 2
3 and r > 2

3 , we obtain (1.29). �

Corollary 1.9. The unit disk, with the metric de, and HE(C+), with the metric
DE, are complete metric spaces.

Proof The first statement follows immediately from the completeness of the Poincaré
metric. The second from noting that, if a sequence, rn, is Cauchy in the DE metric,
then the function de(rn(ω), rm(ω)) goes to zero in L2(dω) + L1(dω), hence almost
everywhere. The completeness of de now allows us to produce a limit at almost every
ω in the standard way, and the dominated convergence theorem ensures that it will
be in HE(C+). �

Proof of theorem 1.4 We rely on Propositions 2.1 and 3.1 of [S-W-C] for the weak
convergence results in the lemma below. We use the notation rb(ω) = r(ω + ib).

Lemma 1.10. If αn converge to α in L2(dx), then, for every b > 0, rb
n converges to

rb in L2(dω). If rn converge to r in HE(C+) (i.e. DE(rn, r) → 0), then, for every
M < 0, αn converges to α in L2(M, 0; dx).

Proof of the lemma Propositions 2.1 and 3.1 produce rb(x, ω) (respectively α(x)) on
intervals, (x0, x1), as fixed points of certain contractions Φ — the actual reflection
coefficient of the lemma is r(0, ω). Any time we produce a function by such a con-
traction mapping argument, some continuous dependence statement comes along for
free. The lemma asserts just that continuous dependence.
In the statements below r is always a function of ω, as well as x, although we shall
frequently not indicate the dependence on ω explicitly. Specifically, proposition 2.1
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of [6] asserts that Φ(r; r(x0), α) defined by

Φ(r; r(x0), α) = r(x0, ω)e2i(ω+ib)(x−x0) +
∫ x

x0

e2i(ω+ib)(x−y)α(y)(1− r2(y, ω))dy

is a contraction on r(x, ω) in the space of continuous maps from the interval (x0, x1)
into H2(C+) functions bounded by 1 (x0 may be −∞, in which case r0 = 0).
We use the semi-colon in Φ(r; r(x0), α) to indicate that we are regarding Φ as a
mapping r’s to r’s, while the map depends on the parameters r(x0) and α.
Now, if we have αn approaching α, then

rb
n = Φ(rb

n;αn, rb
n(x0))

while

rb = Φ(rb;α, rb(x0))

so that

rb − rb
n = [Φ(rb;α, rb(x0))− Φ(rb

n; d, rb(x0))]
+[Φ(rb

n;α, rb(x0))− Φ(brn;αn, rb
n(x0))]

Hence,

sup
x0<x<x1

‖rb − rb
n ‖L2(dω) ≤ θ sup

x0<x<x1

‖rb − rb
n‖L2(dω)

+‖α− αn‖L2(dx)(1 + ‖αn‖L2(dx)) + ‖rb(x0)− rb
n(x0)‖L2(dω)

hence

sup
x0<x<x1

‖rb −rb
n‖L2(dω) ≤

1
1−θ

(
‖α− αn‖L2(dx)(1 + ‖αn‖L2(dx)) + ‖rb(x0)− rb

n(x0)‖L2(dω)

)
where θ < 1 depends only on ‖αn‖L2(x0,x1;dx), which must be sufficiently small. Com-
bining this estimate over a finite number of intervals yields the convergence of the rb

n

asserted in the first paragraph of the lemma.
The second statement is obtained analogously from Proposition 3.1. Here the con-
traction is

Φ = Φ(α, r; r(x0))

where Φ is contraction mapping from pairs (α, r) to pairs (α, r) depending on the
parameter r(x0) (see equation (94) in [S-W-C]). We don’t include the details here. �

Once we have lemma 1.10, we can use our Plancherel equality to strengthen the
convergence. The lemma implies that

ρb
n = rb

n − rb L2

→ 0.
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To see that this implies weak L2 convergence of the rn, we let g ∈ H2(C+), and
compute the H2(C+) inner product of g and ρn.

(ρn, g) = (ρb
n, g) + (ρn − ρb

n, g)
= (ρb

n, g) + (ρn, g − gb)
|(ρn, g)| ≤ ‖ρb

n‖L2‖g‖L2 + ‖ρn‖L2‖g − gb‖L2 (1.32)

Since ‖ρn‖L2 are uniformly bounded by E
1
2 (rn) + E

1
2 (r) = ‖α‖L2 + ‖αn‖L2 , which

converges to 2‖α‖L2 , we may first choose b and then n to make the last and then the
first terms in (1.32) small.

Now, the previous argument can be applied verbatim with rn replaced by its k-th
power, rk

n, to establish the weak L2 convergence, rk
n → rk for any positive integer

k. Thus, for g ∈ HE each term in the series expansion for E(rn, g) converges to the
corresponding term in the series for E(r, g).
Our nonlinear Cauchy Schwartz inequality (1.27)

E(rn, g) ≤ E(rn)
1
2 E

1
2 (g)

gives the uniform and absolute convergence of both series, establishing weak conver-
gence in HE , i.e.

E(rn, g) → E(r, g)

which then gives strong convergence via theorem 1.7.
To see the reverse implication, suppose that rn → r in HE . The triangle inequality
(1.28) tells us that

DE(rn, 0) ≤ DE(r, 0) + DE(r, rn)

so that

DE(rn, 0)−DE(r, 0) ≤ DE(r, rn)
E(rn)− E(r) ≤ DE(r, rn)

so that E(rn) → E(r). The Plancherel equality then implies that ‖αn‖L2 → ‖α‖L2 .
The convergence of norms is enough to strengthen the weak L2 convergence asserted
in lemma 1.10 to strong L2 convergence. �

2. Linear and Nonlinear Riesz Transforms. Time dependent inverse scat-
tering algorithms make strong use of causality, the fact that reflections from the top
of the medium arrive back at the sensor sooner than those which arise from lower
depths. When a signal is given as a function of frequency, causality is reflected in the
analyticity of the data in the complex upper half plane. In the frequency domain, the
splitting into the past and future is provided by the linear Riesz transform. Specifi-
cally, the linear space L2(R) is the direct sum of the two Hardy spaces, H2(C+) and
H2(C−):

L2(R) = H2(C+)⊕H2(C−) (2.1)
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We let P± denote the projections onto H2(C±) along H2(C∓). P+ is the linear Riesz
transform. We shall often write

f = f+ + f− (2.2)

denoting P±f by f±. We speak of f+ as the causal part of f because it is the Fourier
transform of a function supported in the past, and to f− as the acausal part, because
it depends on the future and is therefore inconsistent with the idea of causality — the
signal represents the present which cannot depend on the future..
In the next subsection we will describe how the Riesz transform can be used as the
basic building block for a numerical algorithm to invert the Fourier transform (i.e. a
linear inverse scattering algorithm).

In the subsection after that, where we show that this linear algorithm becomes a full
nonlinear inverse scattering algorithm when we replace the linear Riesz transform by
the nonlinear Riesz transform.
toggl We shall use the notation ◦ to represent the formula for composition of conformal
maps of the unit disk onto itself.

a ◦ b :=
a + b

1 + ab
(2.3)

and replace the linear splitting in (2.2) by the nonlinear splitting:

f = f+ ◦ f− (2.4)

where f± ∈ HE(C±). The nonlinear projection P+f = f+ is the nonlinear Riesz
transform. We shall see that it is genuinely a nonlinear version of an orthogonal pro-
jection (see theorem 2.5). This nonlinear projection and its properties form the heart
of our inversion scheme.

We can view the Fourier transform as decomposing a function in L2(R) into a sum
of complex exponentials. In our nonlinear decomposition, the additive group opera-
tion, +, is replaced by ◦, the formula for the composition of conformal maps of the
unit disk. Thus our decomposition will decompose a function which is pointwise less
than or equal to one ( as are all reflection coefficients) into a composition of complex
exponentials. Where the Fourier decomposition is orthogonal with respect to L2, our
nonlinear decomposition will turn out to be orthogonal with respect to the E inner
product defined in (1.24). All of this will be made specific in the next two subsections.

2.1. Inverting the Fourier transform via the Riesz transform. In this
section we describe a numerical algorithm which uses the Riesz transform as the basic
step for inverting the Fourier transform. The primary reason for introducing it here
is to serve as a model against which to compare the nonlinear inversion procedure
of the next section. As a method for inverting the linear Fourier transform, it is
computationally very expensive. Our own implementation, however, has proved in-
credibly robust and accurate, especially for functions which decay slowly at infinity
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(e.g. L2(R) and no better).

A typical strategy for numerically computing the Fourier transform (or inverse Fourier
transform) of a function, a, is the following:

• Approximate a by a piecewise constant function (∆ is a small negative pa-
rameter), i.e.

a(x) ∼
∞∑

j=1

a(j∆)Hj∆<x<(j−1)∆

• Compute the Fourier transform of the step function by hand, i.e.

Ĥj∆<x<(j−1)∆ = e−2iω(j−1)∆

(
e−2iω∆ − 1

2iω

)
= e−2iω(j− 1

2 )∆ sinω∆
ω

• Add up the pieces

â(ω) ∼
∞∑

j=1

a(j∆)e−2iω(j− 1
2 )∆ sinω∆

ω

Our strategy for computing the forward linear scattering map is exactly this, although
we prefer to describe it in terms of the differential equation, (1.9), to provide the anal-
ogy to the nonlinear case. We have a different strategy for inverting, namely,

• Use the Riesz transform to break up â into a sum of functions whose inverse
Fourier transforms have support in small intervals

â(ω) =
∞∑

j=1

âj∆(ω)

• Solve for the constant Aj∆ so as to best fit each âj∆(ω) with the Fourier
transform of a step function, i.e.

âj∆ ∼ Aj∆e−2iω(j− 1
2 )∆ sinω∆

ω

• Now a is approximately the sum of step functions

a(x) ∼
∞∑

j=1

Aj∆Hj∆<x<(j−1)∆

so that a(j∆) ∼ Aj∆.

We begin a more explicit description with the exact solution to (1.9) in terms of the
initial data at some point xj .

ρ(x, ω) = ρ(xj)e2iω(x−xj) +
∫ x

xj

e2iω(x−y)a(y)dy (2.5)
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Next, we fix a negative small parameter , ∆ — this will be our step size —, set
xj = j∆, and evaluate (2.5) at xj−1 = (j − 1)∆. That is;

ρ(j−1)∆ = e−2iω∆ρj∆ + e2iω(j−1)∆âj∆ (2.6)

where ρj∆ denotes the ρ(j∆, ω) and

âj∆ =
∫ (j−1)∆

j∆

e−2iωya(y)dy (2.7)

Notice that, for small ∆,

âj∆ ∼ a(j∆)e−2iω(j− 1
2 )∆ sinω∆

ω
(2.8)

so that once we have the âj∆’s in hand, the pointwise values of a are easy to approx-
imate.

We would like to focus on (2.6), rearranging slightly to

ρ(j−1)∆ = e−2iω∆
(
e2iωj∆âj∆ + ρj∆

)
(2.9)

The relation (2.9) can be used to define a forward step or an inverse step. the forward
step is the mapping

(âj∆, ρj∆)
Fj7→ ρ(j−1)∆

while the inverse step is the mapping

ρ(j−1)∆
Ij7→ (âj∆, ρj∆)

The implementation of the inverse step requires the linear Riesz transform. We must
note that

ρj∆ ∈ H2(C+) (2.10)

âj∆ ∈ e−2iωj∆H2(C+) ∩ e−2iω(j−1)∆H2(C−) (2.11)

and define Ij via

ρj∆ = P+e2iω∆ρ(j−1)∆ (2.12)

âj∆ = e−2iωj∆P−e2iω∆ρ(j−1)∆ (2.13)

If we start with a finite sequence of {aj∆}M
j=1, we can set ρ(M+1)∆ = 0 and iterate the

forward step to produce a ρ ∈ H2(C+). Conversely, if we start with a ρ ∈ H2(C+)
we can produce an infinite sequence of aj∆’s by iterating the inverse step. We need to
worry a little about convergence in order to let M approach infinity, but the Plancherel
equality provides plenty of control for that. Notice that (2.11) implies that supp (aj∆)
is contained in the interval [j∆, (j − 1)∆].

We summarize the previous discussion with the next two theorems.
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Theorem 2.1 (Linear Layer Stripping Decomposition).
For any ∆ < 0, any ρ ∈ H2(C+) has a unique decomposition

ρ = â1∆ + â2∆ + â3∆ + . . . (2.14)
with

âj∆ ∈ e−2iω(j−1)∆H2(C+) ∩ e−2iωj∆H2(C−) (2.15)
Moreover,

‖ρ‖2 =
∞∑

j=1

‖âj∆‖2 (2.16)

and conversely, any sum of the form
∞∑

j=1

âj∆ (2.17)

converges to a ρ ∈ H2(C+), provided only that (2.15) holds and the sum on the right
hand side of (2.16) is finite.

Theorem 2.2 (Linear convergence Theorem).
Let ρ be the Fourier transform of a ∈ L2(R−), the functions aj∆(ω) be defined as in
Theorem 2.1, and let

Aj∆ =

∫ j∆

(j−1)∆
âj∆(ω)e2iω(j− 1

2 )∆ sin ω∆
ω dω∫ j∆

(j−1)∆
| sinω∆

ω |2dω

so that Aj∆e−2iω(j− 1
2 )∆ sin ω∆

ω is the best L2 approximation to aj∆(ω). Then the fol-
lowing limit exists in the L2 topology,

lim
∆→0

∞∑
j=1

Aj∆Hj∆<x<(j−1)∆ = a

2.2. Inverse scattering via the nonlinear Riesz transform. The nonlinear
equivalents of theorems 2.1 and 2.2 are:

Theorem 2.3 (Nonlinear Layer Stripping Decomposition). Let r ∈ HE(C+) and
∆ < 0 with |∆E(r)| < π

4 . Then r has a unique decomposition

r = α̂1∆ ◦ α̂2∆ ◦ α̂3∆ ◦ . . . (2.18)
with

α̂j∆ ∈ e−2iω(j−1)∆HE(C+) ∩ e−2iωj∆HE(C−) (2.19)
Moreover,

E(r) =
∞∑

j=1

E(α̂j∆) (2.20)

and conversely, any infinite composition of the form
∞◦

j=1
α̂j∆ (2.21)

converges to an r ∈ HE(C+), provided only that (2.19) holds and the sum on the right
hand side of (2.20) is finite.
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Theorem 2.4 (Nonlinear convergence Theorem).
Let r be the scattering data of α ∈ L2(R−), the functions α̂j∆(ω) be defined as in
Theorem 2.3, and let

Aj∆ =

∫ j∆

(j−1)∆
α̂j∆(ω)e2iω(j− 1

2 )∆ sin ω∆
ω dω∫ j∆

(j−1)∆
| sinω∆

ω |2dω

so that Aj∆e−2iω(j− 1
2 )∆ sin ω∆

ω is the best L2 approximation to αj∆(ω). Then the fol-
lowing limit exists in the L2 topology,

lim
∆→0

∞∑
j=1

Aj∆Hj∆<x<(j−1)∆ = α

Warning 2. The composition, ◦, in (2.18) is neither commutative nor associative.
It should always be read from right to left, i.e

a ◦ b ◦ c ◦ d = a ◦ (b ◦ (c ◦ d))

Before giving the proof of either theorem, we will explain the approximations that we
use to produce our algorithm. The motivating factor behind the approximation we
choose is the Plancherel equality. We are discretizing the nonlinear scattering map
which obeys the nonlinear Plancherel equality, (1.21). We choose our discretization
so that it obeys a similar Plancherel equality, namely (2.20). Notice that, as ∆ ap-
proaches zero, (2.20) becomes (1.21).

Our point of departure is the integral equation equivalent to (1.6) with initial data at
the point x = ∆.

r(x, ω) = r(∆, ω)e2iω(x−∆) +
∫ x

∆

e2iω(x−y)α(y)
(
1− r2(y, ω)

)
dy (2.22)

As we did in the linear case, we fix a negative small parameter , ∆, for our step size,
and evaluate (2.22) at x = 0, rewriting slightly and suppressing the ω dependence.
Namely,

r(0) = r(∆)e−2iω∆ +
∫ 0

∆

e−2iωyα(y)dy −
∫ 0

∆

e−2iω(∆−y)α(y)r2(y)dy (2.23)

We approximate r2(y) in the integral above by

r2(y) ∼ e2iω(y−0)r(0)e2iω(y−∆)r(∆) (2.24)

which is the product of the forward and backward approximations
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r(y) ∼ e2iω(y−0)r(0)
r(y) ∼ e2iω(y−∆)r(∆)

Inserting this approximation into (2.23), we obtain an approximate discrete relation-
ship

r(0) ∼ r(∆)e−2iω∆ +
∫ 0

∆

e−2iωy)α(y)dy − e−2iω∆r(0)r(∆)
∫ 0

∆

e2iωy)α(y)dy

Recalling that α is real valued and using the notation from (2.7)

r(0) ∼ r(∆)e−2iω∆ + α̂∆ − e−2iω∆r(0)r(∆)α̂∆ (2.25)

We denote by R0 and R∆ the quantities that satisfy that discrete relationship exactly,
so that

R0 = R∆e−2iω∆ + α̂∆ − e−2iω∆R0R∆α̂∆ (2.26)

Equation (2.26) can be solved for R0, yielding

R0 =
α̂∆ + e−2iω∆R∆

1 + e−2iω∆R∆α̂∆

(2.27)

= α̂∆ ◦ e−2iω∆R∆ (2.28)

where ◦ is as defined in (2.3). The relation (2.28) applies to the points 0 and ∆;
the same calculation can be applied to the points (j − 1)∆ and j∆. The resulting
expression is

R(j−1)∆ = e2iω(j−1)∆α̂j∆ ◦ e−2iω∆Rj∆

= e−2iω∆
(
e2iωj∆α̂j∆ ◦ Rj∆

) (2.29)

which are the nonlinear analogs of (2.6) and (2.9).

Our nonlinear forward step is the mapping

(α̂j∆, Rj∆)
Fj7→R(j−1)∆ (2.30)

while our inverse step is the mapping

R(j−1)∆
Ij7→ (α̂j∆, Rj∆) (2.31)

The implementation of this inverse step requires the nonlinear Riesz transform. We
must note that

Rj∆ ∈ HE(C+)

α̂j∆ ∈ e−2iω(j−1)∆HE(C−) ∩ e−2iωj∆HE(C+)
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and define Ij via

Rj∆ = P+e2iω∆R(j−1)∆ (2.32)

α̂j∆ = e−2iωj∆P−e2iω∆R(j−1)∆ (2.33)

The nonlinear operators P± are defined by the following theorem (i.e P±F := g± in
the factorization below).

Theorem 2.5 (The Nonlinear Riesz Transform). Let ∆ < 0 and F ∈ e2iω∆HE(C+)
with |∆E(F )| < π

4 . Then F has a unique factorization into

F = g− ◦ g+ (2.34)

with
g− ∈ HE(C−) ∩ e2iω∆HE(C+) (2.35)

and
g+ ∈ HE(C+) (2.36)

Moreover,
E(F ) = E(g+) + E(g−) (2.37)

Proof
Let g ∈ e2iω∆H2(C+) and g± = P±g. We note that it is possible to estimate ‖g−‖L∞

in terms of ‖g−‖L2 . Specifically, since any g− ∈ H2(C−)∩e2iω∆H2(C+) is the Fourier
transform of a function γ ∈ L2(0,∆):

g−(ω) =
∫ 0

∆

e−2iωxγ(x)dx (2.38)

‖g−‖L∞ ≤ ∆
1
2 ‖γ‖L2 =

(
∆
π

) 1
2

‖g−‖L2 (2.39)

We intend to produce g = g− + g+ as the unique fixed point of the map

g
Φ7→h =

(
F (1 + g−g+)

)
(2.40)

We will show that Φ is a contraction on the ball

BF = {g ∈ e2i∆ωH2(C+)
∣∣ ‖g‖2 ≤ 4E(F)} (2.41)

To see this, let h1 = Φ(g1) and h2 = Φ(g2); then
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‖h1 − h2‖L2 ≤ ‖F‖L∞

(
‖g−1 − g−2 ‖L∞‖

g+
1 + g+

2

2
‖L2 + ‖g+

1 − g+
2 ‖L2‖g−1 + g−2

2
‖L∞

)
≤ ‖F‖L∞

(
∆
4π

) 1
2

×
(
‖g−1 − g−2 ‖L2‖g+

1 + g+
2 ‖L2 + ‖g+

1 − g+
2 ‖L2‖g−1 + g−2 ‖L2

)
≤
(

∆
4π

) 1
2 1

2

×
(

ε‖g−1 − g−2 ‖2L2 +
1
ε
‖g+

1 + g+
2 ‖2L2 + ε‖g+

1 − g+
2 ‖2L2 +

1
ε
‖g−1 + g−2 ‖2L2

)
≤
(

∆
4π

) 1
2 1

2

(
ε‖g1 − g2‖2L2 +

1
ε
‖g1 + g2‖2L2

)
≤
(

∆
4π

) 1
2

‖g1 − g2‖L2‖g1 + g2‖L2

≤
(

4∆E

π

) 1
2

‖g1 − g2‖L2

To see that Φ preserves BF , we take g1 = 0 in the estimate above, and apply the
contraction estimate.

‖h2‖L2 ≤ ‖h1‖L2 + ‖h2 − h1‖L2 (2.42)

≤ ‖F‖L2 +
(

∆
4π

) 1
2

‖g1‖2L2 (2.43)

≤ E
1
2 +

(
∆
4π

) 1
2

4E (2.44)

≤ E
1
2

(
1 +

(
4∆E

π

) 1
2
)

(2.45)

≤ (4E)
1
2 (2.46)

We remark that, as a consequence of (2.37) any pair (g−, g+), which implements the
splitting in (2.34), must belong to BF , and hence be the unique fixed point of Φ.
It remains only to verify (2.37). It is a direct calculation that

1− |g− ◦ g+|2 =
(1− |g−|2)(1− |g+|2)

|1 + g−g+|2∫ ∞

−∞
log(1− |g− ◦ g+|2) =

∫ ∞

−∞
log(1− |g−|2)

+
∫ ∞

−∞
log(1− |g+|2)

−
∫ ∞

−∞
log(|1 + g−g+|2)
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The last term is twice real part of∫ ∞

−∞
log(1 + g−g+) =

∞∑
n=1

∫ ∞

−∞

(g−g+)k

k

=
∞∑

n=1

(
(g−)k, (g+)k

)
k

= 0

The final equality follows from the orthogonality of H2(C+) and H2(C−). �

We need one more lemma before we proceed with the proof of theorem 2.3.

Lemma 2.6 (Uniqueness of Forward Solutions). Suppose that

α̂j∆ ∈ e−2iω(j−1)∆HE(C+) ∩ e−2iωj∆HE(C−)

and
∞∑
1

E(α̂j∆) < ∞

then the infinite composition

∞◦
n=j

α̂n∆ := lim
N→∞

N◦
n=j

α̂n∆ (2.47)

exists and e2iω(j−1)∆ ∞◦
n=j

α̂n∆ is the unique HE(C+) valued solution to

R(j−1)∆ = (e2iω(j−1)∆α̂j∆) ◦ e−2iω∆Rj∆ (2.48)

We leave the proof for the time being, and instead use the lemma for the

Proof of theorem 2.3
The nonlinear Riesz transform tells us that, for small enough ∆,

e2iω∆R(j−1)∆ = g− ◦ g+ (2.49)

with the factors g− and g+ being unique. We can then define Rj∆ and α̂j∆ by

g− = e2iωj∆α̂j∆ (2.50)
g+ = Rj∆ (2.51)

and apply (2.49) recursively as follows

e2iω∆R0∆ = e2iω∆α̂∆ ◦ R∆

R0∆ = α̂∆ ◦ e−2iω∆R∆

= α̂∆ ◦ e−2iω2∆
(
e2iω∆R∆

)
= α̂∆ ◦ e−2iω2∆

(
e2iω2∆α̂2∆ ◦ R2∆

)
= α̂∆ ◦ α̂2∆ ◦ e−2iω3∆

(
e2iω∆R2∆

)
= α̂∆ ◦ α̂2∆ ◦ α̂3∆ ◦ e−2iω4∆

(
e2iω∆R3∆

)
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etcetera. We have used the identity

e2iωM(a ◦ b) = e2iωMa ◦ e2iωMb (2.52)

several times. Notice that, by construction, each α̂j∆ satisfies (2.19) and that

N∑
j=1

E(α̂j∆) = E(R0∆)− E(RN∆) ≤ E(R0∆)

so that we have produced a sequence{α̂j∆}∞j=1 which satisfy the hypotheses of lemma
2.6 and a sequence {Rj∆}∞j=1 which belong toHE(C+) and satisfy (2.48). The unique-
ness part of the lemma asserts that

Rj∆ = e2iω(j−1)∆ ∞◦
n=j

α̂n∆

which, for j = 1, is (2.18). The equality (2.20) then follows from a recursive appli-
cation of (2.37). The inclusions (2.19) follow from (2.35) together with (2.50), and
(2.21) is asserted as part of lemma 2.6. Thus, pending the proof of that lemma, the
proof of theorem 2.3 is complete. �

Proof of lemma 2.6
We first establish the convergence of (2.47). To do this we compute the e-distance
between two partial compositions, making use of its invariance under conformal map-
pings,

de

(
N◦

n=1
α̂n∆ ,

N+M◦
n=1

α̂n∆)
)

= de

(
Fα̂∆(

N◦
n=1

α̂n∆) , Fα̂∆(
N+M◦
n=1

α̂n∆)
)

= de

(
N◦

n=2
α̂n∆ ,

N+M◦
n=2

α̂n∆

)
Continuing in this way, we reach

de

(
N◦

n=1
α̂n∆ ,

N+M◦
n=1

α̂n∆

)
= de

(
0 ,

N+M◦
n=N+1

α̂n∆

)
so that∫ ∞

−∞
de

(
N◦

n=1
α̂n∆,

N+M◦
n=1

α̂n∆

)
dω = E

(
N+M◦

n=N+1
α̂n∆

)
DE

(
N◦

n=1
α̂n∆,

N+M◦
n=1

α̂n∆

)
=

N+M∑
n=N+1

E(α̂n∆)

which approaches zero because we have assumed that the infinite sum converges. Thus
the sequence is Cauchy in the DE metric and completeness ( Corollary 1.9) implies
the existence of the limit. Once the limit exists, then the fact that e2iω(j−1)∆ ∞◦

n=j
α̂n∆

satisfies (2.48) is a direct calculation. To complete the proof of the lemma, we must
show that the solution is unique.

To see this, suppose that there are two solutions to (2.48), Rj and Sj — we drop
the subscript ∆ to make the text a little more readable —, then a direct calculation
shows that
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R(j−1) − S(j−1) =

e−2iω∆ −
(

R(j−1)+S(j−1)

2

)
(e2iωj∆α̂j)

1 +
(

Rj+Sj

2

)
(e2iωj∆α̂j)

 (Rj − Sj) (2.53)

Now (e2iωj∆α̂j) ∈ HE(C+), so every term in (2.53) extends to be holomorphic in the
upper half plane. In addition, ∣∣∣∣R(j−1) + S(j−1)

2

∣∣∣∣ ≤ 1∣∣∣∣Rj + Sj

2

∣∣∣∣ ≤ 1

Moreover, as j →∞,

E((e2iωj∆α̂j)) = E(α̂j) → 0 (2.54)

Let ω ∈ C+, Im ω > 0, be fixed but arbitrary, (2.54) implies that (e2iωj∆α̂j(ω)) tends
to zero as j →∞ , so that the quantity in square brackets in (2.53) will be arbitrarily
close to e−2iω∆, and, in particular, of modulus uniformly less than some epsilon less
than one, for infinitely many j. Moreover, (2.53) implies that (Rj − Sj) (ω) vanishes
for no j or for all j. But if some (Rj − Sj) (ω) 6= 0, then (Rj+1 − Sj+1) (ω) will
have modulus strictly bigger by a factor of 1

ε according to the preceding paragraph.
Eventually, (Rj+M − Sj+M ) (ω) will have arbitrarily large modulus, which cannot be
as both Rj+M and Sj+M belong to HE(C+) and hence are less than one in the entire
upper half plane. Thus every (Rj − Sj) must vanish at every ω in the open upper
half plane, i.e. Rj = Sj . This completes the proof of lemma 2.6. �

Finally, we begin the proof of theorem 2.4.

Proof of theorem 2.4
We shall need a little bit of notation for the proof. We let r(x, ω) and α(x) denote
the true solution, whose existence is asserted in theorem 1.2. We shall use superscript
notation when referring to the true solution. In particular,

rj∆ = r(j∆, ω)
αj∆ = α(j∆)Hj∆<x<(j−1)∆

We will let α̂j∆ denote the Fourier transform of αj∆.

Subscript notation will be used to refer to the approximate solutions,Rj∆ and αj∆

generated by the discrete algorithm described in theorem 2.3. The αj∆’s denote the
inverse Fourier transforms of the α̂j∆’s.

The bulk of the proof will be to establish local convergence,i.e.



Inverse Scattering 23

Lemma 2.7 (Local Convergence). Let r0(ω) ∈ HE(C+), M < 0, and ε > 0, then
there exists δ > 0 such that, for all x ∈ (M, 0) and 0 > ∆ > −δ

sup
1≤j≤[ M

∆ ]

‖rj∆ −Rj∆‖L2(dω) ≤ ε (2.55)

‖α−
[ M
∆ ]∑

j=1

αj∆‖L2(−M,0) ≤ ε (2.56)

In the lemma, [M
∆ ] denotes the integer part of M

∆ , i.e the number of steps of size ∆
it takes to reach M . Once we have the local convergence lemma, we can utilize our
nonlinear Plancherel equalities to make our convergence estimates global. We begin
by choosing M so that

‖α‖L2(−∞,M) ≤ ε

and |∆| so small that (2.56) holds. The two Plancherel equalities yield

E(r0) = ‖α‖2L2(M,0) + ‖α‖2L2(−∞,M)

E(r0) =
[ M
∆ ]∑

j=1

E(α̂j∆) +
∞∑

[ M
∆ ]+1

E(α̂j∆)

By choosing |∆| even smaller if necessary, we can guarantee that

[ M
∆ ]∑
1

E(α̂j∆)−
[ M
∆ ]∑
1

‖α̂j∆‖2 ≤ ε

Lemma 2.7 guarantees us that

[ M
∆ ]∑
1

(
‖α̂j∆‖2 − ‖α‖2L2(M,0)

)
≤ ε

which allows us to conclude that
∞∑

[ M
∆ ]+1

E(α̂j∆) ≤ 3ε

so that both the true α and the approximate αj∆’s have small norm, independently
of ∆, outside (−M, 0). Hence

‖α−
∞∑
1

αj∆‖ ≤ 4ε

That we can further approximate the αj∆’s by Aj∆Hj∆<x<(j−1)∆ follows from the
density of piecewise constant functions in L2, so this completes the proof of theorem
2.4. �
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Proof of lemma 2.7
We begin with the integral equation for the true solution

rj∆ = r(j−1)∆e2iω∆ + e2iωj∆α̂j∆ + e2iωj∆

∫ (j−1)∆

j∆

e−2iωyαj∆r2(y)dy

and its discrete counterpart

Rj∆ = R(j−1)∆e2iω∆ + e2iωj∆α̂j∆

+e2iωj∆
∫ (j−1)∆

j∆
e−2iωyαj∆Rj∆e2iω(y−j∆)R(j−1)∆e2iω(y−(j−1)∆)dy

We subtract the two to obtain:

Dj = D(j−1)e
2iω∆ + Aj + S1

j + S2
j + S3

j + S4
j (2.57)

where

Dj = rj∆ −Rj∆

Aj = α̂j∆ − α̂j∆

S1
j = e2iωj∆

∫ (j−1)∆

j∆

e−2iωy(αj∆(y)− αj∆(y))r2(y)dy

S2
j = e2iωj∆

∫ (j−1)∆

j∆

e−2iωyαj∆

(
r2(y)− rj∆e2iω(y−j∆)r(j−1)∆e2iω(y−(j−1)∆)

)
dy

S3
j = e−2iω(j−1)∆

∫ (j−1)∆

j∆

e2iωyαj∆(y)
(
R(j−1)∆ − r(j−1)∆

)(Rj∆ + rj∆

2

)
dy

S4
j = e−2iω(j−1)∆

∫ (j−1)∆

j∆

e2iωyαj∆(y)
(
Rj∆ − rj∆

)(R(j−1)∆ + r(j−1)∆

2

)
dy

The relevant estimates of S1 . . . S4 — all norms are L2(dω) — which we will need
in the sequel are listed below. They can all be obtained by applying the Cauchy-
Schwartz inequality to the relevant definition above, and estimating r and R in L∞

by 1 or in L2(dω) by E
1
2 = E(r0)

1
2 . We also estimate the L2 norm of αj∆ by the the

L2 norm of its Fourier transform α̂j∆.

In the estimate for S2, it is necessary to first rewrite the difference which appears
inside the parentheses as the sum of two terms, analogous to those which appear in
S3 and S4.

‖S1
j ‖ ≤ |∆E| 12 ‖Aj‖ ≤ |∆E| 12

(
‖α̂j∆‖+ ‖α̂j∆‖

)
(2.58)

‖S2
j ‖ ≤ 4|∆| 12 ‖α̂j∆‖‖α̂j∆‖(1 + |∆E| 12 ) (2.59)

‖S3
j ‖ ≤ |∆E| 12 ‖α̂j∆‖ ‖Dj−1‖ (2.60)

‖S4
j ‖ ≤ |∆E| 12 ‖α̂j∆‖ ‖Dj‖ (2.61)
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whence follows
[M/∆]∑
j=1

‖S2
j ‖ ≤ |∆| 12 (1 + |∆E| 12 )

[M/∆]∑
j=1

‖α̂j∆‖2

≤ |∆| 12 (1 + |∆E| 12 )E
= |∆| 12 KE

(2.62)

where KE will be used to denote an assortment of different constants, all of which
share the property that they depend only on E = E(r0). We shall also need

[M/∆]∑
j=1

|∆E| 12 ‖α̂j∆‖ ≤ |∆E| 12
(

[M/∆]∑
j=1

‖α̂j∆‖2
) 1

2 (
M
∆

) 1
2

≤ EM
1
2

(2.63)

and
[M/∆]∑
j=1

(
‖S1

j ‖+ ‖S2
j ‖+ ‖S3

j ‖+ ‖S4
j ‖
)2 ≤ |∆|KE (2.64)

We begin our main estimate with a slight rearrangement of (2.57),

Dj + Aj = D(j−1)e
2iω∆ + S1

j + S2
j + S3

j + S4
j

The observation that Dj and Aj are orthogonal gives the estimate

‖Dj‖2 ≤ ‖Dj−1‖2 +
(
2‖Dj−1‖ ‖S1|‖ − ‖Aj‖2

)
+2‖Dj−1‖

(
‖S2

j ‖+ ‖S3
j ‖+ ‖S4

j ‖
)

+
(
‖S1

j ‖+ ‖S2
j ‖+ ‖+ S3

j ‖+ ‖S4
j ‖
)2 (2.65)

We can employ(2.60), (2.61), and (2.58) to establish

‖Dj−1‖‖S3‖ ≤ |∆E| 12 ‖α̂j∆‖ ‖Dj−1‖2
‖Dj−1‖‖S4‖ ≤ |∆E| 12 ‖α̂j∆‖ ‖Dj−1‖ ‖Dj‖

≤ 1
2 |∆E| 12 ‖α̂j∆‖

(
‖Dj−1‖2 + ‖Dj‖2

)(
2‖Dj−1‖ ‖S1‖ − ‖Aj‖2

)
≤ ‖Aj‖

(
2|∆E| 12 ‖Dj−1‖ − ‖Aj‖

)
≤ 4|∆E|‖Dj−1‖2

which combine with (2.65) to give(
1− |∆E| 12 ‖α̂j∆‖

)
‖Dj‖2 ≤

(
1 + 4|∆E|+ 3

2 |∆E| 12 ‖α̂j∆‖
)
‖Dj−1‖2 + Tj

‖Dj‖2 ≤
(

1+4|∆E|+ 3
2 |∆E|

1
2 ‖α̂j∆‖

1−|∆E|
1
2 ‖α̂j∆‖

)
‖Dj−1‖2 + Tj

1−|∆E|
1
2 ‖α̂j∆‖

(2.66)
where

Tj =
(
2‖Dj−1‖ ‖S2

j ‖+
(
‖S1

j ‖+ ‖S2
j ‖+ ‖S3

j ‖+ ‖S4
j ‖
)2)

(2.67)

A consequence of (2.62) is that
∞∑

j=1

‖Dj−1‖‖S2
j ‖ ≤ KE |∆|

1
2
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which combines with (2.64) to show that

∞∑
j=1

Tj ≤ KE |∆|
1
2 (2.68)

so that we may sum (2.66) to reach

‖DN‖2 ≤
N∏

j=1

(
1+4|∆E|+ 3

2 |∆E|
1
2 ‖α̂j∆‖

1−|∆E|
1
2 ‖α̂j∆‖

)
N∑

j=1

Tj

1−|∆E|
1
2 ‖α̂j∆‖

≤ exp

(
N∑

j=1

(
4|∆E|+ 5

2 |∆E| 12 ‖α̂j∆‖
))

KE |∆|
1
2

≤ exp
(
4EM + 2(EM)

1
2

)
KE |∆|

1
2

(2.69)

as long as N ≤ [M/∆]. This gives (2.55), the first assertion of lemma 2.7. The other
assertion, (2.56), follows from first rewriting (2.65) as

‖Aj‖2 ≤ ‖Dj−1‖2 − ‖Dj‖2

+2‖Dj−1‖
(
‖S2

j ‖+ ‖S3
j ‖+ ‖S4

j ‖
)

+
(
‖S1

j ‖+ ‖S2
j ‖+ ‖S3

j ‖+ ‖S4
j ‖
)2

and summing
N∑

j=1

‖Aj‖2 ≤ ‖D0‖2 − ‖DN‖2 + sup
0≤j≤N

‖Dj‖
N∑

j=1

(
‖S2

j ‖+ ‖S3
j ‖+ ‖S4

j ‖
)

+
N∑

j=1

(
‖S1

j ‖+ ‖S2
j ‖+ ‖S3

j ‖+ ‖S4
j ‖
)2

≤ ‖D0‖2 + sup
0≤j≤N

‖Dj‖KEM
1
2 + |∆|KE

but ‖D0‖2 = 0 and we have proved that the ‖Dj‖ → 0 as ∆ does. Thus

N∑
j=1

‖Aj‖2 → 0

which establishes (2.56) and finishes the proof. �

3. The Paley-Wiener Theorems. In the context of remote sensing, an im-
portant question is to determine the extent of an inhomogeneity, That is, from the
scattering data, determine the support of α or a. A classical theorem of Paley and
Wiener states that the support of a can be determined from the growth rate of the
the extension of ρ0 to C along the imaginary axis. Our first theorem is restatement
of this fact, along with an extension to the multiple scattering case.
The second theorem states that it is possible to determine the width of an inhomo-
geneity from the modulus of the scattering data, i.e either |ρ(ω)| or |r(ω)|.When we
write ρ(ω) or r(ω), we mean ρ0(ω) or r0(ω), respectively.
We will use subscripts, e. g. rα and ρa, to denote the dependence of r and ρ on α and
a. We say that a ∈ L2(B, T ) if a is a square integrable function on (−∞, 0) which is
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zero outside the interval (B, T ) (B stands for Bottom and T for Top).

Theorem 3.1 (Paley-Wiener 1).

a ∈ L2(B, 0) ⇔ ρa ∈ e−2iωBH2(C−) (3.1)

a ∈ L2(−∞, T ) ⇔ ρa ∈ e−2iωTH2(C+) (3.2)

α ∈ L2(−∞, T ) ⇔ rα ∈ e−2iωTHE(C+) (3.3)

α ∈ L2(B, 0) ⇔ rα

1− |rα|2
∈ e−2iωBH2(C−) (3.4)

α ∈ L2(B, T ) ⇒ rα

1− |rα|2
∈ e−2iω(2T−B)H2(C+) (3.5)

Theorem 3.2 (Paley-Wiener 2). If α and a ∈ L2 and have compact support, then
i), ii), and iii) are equivalent:

i) a ∈ L2(B, T ) for some T and B with T −B = W
ii) |ρa|2 ∈ e2iωWH1(C−)
iii) |ρa|2 ∈ e−2iωWH1(C+)

(3.6)

i) α ∈ L2(B, T ) for some T and B with T −B = W

ii) |rα|2
1−|rα|2 ∈ e2iωWH1(C−)

iii) |rα|2
1−|rα|2 ∈ e−2iωWH1(C+)

(3.7)

Our proofs will depend on the Plancherel equalities. We use E(r) to denote the left
hand side of (1.21). We shall need the Gateaux derivatives of r and ρ in what follows.
We will use sαβ to denote the derivative of r in the direction β at α, i.e.

sαβ :=
d

dε

∣∣∣
ε=0

rα+εβ (3.8)

In a complex Hilbert space, it is possible to compute the inner product of two vectors
from norms of complex linear combinations of the two. This is called polarization.
If we state these formulas in terms of derivatives, we see the natural analogy for our
nonlinear norm, E(r).
Lemma 3.3 (polarization formulas).

d

dε

∣∣∣
ε=0

[
‖a + εb‖2 − ‖a + iεb‖2

]
= 2i (a, b) (3.9)

d

dε

∣∣∣
ε=0

[
‖ρa+εb‖2 − ‖ρa+iεb‖2

]
= 2i (ρa, ρb) (3.10)

d

dε

∣∣∣
ε=0

[E(rα+εβ)− E(rα+iεβ)] = 2i

(
rα

1− |rα|2
, sαβ

)
(3.11)
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The proof of Lemma 1 is a simple calculation which we do not include. An immediate
consequence is

Lemma 3.4 (polarized plancherel equalities).

(a, b) = (ρa, ρb) (3.12)

(α, β) =
(

rα

1− |rα|2
, sαβ

)
(3.13)

We intend to use (3.12) and (3.13) to obtain our Paley-Wiener theorems. In order to
make use of (3.13), we need to examine the span of the sαβ ’s. We shall show

Lemma 3.5 (Properties of the sαβ ’s).

β ∈ L2(M,B) ⇒ sαβ ∈ e−2iωBH2(C+) (3.14)

α ∈ L2(B, 0) ⇒ Span
β∈L2(−∞,B)

{sαβ} = e−2iωBH2(C+) (3.15)

 α ∈ L2(−∞, T )
β ∈ L2(N, 0)

N ≥ T

⇒ sαβ − β̂ ∈ e−2iω(2T−N)H2(C+) (3.16)

We delay the proof of the lemma for a bit and proceed first with the proof of the
Paley- Wiener theorems.

Proof of Paley-Wiener 1
We begin with the proof of (3.1). If a ∈ L2(B, 0), then a brief glance at (1.12) shows
that

ρa(x, ω) =
∫ x

B

e2iω(x−y)a(y)dy (3.17)

= e2iω(x−B)

∫ x−B

0

e−2iωya(y + B)dy (3.18)

so that, taking x = 0 gives, ρa ∈ e−iωBH2(C−). A similar computation shows that,
if a ∈ L2(−∞, T ), then ρa ∈ e−iωTH2(C+)
Now, if ρa ∈ e−iωBH2(C−), then ρa is perpendicular to all of e−iωBH2(C+), which
includes ρb for every b ∈ L2(−∞, B). Now use the Plancherel equality (3.12)

0 = (ρa, ρb) = (a, b) (3.19)

to see that a is perpendicular to L2(−∞, B). Thus we have established (3.1); (3.2) is
analogous.
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To establish (3.3); we recall from [6] that rα(x, ·) is the uniqueHE(C+) valued solution
to the integral equation

rα(x, ω) =
∫ x

−∞
e2iω(x−y)α(y)

(
1− r2

α(y, ω)
)
dy (3.20)

If α ∈ L2(−∞, T )

rα(x, ω) = e2iω(x−T )

∫ T

−∞
e2iω(T−y)α(y)

(
1− r2

α(y, ω)
)
dy (3.21)

= e2iω(x−T )rα(T, ω) ∈ e2iω(x−T )HE(C+) (3.22)

To see the converse, assume that rα(0, ω) = e−2iωT f for some f ∈ HE(C+). Accord-
ing to theorem 1.2 (see [6]), f is a reflection coefficient, rα̃, and α(x) must be zero for
x > T and α̃(x− T ) for x ≤ T .

We now move to the proof of (3.4). Suppose first that α ∈ L2(B, 0). Then the
Plancherel equality (3.13) implies that rα

1−|rα|2 is perpendicular to Span
β∈L2(−∞,B)

{sαβ},

which, according to (3.15) is exactly e−2iωBH2(C+). On the other hand, if rα

1−|rα|2

is perpendicular to e−2iωBH2(C+), then it is perpendicular to every sαβ with β ∈
L2(M,B) according to (3.14). Hence the Plancherel equality (3.13) implies that α is
perpendicular to every β ∈ L2(M,B).

To prove (3.5), we again use the Plancherel equality (3.13), this time in conjunction
with (3.16). For β ∈ L2((N, 0)withN ≥ T ,

0 = (α, β) =
(

rα

1− |rα|2
, sαβ

)
(3.23)

Since α ∈ L2(B, T ), rα

1−|rα|2 is perpendicular to e−iωBH2(C+) by (3.4).If we choose

N = 2T − B > T , then (3.16) implies that rα

1−|rα|2 will be perpendicular to sαβ − β̂,
i.e. (

rα

1− |rα|2
, sαβ

)
=
(

rα

1− |rα|2
, β̂

)
As these β̂’s exactly span e−2iω(2T−B)H2(C−) , rα

1−|rα|2 ∈ e−2iω(2T−B)H2(C+). This
finishes the proof of the theorem. �

Proof of Paley-Wiener 2
First note that the statement “|f |2 ∈ e2iωWH1(C−)” means that function |f |2, which
is defined on the real axis and takes real values there, has an analytic extension to
the lower half plane and has certain growth properties there.
The equivalence of ii) and iii) in (3.6) is an immediate consequence of the fact that
|ρ|2 is real valued on the real axis. A function f ∈ e2iωWH1(C−) if and only if
f ∈ e−2iωWH1(C+), so real valued f belong to both spaces or neither. The same
comment applies to (3.7).

We return to (3.6). First, if a ∈ L2(B, T ), then ρa ∈ e−2iωBH2(C−) and ρa ∈
e2iωTH2(C−), so that the product of the two belongs to e2iω(T−B)H1(C−). For the
converse, we assume that a has compact support, so that ρa is holomorphic in all
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of C. We must show that the width of that support is exactly W . We will need
some basic facts about the factorization of functions in H2(C+) into inner and outer
factors. The facts we state below can be found in [5].

Every function f ∈ H2(C+) can be factored into the product of an inner and an outer
function. The inner function can be factored further into a complex exponential, a
Blashcke product, and a singular inner function. Each of the factors is unique, the
inner factors have modulus one on the real line and have modulus less than one in C+.
The outer factor belongs to H2(C+) and has no zeros in the open upper half plane.
In addition, the outer factor depends only on |f(ω)| on the real line. Specifically,

f = If × Of (3.24)
= e−2iωTf × Bf (w) × Sf (w) × Of (w) (3.25)

where Tf is the smallest (most negative) real number such that e2iωTf f ∈ H2(C+).
The Blaschke product, Bf is given by

Bf (ω) =
∏

εn
ω − ωn

ω − ωn
(3.26)

where the product is over the roots of f in the open upper half plane and εn = ±1 de-
pending on whether the roots are bigger or smaller than one in modulus. The singular
inner factor is necessarily absent when f extends to be analytic in a neighborhood of
the real line.

Now our ρa ∈ H2(C+) has such a factorization:

ρa = Iρa
× Oρa

(3.27)
= e−2iωT × B+

ρa
× Oρa

(3.28)

As ρa is holomorphic in C, the singular inner factor is not present. Our hypothesis is
that

0 =
(
|ρa|2, e2iω(t+W )

)
for all t < 0 (3.29)

=
(
ρa, ρae2iω(t+W )

)
(3.30)

=
(

e2iω(T−W )ρa

B+
, Oρae2iωt

)
(3.31)

Since Oρa
is outer, Oρa

e2iωt spans all of H2(C+) and we may conclude from (3.31)
that e2iω(T−W )ρa

B+ ∈ H2(C−). But 1
B+ =: B− is a Blaschke product with roots in the

lower half plane, so that if we factor e2iω(T−W )ρa

B+ ∈ H2(C−) , B− must appear as part
of the Blaschke factor in its H2(C−) inner function. Therefore we may conclude that
e2iω(T−W )ρa is also in H2(C−). Summarizing, we have proved that

ρa ∈ e−2iωTH2(C+) ∩ e−2iω(T−W )H2(C−) (3.32)

which puts α in L2(B, T ) according to the first Paley-Wiener theorem.
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We shall obtain (3.7) by a completely analogous computation. If α ∈ L2(B, T ), we
may obtain iii) from i) by simply multiplying (3.3) by the complex conjugate of (3.4).
For the converse, we begin by noting that rα has a factorization as

rα = Irα × Orα (3.33)
= e−2iωTrα × B+

rα
× Orα (3.34)

There is no singular inner factor because, under our hypothesis that α has compact
support, rα extends to be meromorphic in all of C. To see this, note that rα

1−|rα|2 is
entire via (3.4) and (3.5) and

1
1− |rα|2

= 1 +
|rα|2

1− |rα|2
(3.35)

is entire by hypothesis. rα is the quotient of these two and therefore meromorphic.
Now, as |rα|2

1−|rα|2 ∈ e2iωWH1(C−),

0 =
(

|rα|2

1− |rα|2
, e2iω(t+W )

)
∀t < 0 (3.36)

=
(

rα

1− |rα|2
, rαe2iω(t+W )

)
(3.37)

=

(
e2iω(T−W ) rα

1−|rα|2

B+
rα

, Orα
e2iωt

)
(3.38)

Since Orα is outer, Orαe2iωt spans all of H2(C+) and we may conclude from (3.38)

that
e2iω(T−W ) rα

1−|rα|2

B+ ∈ H2(C−). As before, 1
B+ =: B− is a Blaschke product with

roots in the lower half plane, so that it appears in the factorization of
e2iω(T−W ) rα

1−|rα|2

B+

in H2(C−) . Therefore we may conclude that e2iω(T−W ) rα

1−|rα|2 is also in H2(C−).
Now an application of of (3.3) and (3.4) puts α in L2(B, T ). �

Proof of Lemma 3.5
We begin with (1.6), for a family of α’s, i.e.

r′α+εβ = 2iωrα+εβ + α(1− r2
α+εβ) (3.39)

rα+εβ(−∞, ω) = 0 (3.40)

Differentiate with respect to ε and set ε = 0 to obtain

s′αβ = 2iωsαβ − αrαsαβ + β(1− r2
α) (3.41)

sαβ(−∞, ω) = 0 (3.42)

We can write the solution to this linear equation as

sαβ(x, ω) =
∫ x

−∞
e2iω(x−y)e−

∫ x
y

α(t)rα(t,ω)dtβ(y)
(
1− r2

α(y, ω)
)
dy (3.43)

We shall consider β’s in L2(M, 0) with M finite. This is just to avoid fussing about
the convergence of the integral above. In particular, we need to make note of the fact
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that sαβ(x, ω) ∈ H2(C+) for every x. This follows from rewriting (3.43) as

sαβ(x, ω) =
∫ x

M
e2iω(x−y)β(y)dy

+
∫ x

M
e2iω(x−y)(e−

∫ x
y

α(t)rα(t,ω)dt − 1) β(y)dy

−
∫ x

M
e2iω(x−y)e−

∫ x
y

α(t)rα(t,ω)dtβ(y)r2
α(y, ω)dy

(3.44)

Each of the three terms is in H2(C+) because β is in L2(dx) and rα(x, .) is in
H2(C+) ∩ H∞(C+). If β ∈ L2(M,B) then (3.43) becomes

sαβ(x, ω) = e2iω(x−B)

∫ B

M

e2iω(B−y)e−
∫ x

y
α(t)rα(t,ω)dtβ(y)

(
1− r2

α(y, ω)
)
dy

= e2iω(x−B)sαβ(B,ω)

and (3.14) follows on setting x = 0.

If α ∈ L2(B, 0) and β ∈ L2(−∞, B), then (3.43) simplifies to

sαβ(x, ω) = e2iω(x−B)e−
∫ x

B
α(t)rα(t,ω)dt

∫ B

−∞
e2iω(B−y)β(y)dy (3.45)

As β varies through L2(−∞, B),
∫ B

−∞ e2iω(B−y)β(y)dy span H2(C+). Multiplication
by e−

∫ x
B

α(t)rα(t,ω)dt ∈ H∞(C+) maps H2(C+) onto itself, so setting x = 0 in (3.45)
proves (3.15).

It remains only to prove (3.16); in this case (3.43) simplifies to

sαβ(x, ω) =
∫ x

N

e2iω(x−y)β(y)dy (3.46)

−
∫ x

N

e2iω(x−y)β(y)r2
α(T, y)e2iω(y−T )dy (3.47)

At x = 0

sαβ(0, ω) = β̂ + e−2iω2T r2
α(T, y)

∫ 0

N

e2iωyβ(y)dy (3.48)

= β̂ + e−2iω(2T−N)r2
α(T, y)

∫ 0

N

e2iω(y−N)β(y)dy (3.49)

We need only note that
∫ 0

N
e2iω(y−N)β(y)dy ∈ H2(C+) and r2

α(T, ω) ∈ H∞(C+) to
finish the proof of (3.16). �

As a corollary of the Paley-Wiener theorems we obtain a nonlinear version of the
Shannon Sampling theorem. We state both the linear and nonlinear versions below.

Theorem 3.6 (Shannon Sampling Theorem). Suppose that

Linear a(x) ∈ L2(0, B), then ρa(ω) can be exactly reconstructed from its sam-
pled values, {ρa(n∆)}n∈Z , as long as 0 < ∆ ≤ π

B

Nonlinear α(x) ∈ L2(0, B), then rα(ω) can be exactly reconstructed from its
sampled values, rα(n∆), as long as 0 < ∆ ≤ π

2B
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Remark
It is tempting to expect the same estimate for ∆ in the nonlinear as in the linear case.
We don’t know if this is true.

Proof
The linear theorem is well known, so we include only a brief recap of the proof. It is
customary to translate a so that a ∈ L2(−B

2 , B
2 ) and denote its Fourier transform by

â. Define the periodic function, ap(x) by

ap(x) =
∞∑

n=−∞
a(x + n

π

∆
) (3.50)

which has Fourier series

ap(x) =
∞∑

n=−∞
Ane2in∆x (3.51)

The condition that ∆ ≤ π
B implies that

An = ∆ρa(n∆) (3.52)

Moreover,

a = ap(x) H−B
2 <x< B

2
(3.53)

so that

â(ω) = âp ∗ Ĥ−B
2 <x< B

2
(3.54)

=
∞∑

n=−∞
ρa(n∆)δ(ω − n∆) ∗ sinc(

πω

∆
) (3.55)

=
∞∑

n=−∞
ρa(n∆) sinc

(
π
( ω

∆
− n

))
(3.56)

Once we have the linear theorem in hand, we obtain the nonlinear theorem as a
corollary. If α(x) ∈ L2(0, B), then rα

1−|rα|2 and 1
1−|rα|2 = 1 − |rα|2

1−|rα|2 have Fourier
transforms supported in the interval (−B,B) according to (3.3), (3.5), and (3.7).
From the sampled values rα(n∆) for ∆ ≤ 1

2B , we may compute the sampled values of
both rα

1−|rα|2 and 1
1−|rα|2 . Applying the linear sampling theorem to these two functions

yields formulas for each of them at any ω, and taking their ratio yields a formula for
rα(ω). �
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