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Abstract. We describe a rigorous layer stripping approach to inverse
scattering for the Helmholtz equation in one dimension. In section 3, we
show how the Ricatti ordinary differential equation, which comes from
the invariant embedding approach to forward scattering, becomes an in-
verse scattering algorithm when combined with the principle of causality.

In section 4 we discuss a method of stacking and splitting layers. We first
discuss a formula for combining the reflection coefficients of two layers to
produce the reflection coefficient for the thicker layer built by stacking
the first layer upon the second. We then describe an algorithm for invert-
ing this procedure; that is, for splitting a reflection coefficient into two
thinner reflection coefficients. We produce a strictly convex variational
problem whose solution accomplishes this splitting.

Once we can split an arbitrary layer into two thinner layers, we proceed
recursively until each reflection coefficients in the stack is so thin that the
Born approximation holds (i.e. the reflection coefficient is approximately
the Fourier transform of the derivative of the logarithm of the wave
speed). We then invert the Born approximation in each thin layer.

1 Introduction

The layer stripping approach to inverse scattering is, in principle, very simple.
It can be summarized as follows:

– Born Approximation A thin layer of a medium is easy to recognize from how
it reflects an incoming wave. In many layer stripping methods, the layer is
infinitesmally thin and the Born Approximation becomes a trace formula.

– Causality Principle The reflections from the thin layer nearest the receiver
are sensed before the reflections from deeper within the medium.
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– Splitting The initial reflection guaranteed by the causality principle, com-
bined with a specific model of wave propagation, provides enough informa-
tion to determine the upper thin layer and to compute the response of the
medium with that thin layer stripped away.

This approach has been investigated in many papers (e.g.[4], [3], [6], [8],[1],
[2], [7]) As with any proposed method, the crucial question is stability. In more
than one dimension this question is open, but in one dimension we can give an
algorithm and a rigorous proof that it must succeed.

In our point of view, probably the most unexpected lesson here is the role
of characterization. Most inverse problems have four fundamental parts: unique-
ness, reconstruction, continuous dependence, and characterization. In our study
of layer stripping, the characterization of the range of the scattering operator
has consistently provided the insight which led to our reconstruction algorithms
and the proper formulation of continuous dependence.

The next few subsections contain the results (some from [9], some from [10],
and some new) for which we will provide proofs and elaborations in the next two
sections.

1.1 The 1-D Helmholtz Equation and Travel Time

The one dimensional Helmholtz equation is:

d2u

dz2
+

ω2

c2(z)
u = 0 (1)

We work on the negative half line or a subset thereof ( a layer), −∞ ≤
B < z < T ≤ 0. The reflection and transmission coefficients are defined by the
following conditions at the top and bottom of the layer:

u(z, ω) ∼
T

√
cT

(
e
−iω(z−T)

cT + r(ω)e
iω(z−T)

cT

)
(2)

u(z, ω) ∼
B

√
cBt(ω)e

−iω(z−B)
cB (3)

where the symbol ∼
B

means “has the same Cauchy data at z = B as”. That

is, u∼
B

v means that u(B,ω) = v(B,ω) and that u′(B,ω) = v′(B,ω). This is

equivalent to the hypothesis that (1) holds on the whole line and that c(z)
is continuous and constant outside the layer. In the case that B = −∞ we
understand (3) as a limit.

Because only variations in the wave speed produce reflections, it is convenient
to introduce

α = −1
2

dc

dz
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At the detector, we observe the reflected waves parameterized by the time it
takes the wave to reach them and return. It is convenient to replace the physical
depth, z , by the travel time depth, x.

x(z) =
∫ z

0

dz

c

In travel time coordinates, (1) becomes

u′′ + 2α(x)u′ + ω2u = 0 (4)

and the definition of reflection and transmission for the layer B < x < T changes
slightly (but r and t remain the same):

u(x, ω) ∼
T

e−iω(x−T) + r(ω)eiω(x−T) (5)

u(x, ω) ∼
B

e
∫ T
B αt(ω)e−iω(x−B) (6)

Our scattering theory will study the map S between α and r

α(x) S7→ r(ω)

and our inverse scattering algorithm will produce αfrom r. Before proceeding
further, we discuss the recovery of c(z) from α(x). First note that, with T = 0,

z′(x) = c(z(x)) = e−2
∫ x
0 α

so that

z(x) =
∫ x

0

e−2
∫ x′
0 αdx′

is monotonone and therefore invertible on its range. Therefore,

c(z) = e−2
∫ x(z)
0 α (7)

Our inverse scattering theory works with α ∈ L2. Thus, for some α’s, (7) will
produce a c(z) defined only on a finite interval, with c = 0 at the bottom of that
interval. This is as it should be. For example, if α ≡ 0.5 (not exactly L2, but
easy to compute) then

c(z) = 1 + z

This corresponds to a medium whose wave speed decreases to zero as z ap-
proaches -1. In this medium, it takes an infinitely long time for a wave to reach
z = 1 and no wave penetrates deeper than that. Our inversion can therefore do
no better than to return the wave speed at depths above 1.
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1.2 Characterization and continuous dependence

The Fourier transform of a function in L2(−∞, 0) extends to be analytic in the
complex upper half plane. The set of such analytic functions from the linear
Hardy space, H2(C+). The norm on H2(C+) is defined to be

‖ρ‖H2 = sup
b>0

‖ρ(·+ ib)‖L2 (8)

The Fourier transforms of a real-valued functions belong to

H2(C+) = {ρ ∈ H2(C+) | ρ(−ω) = ρ(ω)} (9)

The range of the (nonlinear) scattering map is also a Hardy space, HE(C+).
HE(C+) is not linear, but it is a complete metric space (see section 2). We define

E(r) :=
∫

e(r)dω :=
∫

(− log(1− |r|2))dω (10)

and HE(C+) to be the subset of H2(C+) such that

HE(C+) =
{

ρ ∈ H2(C+) | sup
b>0

E(ρ(·+ ib)) < ∞
}

Our basic results on characterization of the range of the scattering map are
stated below. They tell us how to recognize a reflection coefficient and how to
recognize a reflection coefficient of a finite width layer (a layer of width W means
an α ∈ L2(−W, 0); when we say that r has width W , we mean that it is the
reflection coefficient of a layer of width W ).

Theorem 1 (Characterization of Reflection Coefficients).

– The scattering map is a homeomorphism from L2(−∞, 0) onto HE(C+).
– The nonlinear Plancherel equality holds

E(r) = π||α||2L2

– An r ∈ HE(C+) has width W if and only if

r

t
∈ e−iωWH2(C+) ∩ eiωWH2(C−) (11)

The second condition involves the transmission coefficient, t, which can be
computed from r, as long as we know r(ω) for all real ω. t is the eiωW times the
unique outer function with modulus

√
1− |r2| (see (114)).
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1.3 Stacking and Splitting Layers

Suppose that we stack two layers, one with width W1 and a second with width
W2, the resulting layer is

α12 =
{

α1(x) 0 > x > −W1

α2(x + W1) −W1 > x > −(W1 + W2)
(12)

and the resulting reflection coefficient is given by the formula

r12 = r1 ◦
t1
t1

r2 (13)

where ◦ represents the formula for composition of conformal s of the unit disk
onto itself.

a ◦ b :=
a + b

1 + ab
(14)

Notice that, according to the Plancherel equality, the E-norm of the layer-
composition (13) is the sum of the E-norms of the reflection coefficients of the
layers.

E(r) = E(r1) + E(r2) (15)

Our inverse scattering algorithm is based on inverting (13).

Theorem 2 (Layer Splitting Decomposition). Let r ∈ HE(C+), and let
W1 > 0. Then the strictly convex variational problem

min
ρ ∈ HE(C+)

r − ρ ∈ e2iωW1H2(C+)

E(ρ) (16)

has a unique minimizer r1, and r1 is the first factor in the unique layer decom-
position of r

r = r1 ◦
t1
t1

r2 (17)

such that r1, r2 ∈ HE(C+) and r1 has width W1. Moreover, the rest of the
decomposition, namely t1 and r2, can be computed from formulas (136) and
(137).

1.4 Thin Layers and the Born Approximation

Repeated application of theorem 2 allows us to split a reflection coefficient into
a composition of layers of small width. Once the width is small enough, we may
resort to the Born approximation or linear inverse scattering, which tells us that
the reflection coefficient is approximately the Fourier transform of α at 2ω.
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Theorem 3 (Born Approximation). Let r have width W , then

‖r(ω)− α̂(2ω)‖L∞ ≤ 4‖α‖3L2(−W,0)W
3
2 (18)

‖r(ω)− α̂(2ω)‖2L ≤ ‖α‖2L2(−W,0)W
1
2 (19)

| log(t)− iω| ≤ W
1
2 ‖α‖L2 (20)

1.5 Complete Layer Decomposition

Combining theorems 3 and 2, we may compute α from r by solving a sequence
of convex variational problems ((16)) and then inverting a sequence of Fourier
transforms.The theorem below is a corollary of the last two subsections

Theorem 4. Let r ∈ HE(C+) and {Wi} be a sequence of positive real numbers
and {Si} their partial sums. Then r has a unique infinite decomposition:

r = r1 ◦
t1
t1

(
r2 ◦

t2
t2

(r3 ◦ . . . (21)

The individual terms in the sum

a =
∞∑

i=1

(
e2iωSi

ri
ti

(2ω)
)∨

(22)

are supported on disjoint intervals of width Wi and a converges to α = S−1r in
L2 as the width of the Wi approach zero.

We will elaborate on the previous subsections in the next three sections.

2 The Geometry of HE(C+)

2.1 The Hardy Spaces Hp

We recall, following [5], that for 1 ≤ p ≤ ∞

Hp(C±) = {ρ | ρ holomorphic in C± and sup
b>0

‖ρ(·+ ib)‖Lp < ∞}

All such functions have, and are uniquely determined by, their boundary values
on the real axis. We will always demand an additional symmetry :

Hp(C±) = {ρ ∈ Hp(C±) | ρ(−ω) = ρ(ω)} (23)

We will make use primarily of H2. In fact, H2(C±) are exactly the Fourier
transforms of real valued L2 functions supported on the negative (resp. positive)
half line (see [5]). With L2 denoting L2 functions with f(−ω) = f(ω), we have

L2(R) = H2(C+)⊕H2(C−) (24)
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We let P± denote the projections onto H2(C±) along H2(C∓). P+ is called the
Riesz transform. We shall often write

f = f+ + f− (25)

denoting P±f by f±. We speak of f+ as the causal part of f because it is the
Fourier transform of a function supported in the past, and to f− as the a-causal
part, because it depends on the future. A reflection coefficient must be causal
because reflections cannot arrive at the detector before they have originated from
the source.

2.2 The Hardy Space HE

We shall define HE(C+) like any other Hardy space :

HE(C+) = {r | r holomorphic in C+, sup
b>0

E(r) < ∞, and r(−ω) = r(ω)}

where the Lp norm is replaced by

E(r) =
∫

(− log(1− |r|2))dω (26)

=
∞∑

k=1

∫
|r|2k

k
(27)

An immediate consequence of (27) is:

Lemma 1. E(r) is strictly convex and positive.

We can use E to define a metric to measure the distance between two reflec-
tion coefficients and hence view HE(C+) as a metric space.

D2
E(r, s) := E(−r ◦ s) (28)

We will call DE the E-distance or the distance in the E-metric. A little motiva-
tion for the above definition is probably in order. Let

e(r) = −log(1− |r|2) (29)

p(r) = log

(
1 + |r|
1− |r|

)
(30)

de(r, s) = e(−r ◦ s) (31)
dp(r, s) = p(−r ◦ s) (32)

For the moment, let r and s denote complex numbers in the unit disk. Then
p(r) is the Poincaré distance from r to the origin; dp(r, s) is the Poincaré distance
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from r to s. The definition (32) can also be described as follows: Choose a
conformal map, F , of the unit disk which maps r to the origin, then measure
the distance between F (s) and the origin. This definition makes the Poincaré
distance conformally invariant. The analogous definition gives the e-metric (and
hence the E-metric) the same property.

Our reflection coefficients will take values in the Poincaré disk. Furthermore,
the formula (13) shows that when we add a layer, the new reflection coefficient
is formed by applying a conformal map to the old one, so that, in a conformally
invariant metric, adding the same top layer to two different layers will not change
the E-distance between their reflection coefficients.

Lemma 2. The metrics, de, and therefore DE, are conformally invariant; i.e.
for any conformal F of the unit disk onto itself

de(a, b) = de(F (a), F (b)).

Proof A conformal of the unit disk, F (z) has the form

F (z) = eiθ a− z

1− az
(33)

where θ ∈ R and a belongs to the unit disk. We use the notation Fa to refer to
the in (33) with θ = 0. Now

de(b, c) = e(−b ◦ c)
= e(Fb(c))

while
de(G(b), G(c)) = e(FG(b)(G(c))).

Now
FG(b)(G(z)) : b 7→ 0

so that, according to (33),

FG(b)(G(z)) = eiθFb(z)

for some θ, so

de(G(b), G(c)) = e(eiθFb(c))
= e(Fb(c))

�

Theorem 5 (Cauchy Schwartz and Triangle Inequalities).

|E(a, b)| ≤ E(a)
1
2 E(b)

1
2 (34)

DE(r, s) ≤ DE(r, τ) + DE(τ, s). (35)
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In addition, the Cauchy Schwartz inequality holds for the tails of the series ex-
pansion for E(r), i.e.

|EM (a, b)| ≤ EM (a)
1
2 EM (b)

1
2 (36)

where

EM (b) :=
∫ ∞∑

k=M+1

|b|2k

k
dω (37)

Proof

E(a, b) =
∫

log(1− ab)dω

=
∫ ∞∑

k=1

ab

k

k

dω

≤
∫ ( ∞∑

k=1

|a|2k

k

) 1
2
( ∞∑

k=1

|b|2k

k

) 1
2

dω

≤

(∫ ∞∑
k=1

|a|2k

k
dw

) 1
2
(∫ ∞∑

k=1

|b|2k

k
dω

) 1
2

= E(a)
1
2 E(b)

1
2

D2
E(a, b) = E(−a ◦ b)

= E(a) + E(b)− 2ReE(a, b)

≤ E(a) + E(b) + 2E(a)
1
2 E(b)

1
2

= (E(a)
1
2 + E(b)

1
2 )2

= (DE(a, 0) + DE(0, b))2.

Now, given any C, choose F conformal and mapping 0 to C. Then

DE(a, b) = DE(F−1(a), F−1(b))
≤ DE(F−1(a), 0) + DE(0, F−1(b))
= DE(a, c) + DE(c, b).

Finally, the last assertion follows from the proof of the first, on simply be-
ginning the summations above at k = M + 1 instead of k + 1. �

Corollary 1. The unit disk, with the metric de, and HE(C+), with the metric
DE, are complete metric spaces.
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Proof Suppose that a sequence {rn} is E-cauchy. According to (28)

D2
E(rn, rm) = E(−rn ◦ rm)

= || rn − rm

1− rnrm
||2L2

≥ 1
4
||rn − rm||2L2

so that the sequence is L2-cauchy, and therefore has an L2 limit. The triangle
inequality guarantees that E(rn) and hence E(r) are bounded above. Another
application of the triangle inequality shows that D2

E(rn, r) is bounded above by
(E(rn) + E(r))2 so that we may apply the dominated convergence theorem to
conclude that D2

E(rn, r) goes to zero. Thus the sequence converges in HE . �

Theorem 6 (Weak and Strong Convergence). Suppose that, for all g ∈
HE(C+)

E(rn, g) → E(r, g)
and that

E(rn) → E(r)
then

DE(rn, r) → 0.

In other words, weak convergence plus convergence of norms implies strong con-
vergence.

Proof

DE(rn, r) = E(rn) + E(r)− 2Re E(rn, r)
→ E(r) + E(r)− 2Re E(r, r)
= 0

�

3 The Ricatti Equation

We begin with a layer with top T and bottom B; for the moment, we assume that
α is smooth with compact support and that B lies below the support of α. In
[9], we worked with general α ∈ L2, but here we will work with more restricted
α’s and use our continuous dependence estimates to extend our results to all
α ∈ L2. We return to the Helmholtz equation

u′′ + 2α(x)u′ + ω2u = 0 (38)
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and the conditions at the ends of the layer

u ∼
T

e−
∫ T
B α

t(T, ω)

(
e−iω(x−T) + r(ω)eiω(x−T)

)
(39)

u ∼
B

e−iω(x−B) (40)

The condition (39) is equivalent to the pair of equations

u(T, ω) =
e−

∫ T
B α

t(T, ω)
(1 + r(T, ω)) (41)

u′(T, ω) = −iω
e−

∫ T
B α

t(T, ω)
(1− r(T, ω)) (42)

and condition (40) insists that u is the unique solution to (38) with Cauchy data

u(B,ω) = 1 (43)
u′(B,ω) = iω (44)

Note that u is independent of B as long as B stays below the support of α.
We shall now differentiate (41) and (42) with respect to T to derive the following
differential equations for r(T, ω) and t(T, ω).

r′ = 2iωr + α(1− r2) (45)
r(B,ω) = 0 (46)

t′ = iωt− αrt (47)
t(B,ω) = 1 (48)

Strictly speaking, ′ in the equations above should be differentiation with
respect to T , not x; but as u(x, ω) does not depend on T ,

d

dT

(
u
∣∣∣
x=T

)
=

∂u

∂x

∣∣∣
x=T

+
∂u

∂T

∣∣∣
x=T

(49)

= u′(T, ω) + 0 (50)

hence derivatives with respect to T and x are equivalent. One way to obtain (45)
is to divided (42) by (41), obtaining

u′

u
= −iω

(
1− r

1 + r

)
(51)

Differentiating (51) gives
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2iω
r′

(1 + r)2
= q

u′′

u
−
(

u′

u

)2

= −α
u′

u
+ (iω)2

u

u
−
(

u′

u

)2

= αiω

(
1− r

1 + r

)
+ (iω)2 −

(
−iω

(
1− r

1 + r

))2

A little algebra now yields (45). Finally, differentiate (41) to obtain a formula
for u′(T, ω) and set it equal to the formula for u′(T, ω) in (42). Then use (45) to
arrive at (47).

3.1 Forward Scattering

We will establish our forward scattering via the Ricatti equation. We first prove:

Theorem 7. Let α ∈ C∞
0 with supp (α) ⊂ [B, 0], then there exists a unique

solution r ∈ C([B, 0],HE(C+)) satisfying (45) and (46). In addition,

E(r) = π||α||2L2 (52)

Proof

– Fix ω ∈ C+ and prove local existence of a solution to the integral equation

r(x, ω) = r(x0) +
∫ x

x0

e2iω(x−y)α(y)
(
1− r2(y, ω)

)
dy (53)

by using the estimate∣∣∣∣∫ x

x0

e2iω(x−y)α(y)
(
r2 − r̃2(y, ω)

)
dy
∣∣∣∣ ≤ ||α||L2 |x− x0|

1
2 |r + r̃||r − r̃| (54)

to show that the mapping defined by the right hand side of (53) is a con-
traction on a suitable ball (say |r| < 2) if |x− x0| is small enough.

– Obtain global existence by noting that the a priori estimate |r| < 1 follows
from multiplying (45) by r and taking real parts to obtain

|r|2′ = α(r + r)(1− |r|2) (55)

– Establish the large ω asymptotics of r by proving some bounds on r and
its x-derivatives. We start by differentiating (45) to obtain the differential
equation,

(r′)′ = (2iω − αr)r′ + α′(1− r2) (56)
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and the integral representation,

r′(x) = r′(B) +
∫ x

B

e2iω(x−y)e2i
∫ y
x αrα′(y)

(
1− r2(y, ω)

)
dy

and, after noting that r′(B) = α(B) = 0, the estimate

|r′(x)| ≤ 2||α||L2e||α||L2 |x−B|
1
2 |x− B| 12 (57)

The point of (57) is that |r′(x)| is bounded independent of ω (but not x).
That the same is true of |r′′(x)| and higher derivatives can be established in
the same way. Now return to (56) and notice that every term except 2iωr′

is bounded; so it must be bounded also. Hence

|r′(x)| ≤ C

ω

and, via integration, r must also satisfy this estimate. Next examine (45) to
see that every term except 2iωr + α is bounded by constant over ω, so that

r(x) = − α

2iω
+ O

(
1
ω2

)
(58)

– Establish the Plancherel equality (52) by dividing (55) by 1− |r|2.

− log(1− |r|2)′ = α(r + r) (59)

Next integrate both sides with respect to ω along the real axis. Note that
since r is holomorphic in C+ and r in C− with the asymptotics (58), we
may perform a residue calculation to establish, for b > 0,∫ ∞

−∞
r(ω + ib)dω = πα (60)∫ ∞

−∞
r(ω + ib)dω = 0 (61)

Although neither of the integrals (60) nor (61) are continuous in b as it passes
through zero, the sum of the two is continuous because (58) guarantees the
integrability of r + r. Thus we arrive at(

−
∫

log(1− |r|2)dω

)′
= πα2 (62)

whence integration in x from B to 0 yields (52). �

Theorem 8. Suppose that αn −→ α in L2. Then rn −→ r in HE.

Proof
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– rb
n is Cauchy in L2.Let b > 0 and let ωb and rb(x, ω) denote ω + ib and

r(x, ω + ib), respectively. Divide the interval (−∞, 0) into a finite number of
intervals such that

||α||L2(xk,xk+1) <
1
4

√
b (63)

and note that, on each such interval, the same estimate will hold with α
replaced by αn, and 1

4 replaced by a slightly larger constant, as long as n is
large enough. We make use of the integral equation

rb
n(xk+1) = rb

n(xk) +
∫ xk+1

xk

e2iωb(xk+1−y)α(y)(1− (rbn)2)dy (64)

and define
ρnm(x) = sup

xk<y<x
||rb

n(y)− rb
m(y)||L2(dω) (65)

then

ρnm(xk+1) ≤ ρnm(xk) + ||α̂n − α̂m||L2(dω) +∫ xk+1

xk

e−2b(xk+1−y)
∣∣(αn − αm)(rbn)2 + αm

(
(rbn)2 − (rbm)2

)∣∣
Applying the Cauchy-Schwartz inequlity a few more times,

ρnm(xk+1) ≤ ρnm(xk) + (1 +
1√
b
)||αn − αm||L2(xk+1,xk)

+
1√
b
||αn||L2(xk+1,xk)ρnm(xk+1)

so that

ρnm(xk+1) ≤
1 + 1√

b

1−
||αn||L2(xk+1,xk)√

b

(
ρnm(xk) + ||αn − αm||L2(xk+1,xk)

)
(66)

Applying (66) consecutively to each interval yields

ρnm(0) ≤ K(b, α)||αn − αm||L2 (67)

which implies that the rb
n are Cauchy inL2.

– rk
n → rk weakly in L2 As |rn| and |r| are bounded by 1,

|(rb
n)k − (rb)k| ≤ K(k)|rb

n − rb|

so that
ρb

n := (rb
n)k − (rb)k L2

−→ 0 (68)

For any h ∈ H2

(ρn, h) = (ρn, hb) + (ρn, h− hb)
= (ρb

n, h) + (ρn, h− hb)
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so that the second term can be made arbitrarily small by choice of b – remem-
ber that ‖ρn||2L2 is bounded by E(rn)+E(r) which is bounded independently
of n – and the first term on the right goes to zero because of (68).

– Weak E-convergence implies strong E-convergence by theorem 5. Verify the
weak convergence as follows; let g ∈ HE and EM be defined as in (37)

E(rn, g)− E(r, g) =
M∑

k=1

(rk
n − rk, gk)

k
+ EM (rn, g)− EM (r, g) (69)

According to the Cauchy-Schwartz inequality, (36), and the (independent of
n) bound on E(rn), a sufficiently large choice of M will make the last two
terms arbitrarily small. Now each of the terms in the summation approach
zero because of the weak L2 convergence discussed in the previous para-
graph. �

An immediate consequence of the proof of theorem 8,which we will use later is
below. We use the notation α(−∞,x] to denote α times the characteristic function
of the interval (−∞, x].

Corollary 2. If α ∈ L2, r(x, ω) = Sα(−∞,x], and b > 0, then rb(x, ω) is the
unique solution to the integral equation

rb(x, ω) =
∫ 0

−∞
e2iωb(x−y)α(y)

(
1− (rb)2

)
dy (70)

The last thing we do in this subsection is prove theorem 3 from the intro-
duction.

Proof of theorem 3

We once again apply the Cauchy-Schwartz inequality to the integral equation

r(x) =
∫ x

−W

e2iω(x−y)α(y)
(
1− r2(y))

)
dy (71)

= e2iωxα̂(2ω)−
∫ 0

−W

e2iω(−y)αr2dy (72)

to obtain the L2 estimate

||r − α̂(2ω)||L2 ≤ ||α||L2W
1
2 ||r||L2 (73)

≤ ||α||L2W
1
2 E(r) (74)

≤ ||α||2L2W
1
2 (75)

which is (19). For the L∞ estimate, (18), we start with (71) to estimate
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|r(y)| ≤ 2|y| 12 ||α||L2

and insert this estimate into (72) to obtain

|r − α̂(2ω)| ≤
∫ 0

−W

α(y)4|y|||α||2L2(−w,y)dy

≤ 4
3
W

3
2 ||α||3L2

Finally, we integrate the differential equation (47) to obtain

t(x, ω) = eiω(x+W)e
∫ x
−W α(y)r(y)dy (76)

and apply the Cauchy-Schwartz inequality to the integral in the exponent to
obtain (20). �

3.2 Inverse Scattering

We will produce a solution to the inverse problem by solving the Ricatti equation
(45), but this time with the initial data given at the top of the layer, which we
take to be x = 0.

r′ = 2iωr + α(1− r2) (77)
r(0, ω) = r0(ω) (78)

It will turn out that this single equation will provide an equation for α as well
as r. We pass to the integral equation formulation:

r(x, ω) = e2iωxr(0, ω)−
∫ 0

x

e2iω(x−y)α(y)dy +
∫ 0

x

e2iω(x−y)α(y)r2(y)dy (79)

If we apply P± , the orthogonal projectors from L2 onto H2(C±) defined in
(25), to (79), and use the facts that

P+r = r (80)∫ 0

x

e2iω(x−y)α(y)dy =
(
α[x,0]

)∧ (81)

P+
(
α[x,0]

)∧ = 0 (82)

Here

α∧[x,0] =
∫ 0

x

e−2iωyα(y)dy
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α[x,0] denotes α times the characteristic function of the interval [x, 0], and α∧[x,0]

denotes its Fourier transform evaluated at 2ω. We obtain a pair of integral equa-
tions

r(x) = P+

(
e2iωxr(0)−

∫ 0

x

e2iω(x−y)α(y)r2(y)dy
)

(83)

(
α[x,0]

)∧ = e−2iωxP−
(

e2iωxr(0)−
∫ 0

x

e2iω(x−y)α(y)r2(y)dy
)

(84)

for the pair of unknowns (r(x, ω), α∧[x,0](ω)).

Theorem 9. If r0 ∈ HE(C+), then there exists a unique solution pair (r, α) ∈
C((−∞, 0],HE(C+) ⊕ L2(x, 0)) solving (79) (or, equivalently, (83) and (84)).
Moreover,

r(x, ω) = Sα(−∞,x] (85)

and the mapping S−1 is continuous.

Proof

– Local existence is proved by exhibiting the right hand side of (83) and (84)
as a contraction on a ball in H2 ∩H∞ ⊕ L2(x, 0). To see this define

Φ

(
r
α

)
=
(

1 0
0 F−1e−2iωx

)(
P+

P−

)
e2iωxΨ (86)

with

Ψ

(
r
α

)
=
(

r(0)−
∫ 0

x

e−2iωyα(y)r2(y)dy
)

(87)

and F−1 denoting the inverse Fourier transform. It is straight forward to see
that

Ψ : H2(C+) ∩H∞ ⊕ L2(x, 0) −→ H2(C+) ∩H∞ ⊕ L2(x, 0) (88)

and is a contraction in L2 norm on an appropriate ball as long as |x| is small
enough.

That Φ is a contraction in L2 norm is an immediate consequence as both P±

are bounded from L2 to itself. What requires some discussion is the assertion
that the first component of Φ, P+e2iωxΨ, remains in H∞(C+), even though,
in general, P± are not bounded on L∞. Now

P+e2iωxΨ = e2iωxΨ− P−e2iωxΨ (89)

so it is enough to bound G := P−e2iωxΨ in the L∞ norm. This follows
because

G ∈ e2iωxH2(C+) ∩H2(C−) (90)

i.e. G is the Fourier transform a function, g, with support in the interval
(0,−x). Therefore
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G =
∫ −x

0

e−2iωygdy (91)

|G| ≤ |x| 12 ||g||L2 (92)

≤ |x| 12 π||G||L2 (93)
(94)

so its L∞ norm is bounded by the a constant times its L2 norm.

– Global existence follows from the Plancherel equality

E(r(x1))− E(r(x0)) = π

∫ x1

x0

α2dx (95)

which itself follows from integrating (62) between x0 and x1. Thus (95) im-
plies that E(r(x)) decreases as x decreases toward −∞, providing an a priori
estimate which allows us to extend our interval of existence.

As a consequence, we have produced a pair (r, α) satisfying (79), in partic-
ular, for N = 1, 2, 3, . . ., and b > 0 rb satisfies the integral equation

rb(x, ω) = rb(−N,ω)e2iωb(x+N) +
∫ x

−N

e2iωb(x−y)α(1− (rb)2)dy

Now, since ‖rb(x, ·)‖L2(dω) ≤ E(rb(x, ·)) ≤ E(r0) and |rb(x, ω)| is bounded
above by one, we may fix x and let N →∞. We obtain

rb(x, ω) = 0 +
∫ x

−∞
e2iωb(x−y)α(1− (rb)2)dy (96)

which shows, according to corollary 2 that r = Sα.

– The continuity of S−1

We start by dividing up the half line into k intervals of length W such that√
E(r)W <

1
2

(97)

On the k’th interval, [xk, xk+1], both r and rn satisfy an integral equation
analogous to (86), namely

Φ

(
r(x)

α∧[xk,xk+1]

)
=
(

P+

P−

)
e2iωxΨ(x) (98)

with
Ψk(r) = r(xk)−

∫ xk+1

xk

e−2iωyα(y)r2(y)dy (99)
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Define
ρn,k = sup

xk<y<xk+1

||rn(y)− r(y)||L2(dω) (100)

An,k = ||αn(y)− α(y)||L2([xk,xk+1]) (101)

and subtract the integral equation (98) for rn from that for r, then

An,k + ρn,k ≤ 2||Ψk(r)− Ψk(rn)||L2(dω)

≤ 2ρn,k−1 + 2||α||l2([xk,xk+1])W
1
2 ρn,k + 2||r||L2(dω)W

1
2 An,k

so that, since
√

E(r) dominates the L2 norms of both α and r,

An,k ≤
ρn,k−1

1− 2
√

WE(r)

ρn,k ≤
ρn,k−1

1− 2
√

WE(r)

which yields recursively

An,k ≤

(
1

1− 2
√

WE(r)

)k

||r(0)− rn(0)||L2(dω) (102)

which shows that αn converges in L2 of every finite interval, hence weakly in
L2(−∞, 0), to α. Now the convergence of norms guaranteed by the Plancherel
equality yields strong L2 convergence and the continuity of S−1. �

4 Layer Stacking and Splitting

4.1 Stacking Layers

There are several ways to deduce the formulas (13) for stacking layers directly
from the Helmholtz equation. As we have already deduced the Ricatti equations,
we shall start with the observation that, as a consequence of (45) and (47), r

t
and 1

t satisfy the linear system of equations:

(r

t

)′
= iω

(r

t

)
+ α

(
1
t

)
(103)(

1
t

)′
= α

(r

t

)
− iω

(
1
t

)
(104)

For single layer with reflection and transmission coefficients r1 and t1, the
solution to (103) with intimal data at x = B(

r
t (B)
1
t (B)

)
=
(

0
1

)
(105)
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is (
r
t (T )
1
t (T )

)
=
( r1

t1
1
t1

)
(106)

Now if
(

v1

v2

)
solve (103) so does

(
v2

v1

)
, hence the fundamental solution matrix

to (103), mapping data from the bottom to the top of the layer is

M1 =

(
1
t1

r1
t1

r1
t1

1
t1

)
(107)

If we stack layer 1 atop layer 2, then we start with initial data
(

0
1

)
at the bottom

of layer 2, the value of the solution to (103) at the top of layer 2 (which is the

same as the bottom of layer 1) is
( r2

t2
1
t2

)
so that, at the top of layer 1

( r12
t12
1

t12

)
=

(
1
t1

r1
t1

r1
t1

1
t1

)( r2
t2
1
t2

)
(108)

which can then be unwound to produce

r12 =
r1 + t1

t1
r2

1 + r1
t1
t1

r2

(109)

t12 =
t1t2

1 + r1
t1
t1

r2

(110)

We remark that stacking layers is associative, that is, stacking layer 2 on top
of layer 3, and then layer 1 on top of the 2-3 stack, had better yield the same
thing as stacking layer 1 atop layer 2 and then putting the 1-2 layer atop layer
3. The corresponding formula for reflection coefficients takes the form

r123 = r1 ◦
t1
t1

(
r2 ◦

t2
t2

r3

)
(111)

=
(

r1 ◦
t1
t1

r2

)
◦ t12

t12
r3 (112)

We return our attention to (109). Our goal is to start with any r ∈ HE(C+),
choose a width, W1, and produce a factorization as in (109), with r1 the reflection
coefficient of a layer of width W1. Once we accomplish this step, we can repeat it
on r2, eventually representing r as a composition of reflection coefficients, each
of width W1. If W1 is small enough, the Born approximation will yield a good
approximation for α; if not we may subdivide each layer again into thinner layers
until the Born approximation applies.

Before stating our main decomposition result, we recall some basic relation-
ships between t and r.
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Lemma 3. For a layer, r1 of width W1

|t1|2 = 1− |r1|2 (113)

t1 = eiωW1eP+ log(1−|r1|2) (114)
r1

t1
∈ eiωW1H2(C−) ∩ e−iωW1H2(C+) (115)

Proof We start with (47), and multiply both sides by t1 to obtain

|t1|2
′
= −α1(r1 + r1) = (1− |r1|2)′ (116)

where the last equality makes use of (55). Now integrate both sides, using (48)
and (46) to get (113). On the other hand, we may integrate (47) directly to
obtain

t1 = eiωW1e
∫ 0
−W1

α1r1dy (117)

If we let

τ1 = e−iωW1t1 (118)

log(τ1) =
∫ 0

−W1

α1r1dy ∈ H2(C+) (119)

log(τ1) = 2P+Re log(τ1) (120)
= P+ log(|τ1|2) (121)
= P+ log(1− |r1|2) (122)

from which (114) follows. Note also that

e−||α1||L2W
1
2
1 ≤ |τ1| ≤ e||α1||L2W

1
2
1 (123)

so that r1
τ1
∈ H2(C+) which together with (118) gives the second inclusion in

(115). To see the first inclusion, let r2 ∈ HE(C+) be the reflection coefficient of
α2 and let r be given by (109). Then

π
(
||α1||2 + ||α2||2

)
= E(r1) + E(r2) +

∫
log(1 +

r1

t1
t1r2)dω (124)

but the Plancherel equality tells us that the first two terms on the right exactly
equal the two terms on the left, so that∫

log(1 +
r1

t1
t1r2)dω = 0 (125)

Since we may choose r2 arbitrarily small, we must have∫
r1

t1
t1r2dω = 0 (126)

but r2 can be an arbitrary function in HE(C+), so that r1
t1

t1 ∈ HE(C+). Since
1
t1
∈ eiωW1H∞(C+), we have r1

t1
∈ e−iωW1H2(C+). Taking complex conjugates

gives the remainder of (115). �
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Theorem 10. Let r ∈ HE(C+) and W1 > 0 . The following are equivalent

1. r1 is the unique minimizer of the strictly convex variational problem

min
ρ ∈ HE(C+)

r − ρ ∈ e2iωW1H2(C+)

E(ρ) (127)

2. r1 satisfies

r − ρ ∈ e2iωW1H2(C+) (128)
r1

t1
∈ eiωW1H2(C−) ∩ e−iωW1H2(C+) (129)

3. The unique layer decomposition of r into a stack of two layers with top
layer of width W1 is

r = r1 ◦
t1
t1

r2 (130)

Proof

– 3 implies 2 Any reflection coefficient, r1 of with W satisfies (129) according
to (115). If we use the equality (113), we may rewrite (130) as

r = r1 + t21

(
1 +

r1

t1
t1r2

)−1

r2‘ (131)

which makes it apparent that the second term belongs to e2iωWH2(C+), es-
tablishing (128).

– 2 implies 1 Let σ ∈ e2iωWH2(C+) and compute

d

dε

∣∣∣
ε=0

E(r1 + εσ) =
∫

r1

t1

σ

t1
(132)

= 0 (133)

because
σ

t1
∈ eiωW1H2(C+) (134)

we conclude that
r1

t1
∈ e−iωW1H2(C+) (135)

so thatr1 is a critical point for the variational problem. But as the varia-
tional problem is strictly convex, that critical point can only be the unique
minimizer.
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– 1 implies 3 In theory, we know that the layer decomposition (130) exists
and is unique because we have proved existence and uniqueness of the in-
verse problem in theorem 9. The point here is that we can compute r1 by
performing the convex minimization. Once we have r1 in hand, according to
(113), we can produce

t1 = eiωW1eP+ log(1−|r1|2) (136)

and then

r2 =
t1
t1

(−r1 ◦ r) (137)

so that the entire layer decomposition is in hand.

�
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