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Abstract

The aim of far field splitting for time-harmonic acoustic or electromagnetic waves is to
decompose the far field of a wave radiated by an ensemble of several compactly supported
sources into the individual far field components radiated by each of these sources separately.
Without further assumptions this is an ill-posed inverse problem. Observing that far fields
radiated by compactly supported sources have nearly sparse representations with respect to
certain suitably transformed Fourier bases that depend on the approximate source locations, we
develop an ℓ1 characterization of these far fields and use it to reformulate the far field splitting
problem as a weighted ℓ1 minimization problem in the spirit of basis pursuit. To this end we
assume that some a priori information on the locations of the individual source components is
available. We prove that the unique solution to the weighted ℓ1 minimization problem coincides
with the solution to the far field splitting problem, and we discuss its numerical approximation.
Furthermore, we propose an iterative strategy to successively improve the required a priori
information by solving a sequence of these weighted ℓ1 minimization problems, where estimates
of the approximate locations of the individual source components that are used as a priori
information for the next iteration are computed from the value of the current solution. This
also gradually decreases the ill-posedness of the splitting problem, and it significantly improves
the quality of the reconstructions. We present a series of numerical examples to demonstrate
the performance of this algorithm.
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1 Introduction

The inverse source problem for time-harmonic acoustic or electromagnetic waves radiated by com-
pactly supported sources attempts to recover information about an unknown source from observa-
tions of the radiated wave made at a distance, i.e., from the far field. What makes this problem
particularly interesting, apart from its notorious instability, is the non-uniqueness of its solutions
without additional assumptions on the unknown source. This necessitates generalized notions of
solutions, and over the last several years there has been an increasing interest in alternatives to
traditional least squares (see, e.g., [9] for a recent account on the latter). One such alternative is the
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convex scattering support introduced in [20, 21] (see also [22, 24, 25]), which aims to retrieve geo-
metrical properties of the support of the unknown source from its radiated far field. More precisely,
the convex scattering support describes the smallest convex set such that any neighborhood of this
set supports a source radiating the given far field. This set can not only be computed numerically
from far field data, but it also constitutes a rigorously justified lower bound for the convex hull of
the support of all solutions to the inverse source problem. On the other hand, the convex scattering
support is, by definition, a single convex set, and therefore contains limited topological informa-
tion. In particular, if a source consists of several well-separated components, the convex scattering
support contains no information about the geometric properties of the supports of the individual
source components. Utilizing the linearity of the inverse source problem, a possible remedy pro-
posed in [12] is to first decompose the far field radiated by an ensemble of well separated compactly
supported sources into the far fields radiated by each of these source components separately, and
then to evaluate the convex scattering support of each of these far field components. We call the
first step in this procedure the far field splitting problem, and the main topic of this work is the
development of an efficient numerical algorithm to compute such far field splits. Although inverse
source problems and convex scattering supports are our main motivation for considering far field
splitting, this inverse problem is clearly of independent interest.

Assuming that the approximate locations of the individual source components are known a priori,
we recently discussed in [12] a Galerkin method for the far field splitting problem. More precisely,
this algorithm requires the centers and the radii of well separated balls in space containing the
supports of the individual source components. Several methods for obtaining this kind of a priori
information from far field data are available (see, e.g., [4, 5, 13, 14, 17]). The finite dimensional
subspaces used in this Galerkin scheme are spanned by singular vectors of certain “restricted” far field
operators associated with the balls containing the individual source components, and the number
of degrees of freedom is directly related to the size of these balls. The Galerkin approach has both
advantages and shortcomings: It is very fast and highly accurate as long as the balls containing the
individual source components given as a priori information are sufficiently small relative to their
distances. However, if this is not the case for whatever reasons (e.g., if the a priori information is
not sharp), then the Galerkin scheme becomes ill-conditioned and the reconstructions deteriorate.

The aim of the present work is to reduce the dependence of the reconstructed far field components
on the accuracy of the given a priori information on the approximate source locations. To this end
we replace the Galerkin approach, which was based on an ℓ2 characterization and may therefore
be considered as a finite dimensional least squares best approximation problem, by a weighted
ℓ1 minimization problem in the spirit of basis pursuit (see, e.g., [6]). This strategy reflects the
same basic observation as the Galerkin scheme: that far fields radiated by ensembles of compactly
supported sources are nearly sparse in certain overcomplete dictionaries that are obtained by merging
suitably transformed Fourier bases depending on the source locations. However, instead of selecting
a finite number of degrees of freedom based on the given a priori information beforehand, as is
done in the Galerkin framework, the sparsity promoting weighted ℓ1 minimization scheme—at least
theoretically—recovers the right dictionary elements automatically, and thus its solution is much
less dependent on the accuracy of the a priori information.

The use of suitable weights is crucial to guarantee that the unique solution of the weighted ℓ1

minimization problem does indeed yield the desired solution of the far field splitting problem. We
solve the ℓ1 minimization problem numerically by applying the iterated soft thresholding algorithm
(see, e.g., [8]), which, in particular, accounts for the ill-posedness of the far field splitting problem.
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In the second part of this paper, we propose an iterative strategy to successively improve the quality
of the weights by solving a sequence of weighted ℓ1 minimization problems, where the weights used
for the next iteration are computed from the value of the current solution (see, e.g., [3] for a related
approach). This not only improves the convergence speed of the algorithm but also the quality
of the reconstructions significantly. Numerical examples confirm that this iteratively reweighted
sparsity promoting far field splitting method requires much less accurate a priori information than
the Galerkin scheme from [12].

The splitting of a far field due to an ensemble of sources into individual far field components has
already been considered in earlier work [18] (see also [23]). However, the approach proposed in these
articles is based on actually reconstructing the individual source components by solving severely
ill-posed integral equations. We avoid this additional source of instability by directly working with
the far field patterns, and more importantly, we make explicit use of the sparsity properties of
Fourier expansions of far fields in our algorithm. Recently, in [15], a method for the separation of
time-dependent wave fields due to multiple sources has been proposed, based on absorbing boundary
conditions.

The paper is organized as follows. In the next section we review some facts concerning far fields
of time-harmonic waves radiated by compactly supported sources and their Fourier analysis. In
Section 3 we characterize the smallest ball centered at the origin that supports a source radiating
a given far field in terms of a weighted ℓ1 (rather than ℓ2) norm of its Fourier coefficients. The
far field splitting problem is formulated as a weighted ℓ1 minimization problem in Section 4. In
Section 5 we introduce the narrow box principle as a means to estimate the approximate location of
a single localized source from its far field pattern. We utilize this principle in Section 6 to develop
an iterative reweighting strategy, and then conclude the paper with some final remarks.

2 Far field patterns radiated by compactly supported sources

Suppose that f ∈ L2
0(R

2) represents a compactly supported acoustic or electromagnetic source in
the plane. Then the time-harmonic wave u ∈ H1

loc(R
2) radiated by f at wave number κ > 0 solves

the source problem for the Helmholtz equation

−∆u− κ2u = f in R
2 , (2.1a)

and satisfies the Sommerfeld radiation condition

lim
r→∞

√
r
(∂u
∂r

− iκu
)

= 0 for |x| = r . (2.1b)

Recalling the fundamental solution of the Helmholtz equation in two dimensions

Φκ(x) :=
i

4
H

(1)
0 (κ|x|) , x ∈ R

2 , x 6= 0 ,

the solution to (2.1) can be written as a volume potential

u(x) =

∫

R2

Φκ(x− y)f(y) dy , x ∈ R
2 . (2.2)

From the asymptotic behavior of Hankel functions for large argument it follows immediately that

u(x) =
eiπ/4√
8πκ

eiκ|x|√
|x|

u∞(x̂) + O
(
|x|−3/2

)
as |x| → ∞, (2.3)

3



where x̂ := x/|x| and

u∞(x̂) =

∫

R2

e−iκx̂·yf(y) dy , x̂ ∈ S1 (2.4)

(see, e.g., [7]). The function u∞ is called the far field pattern radiated by f , and accordingly the
far field operator F : L2

0(R
2) → L2(S1),

Ff := f̂ |κS1 , (2.5)

where as usual f̂ denotes the Fourier transform of f , maps compactly supported sources to their
radiated far field patterns.

The inverse source problem aims to recover information about an unknown source f ∈ L2
0(R

2)
from observations of the far field pattern u∞ = Ff . It is obvious from (2.5) that the far field
operator F has a non-trivial kernel N (F). More precisely, using Rellich’s lemma and the uniqueness
of solutions to (2.1) it can be seen that

N (F) = {g = −∆v − κ2v | v ∈ H2
0 (R

2)} .

The elements of N (F) are called non-radiating sources. In particular, neither the source f nor its
support is uniquely determined by the far field pattern u∞ radiated by f , and since non-radiating
sources can have arbitrarily large support, no upper bound for the support is possible. There are,
however, well defined notions of lower bounds: We say that a compact set Ω ⊂ R

2 carries u∞, if
every open neighborhood of Ω supports a source f ∈ L2

0(R
2) that radiates this far field pattern. The

convex scattering support C (u∞) of u∞ has been defined in [20] (see also [21, 25]) as the intersection
of all compact convex sets that carry u∞. It has been established that C (u∞) itself carries u∞.
Hence C (u∞) is in fact the smallest convex set with this property, and the convex hull of the
support of the “true” source f must contain C (u∞). Furthermore, since two disjoint compact sets
with connected complements cannot carry the same far field pattern (cf. [25, Lemma 6]), it follows
that C (u∞) intersects any connected component of supp(f), if the corresponding source component
is not non-radiating.

The convex scattering support C (u∞) can be approximated numerically by means of

C (u∞) ≈
L⋂

l=1

Bρl(ζl) ,

where {ζ1, . . . , ζL} is a sufficiently large number of suitably chosen points in R
2, and ρl, l = 1, . . . , L,

denotes the radius of the smallest ball around ζl containing C (u∞). To evaluate this approximation
one needs to estimate, based on the far field data, the radius of the smallest ball, centered at a given
point, that contains the convex scattering support of the far field pattern. Since reliable numerical
estimates of this radius will we be important at several places in this work, we discuss this issue in
the following in more detail.

We use polar coordinates x̂ = (cos t, sin t) and y = |y|(cosϕy, sinϕy) with t, ϕy ∈ [0, 2π), and
recall the Jacobi-Anger expansion

e±iκx̂·y =
∑

n∈Z

(±i)ne−inϕyJn(κ|y|)eint (2.6)
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(see, e.g., [7, p. 67]). The Fourier expansion of the far field pattern u∞ radiated by f is given by

u∞(x̂) =
∑

n∈Z

ane
int , x̂ ∈ S1 ,

with

an = (−i)n
∫

R2

e−inϕyJn(κ|y|)f(y) dy , n ∈ Z . (2.7)

If a source f is supported in the ball Br(0) of radius r > 0 centered at the origin, then the inequality
below for Bessel functions

|Jn(κr)| ≤





1 , |n| ≤ eκr/2 ,
( κer
2|n|

)|n|
, |n| ≥ eκr/2 ,

n ∈ Z , (2.8)

(cf. Theorem A.1 in [12]) implies that we can obtain a lower bound for κr by identifying the
number of Fourier coefficients that are significantly larger than zero. To make this more precise,
we introduce, for any bounded domain Ω ⊂ R

2, the corresponding restricted far field operator
FΩ : L2(Ω) → L2(S1),

(FΩf)(x̂) :=

∫

Ω
e−iκx̂·yf(y) dy . (2.9)

In the special case Ω = Br(0) the singular system (sn(κr)κ ;un, vn), n ∈ Z, of FBr(0) is known (cf.,
e.g., [9]): It is given by

s2n(κr) = 2πκ2
∫

Br(0)
J2
n(κ|x|) dx (2.10a)

un(x̂) = (1/
√
2π) eint , x̂ = (cos t, sin t) ∈ S1 , (2.10b)

and

vn(x) =
κ
√
2π

sn(κr)
inJn(κ|x|)einϕx , x = |x|(cosϕx, sinϕx) ∈ Br(0) . (2.10c)

Therefore, Picard’s theorem (see, e.g., [7, p. 92]) implies that a field pattern u∞ with Fourier
coefficients (an)n∈Z belongs to R(FBr(0)) for some r > 0 if and only if

∑

n∈Z

κ2|an|2
|sn(κr)|2

< ∞ . (2.11)

However, since estimating the radius

ρ := max{|x| | x ∈ C (u∞)} (2.12)

by verifying the convergence of (2.11) for various radii r is not efficient, we will use a much more
tractable numerical criterion based on the following lemma.

Lemma 2.1. Let r > 0, denote by a = (an)n∈Z the Fourier coefficients of the far field pattern
u∞ = FBr(0)f radiated by f ∈ L2(Br(0)), and define1

∆κr,u∞ :=
1

κ

(
min

FBr(0)f=u∞

‖f‖L2(Br(0))

‖u∞‖L2(S1)

)
. (2.13)

1It is not difficult to check that ∆κr,u∞ depends only on the product κr (and on u∞).
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Then, for any N ∈ N such that N + 1 ≥ eκr/2 we have the inequality

∑
|n|>N |an|2
‖a‖2

ℓ2
≤ ∆2

κr,u∞

2π2(κr)2

N + 2

( eκr

2N + 2

)2N+2
. (2.14)

In particular the right hand side of (2.14) decays super-linearly as a function of N in this case.

Proof. We denote by

f∗(x) :=




2πκ2

∑

n∈Z

an
s2n(κr)

ineinϕxJn(κ|x|) , |x| < r ,

0 |x| ≥ r ,

the source of minimal L2 norm supported in Br(0) that radiates u∞. The estimate (2.8) implies for
all n ∈ N that

s2n(κr) = (2π)2κ2
∫ r

0
J2
n(κρ)ρ dρ ≤ (2π)2κ2

∫ r

0

(eκρ
2n

)2n
ρ dρ =

2π2(κr)2

n+ 1

(eκr
2n

)2n
, (2.15)

and applying Parseval’s theorem we obtain

∆κr,u∞ =
‖f∗‖L2(Br(0))

κ ‖u∞‖L2(S1)
=

1√
2π

‖f∗‖L2(Br(0))

κ ‖a‖ℓ2
.

Hence, we find for N + 1 ≥ eκr/2 that

N + 2

2π2(κr)2

(2N + 2)

eκr

)2N+2 ∑

|n|>N

|an|2 ≤
∑

n∈Z

|an|2
s2n(κr)

=
1

2πκ2
‖f∗‖2L2(Br(0))

= ∆2
κr,u∞ ‖a‖2ℓ2 . (2.16)

This shows (2.14).

We assume that ∆κr,u∞ ≤ 1/µ for some µ > 0, which can be considered as a regularization of
the radius estimation problem which excludes certain degenerate sources2. We can immediately use
Lemma 2.1 to evaluate lower bounds for the radius ρ from (2.12) by determining the largest value of
N such that the left hand side of (2.14) is smaller than some threshold. In particular, this suggests
estimating the radius ρ from (2.12) numerically by means of

ρ̃ := κ−1 min
{
N ∈ N

∣∣∣
∑

|n|≤N

|an|2
/
‖a‖2ℓ2 ≥ 1− η

}
, (2.17)

where η > 0 is a sufficiently small threshold parameter (see also [12], where this criterion has already
been used successfully in numerical examples).

Sources f that are supported in Br(z) with z 6= 0 can be shifted into Br(0) using the change of
variables f 7→ f̃ = f( · + z). Accordingly, (2.4) implies that the far field pattern ũ∞ radiated by f̃
satisfies

ũ∞(x̂) = (Mzu
∞)(x̂) , x̂ ∈ S1 , (2.18)

2In electro-magnetics, f represents a current distribution, and µ can be interpreted as the energy the source
radiates into the far field divided by the energy that must be supplied to construct the source.
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where, as before, u∞ = Ff and Mz : L
2(S1) → L2(S1) is given by

(Mzφ)(x̂) = eiκx̂·zφ(x̂), x̂ ∈ S1 . (2.19)

Therefore, combining (2.18)-(2.19) with (2.17) we can estimate the radius of the smallest ball around
an arbitrary point z ∈ R

2 that contains the convex scattering support of a far field pattern u∞.
For later reference, we note that writing z = rz(cosϕz , sinϕz) and substituting (2.6) into (2.18)

implies that the Fourier coefficients ã = (ãm)m∈Z of

ũ∞(x̂) =
∑

m∈Z

ãmeimt , x̂ ∈ S1 ,

are given by

ãm =
∑

n∈Z

in−mei(n−m)ϕzJn−m(κrz) an , m ∈ Z .

Accordingly, we define Tz : ℓ
2 → ℓ2,

(Tza)m = ãm =
∑

n∈Z

in−mei(n−m)ϕzJn−m(κrz) an . (2.20)

3 Weighted ℓ
1 estimates for the Fourier coefficients of u∞

Before we consider the far field splitting problem and its formulation as a weighted ℓ1 minimization
problem in Section 4 below, we first discuss a third characterization of far field patterns radiated from
a ball of radius r around the origin. This characterization is an ℓ1 version of the Picard criterion
(2.11), which will be used to determine the correct weights for the far field splitting scheme in
Section 4.

Assuming that s > 0 and 1 ≤ p ≤ ∞, we define

σp,n(s) := min
{
1,
( 2

p|n|+ 2

) 1
p
( es

2|n|
)|n|}

, n ∈ Z , (3.1)

and accordingly

ℓps :=
{
a = (an)n∈Z ∈ ℓ2

∣∣∣
( an
σp,n(s)

)
n∈Z

∈ ℓp
}
,

which shall be equipped with the norm

‖a‖ℓps :=
∥∥∥
( an
σp,n(s)

)
n∈Z

∥∥∥
ℓp
. (3.2)

Furthermore, we note that the representation (2.2) together with the far field expansion (2.3)–(2.4)
remains valid for compactly supported sources f ∈ L1

0(R
2), and accordingly the restricted far field

operators from (2.9) may be extended to bounded linear operators from L1(Ω) to L2(S1).

Theorem 3.1. Let 0 < r < ρ < ∞, and let u∞ ∈ L2(S1) with Fourier coefficients a = (an)n∈Z ∈ ℓ2.
(a) If u∞ is a far field pattern radiated by a compactly supported source3 f ∈ L1(Br(0)), then

its Fourier coefficients satisfy
a ∈ ℓ1κρ . (3.3)

3Throughout, we identify f ∈ L1(Br(0)) with its continuation to R
2 by zero whenever appropriate.
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(b) On the other hand, if a ∈ ℓ1κρ, then

f(x) =




2πκ2

∑

n∈Z

an
s2n(κρ)

ineinϕxJn(κ|x|) , |x| < ρ ,

0 |x| ≥ ρ ,

(3.4)

is well defined, f ∈ L1(Bρ(0)), and f radiates u∞.

The proof of Theorem 3.1 relies on the following three lemmas:

Lemma 3.2. Let 1 ≤ p, q ≤ ∞ such that 1
p + 1

q = 1, let 0 < r < ∞, and assume that u∞ ∈ L2(S1)
is a far field pattern radiated by a source f ∈ Lq(Br(0)). Then the Fourier coefficients (an)n∈Z of
u∞ satisfy

|an| ≤ (πr2)
1
pσp,n(κr)‖f‖Lq(Br(0)) , n ∈ Z . (3.5)

Proof. Recalling (2.7) and applying Hölder’s inequality we find that

|an| ≤
∫

Br(0)
|Jn(κ|y|)||f(y)| dy ≤ ‖Jn(κ| · |)‖Lp(Br(0))‖f‖Lq(Br(0)) .

Furthermore, the estimate (2.8) for Bessel functions yields

‖Jn(κ| · |)‖pLp(Br(0))
= 2π

∫ r

0
|Jn(κr)|pr dr

≤ 2π

∫ r

0
min

{
1,

(
eκr

2|n|

)|n|
}p

r dr

≤ 2πmin

{
r2

2
,

(
eκr

2|n|

)|n|p r2

p|n|+ 2

}
= πr2

(
σp,n(κr)

)p
.

Combining these estimates we obtain (3.5).

Lemma 3.3. Let 1 ≤ p, q ≤ ∞, and let 0 < r < ρ < ∞. Then the weights σp,n(κr) and σq,n(κρ),
n ∈ Z, from (3.1) satisfy

∑

n∈Z

σp,n(κr)

σq,n(κρ)
< ∞ .

Proof. Recalling the definition of the weights σp,n(κr) an σq,n(κρ) in (3.1) we can estimate

∑

|n|≥ eκρ
2

σp,n(κr)

σq,n(κρ)
= 2

1
p
− 1

q

∑

|n|≥ eκρ
2

(r
ρ

)|n| (q|n|+ 2)1/q

(p|n|+ 2)1/p
≤ C

∑

n∈Z

|n|
(r
ρ

)|n|
< ∞ .

Here and throughout, C denotes a generic positive constant which may be different at different
occurrences.

Lemma 3.4. Let 0 < r < ∞, and denote by sn(κr), n ∈ Z, the rescaled singular values of the
restricted far field operator FBr(0) from (2.10). Then there exists C > 0 independent of n such that

κrσ1,n(κr) ≤ Csn(κr) for all n ∈ Z . (3.6)

8



Proof. Combining (2.10) and the asymptotic behavior of the Bessel functions Jn for large order,

|Jn(κr)| =
1√
2π|n|

(
κer

2|n|

)|n|(
1 +O

( 1

|n|
))

for |n| → ∞

(cf., e.g., [7, p. 65]), we find that

s2n(κr) = (2πκ)2
∫ r

0

( eκρ
2|n|

)2|n| 1

2π|n|

(
1 +O

( 1

|n|
))

ρ dρ =
2π

|n|
( eκr
2|n|

)2|n| (κr)2

2|n|+ 2

(
1 +O

( 1

|n|
))

for |n| → ∞. Therefore,

(κrσ1,n(κr)
sn(κr)

)2
=

4

π

|n|(|n|+ 1)

(|n|+ 2)2

(
1 +O

( 1

|n|
))

for |n| → ∞ ,

i.e., the left hand side of this equation is uniformly bounded with respect to n ∈ Z. This shows (3.6).

Proof of Theorem 3.1. Suppose that u∞ ∈ L2(S1) is radiated by a source f ∈ L1(Br(0)). Then,
using Lemma 3.2 we see that its Fourier coefficients a = (an)n∈Z satisfy

∑

n∈Z

∣∣∣
an

σ1,n(κρ)

∣∣∣ =
∑

n∈Z

|an|
σ∞,n(κr)

σ∞,n(κr)

σ1,n(κρ)
≤ ‖f‖L1(Br(0))

∑

n∈Z

∣∣∣∣
σ∞,n(κr)

σ1,n(κρ)

∣∣∣∣ .

Applying Lemma 3.3 we thus obtain (3.3).
Conversely, let a ∈ ℓ1κρ and define f by (3.4). Using the Cauchy-Schwarz inequality, (2.10), and

Lemma 3.4 we find that

‖f‖L1(Bρ(0)) ≤ 2πκ2
∑

n∈Z

|an|
s2n(κρ)

∫

Bρ(0)
|Jn(κ|x|)| dx

≤ 2πκ2
∑

n∈Z

|an|
s2n(κρ)

|Bρ(0)|1/2
(∫

Bρ(0)
J2
n(κ|x|) dx

)1/2

=
√
2πκρ

∑

n∈Z

|an|
sn(κρ)

≤ C
∑

n∈Z

|an|
σ1,n(κρ)

< ∞ .

This shows that f ∈ L1(Bρ(0)). From the singular value decomposition of the restricted far field
operator FBρ(0) in (2.10) together with the boundedness of the continuous extension of FBρ(0) from
L1(Bρ(0)) to L2(S1), it is now obvious that f from (3.4) radiates the far field pattern with the
Fourier coefficients a.

4 Splitting far field patterns by weighted ℓ
1 minimization

Henceforth, we assume that the far field pattern u∞ in (2.4) is a superposition

u∞ = u∞1 + · · ·+ u∞m (4.1)
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of m far field patterns u∞1 , . . . , u∞m that are radiated by well separated compactly supported sources.
By this we mean that there exist disjoint balls Br1(z1), . . . , Brm(zm) with |zj − zl| ≫ rj + rl for
1 ≤ j, l ≤ m, j 6= l and sources fj ∈ L2(Brj (zj)), j = 1, . . . ,m, such that FBrj

(zj)fj = u∞j .

We seek to recover the individual far field components u∞1 , . . . , u∞m from (possibly noisy) obser-
vations of u∞, together with the a priori information that each of the convex scattering supports
C (u∞j ) lies inside the corresponding4 Brj (zj). We call this the far field splitting problem.

It follows immediately that the decomposition in (4.1) is uniquely determined, since for any two
bounded domains Ω1,Ω2 ⊂ R

2 such that R
2 \ Ω1 and R

2 \ Ω2 are connected and Ω1 ∩ Ω2 = ∅ the
intersection of the ranges of the corresponding restricted far field operators is trivial, i.e.,

R(FΩ1) ∩R(FΩ2) = {0}

(cf., e.g., [25, Lemma 6]). On the other hand, as a consequence of the one-to-one correspondance
between Herglotz wave functions and their kernels ([7, Thm. 3.15]), both FΩ1 and FΩ1 have dense
range, which indicates that the far field splitting problem is ill-posed without further assumptions.

In [12] we developed a Galerkin scheme to recover u∞1 , . . . , u∞m from the given data u∞ and
Br1(z1), . . . , Brm(zm). This algorithm evaluates approximations v∞j ∈ Vj ⊂ L2(S1) of u∞j , j =
1, . . . ,m, satisfying

〈v∞1 + · · ·+ v∞m , φ〉L2(S1) = 〈u∞, φ〉L2(S1) for all φ ∈ V1 ⊕ · · · ⊕ Vm , (4.2)

where the finite dimensional Galerkin subspaces Vj, j = 1, . . . ,m, are spanned by the left singular
vectors of the restricted far field operators FBrj

(zj) corresponding to the 2Nj + 1 largest singular

values (cf. (2.10)). We chose Nj = ⌈ακrj⌉ for some fixed α > 0 as cut-off parameter, which reflects
the superlinear decay of the Fourier coefficients of u∞j for |n| & κrj (cf. (2.14)). In other words,

Vj = {M∗
zjun | |n| ≤ Nj} , j = 1, . . . ,m ,

where Mzj is the multiplication operator from (2.19) and (un)n∈Z denotes the Fourier basis of
L2(S1). In [12] we provided an error analysis for this algorithm, and we showed that it is fairly well
conditioned, as long as the relative distances between the balls Br1(z1), . . . , Brm(zm), describing the
given a priori information on the approximate location and size of the unknown convex scattering
supports C (u∞1 ), . . . ,C (u∞m ), are large with respect to their radii.

A drawback of this scheme is the sensitivity of its approximations with respect to the accuracy
of the required a priori information. In numerical tests we observed that the method works very
well if the balls Br1(z1), . . . , Brm(zm) are well separated and relatively close to C (u∞1 ), . . . ,C (u∞m ),
respectively. However, if the radii r1, . . . , rm are chosen too large or if the points z1, . . . , zm are
too far away from the barycenters of the individual convex scattering supports, then the accuracy
of the approximations deteriorates, even if the C (u∞1 ), . . . ,C (u∞m ) are well separated and thus
the Galerkin scheme with more accurate a priori information would be well conditioned. In the
following we discuss a more robust approach to far field splitting that in particular can handle much
less accurate a priori information.

If the balls Br1(z1), . . . , Brm(zm) are well separated, then the dimensions of the Galerkin sub-
spaces V1, . . . , Vm are small relative to the number of Fourier modes needed to accurately represent

4The convex scattering support C (u∞
j ), j = 1, . . . ,m, is a subset of any convex set and thus in particular of any

ball that carries u∞
j .
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the whole far field pattern u∞ (a rough estimate for the latter is given by κmaxj=1,...,m(|zj |+ rj)).
Therefore the decomposition of u∞ obtained in (4.2) can be considered as a sparse approximation
of the far field pattern u∞ in the overcomplete dictionary

D = {M∗
z1un | n ∈ Z} ∪ · · · ∪ {M∗

zmun | n ∈ Z} . (4.3)

Basis pursuit (see, e.g., [6]) is a method for finding such a sparse decomposition without choosing
the relevant dictionary elements in advance. Applied to the far field splitting problem with the
dictionary from (4.3), basis pursuit means solving the constrained optimization problem

minimize

m∑

j=1

‖bj‖ℓ1 subject to

m∑

j=1

T ∗
zjbj = a , (4.4)

where as before a = (an)n∈Z denotes the Fourier coefficients of u∞, and Tzj , j = 1, . . . ,m, are the
convolution operators from (2.20). However, a generic solution b = [b1, . . . , bm] ∈ ℓ2 × · · · × ℓ2 of
(4.4) need not represent a valid far field split, since one or more of the far fields given by the Fourier
series

v∞j (x̂) =
∑

n∈Z

T ∗
zjbj e

int , x̂ = (cos(t), sin(t)) ∈ S1 ,

may not be in the range of the corresponding restricted far field operator FBrj
(zj), 1 ≤ j ≤ m,

respectively. In fact, it might not even be a far field pattern radiated by any compactly supported
source. Hence we modify (4.4), and replace the ℓ1 norms by weighted ℓ1 norms with weight functions
chosen as in (3.2). We will show that this is sufficient to obtain a constrained optimization problem
that is genuinely equivalent to the original far field splitting problem.

Given u∞ and Br1(z1), . . . , Brm(zm) as above, we choose ρj > rj, 1 ≤ j ≤ m, such that

Bρj (zj) ∩Bρl(zl) = ∅ for 1 ≤ j, l ≤ m, j 6= l and consider the constrained optimization problem

minimize
m∑

j=1

‖bj‖ℓ1κρj subject to
m∑

j=1

T ∗
zjbj = a . (4.5)

The following proposition shows that (4.5) has a unique solution, which yields a valid far field split.

Proposition 4.1. Suppose that u∞ is a superposition of m far field patterns u∞1 , . . . , u∞m that are
radiated from well separated balls Br1(z1), . . . , Brm(zm), and denote by a = (an)n∈Z the Fourier
coefficients of u∞. Then the constrained minimization problem (4.5) with ρj > rj, j = 1, . . . ,m,

such that Bρj(zj) ∩ Bρl(zl) = ∅ for 1 ≤ j, l ≤ m, j 6= l has a unique solution b
† = [b†1, . . . , b

†
m] ∈

ℓ1κρ1 × · · · × ℓ1κρm, and this solution satisfies

u∞j (x̂) =
∑

n∈Z

T ∗
zjb

†
j e

int , x̂ = (cos(t), sin(t)) ∈ S1 , j = 1, . . . ,m .

Proof. Let 1 ≤ j ≤ m, and let aj be the sequence of Fourier coefficients of u∞j . Since u∞j is radiated
from Brj(zj) it follows by translation that Mzju

∞
j is radiated from Brj(0), and thus the first part

of Theorem 3.1 shows that the Fourier coefficients bj = Tzjaj of Mzju
∞
j satisfy bj ∈ ℓ1κρj . Hence

there exists at least one admissible b = [b1, . . . , bm] ∈ ℓ1κρ1 × · · · × ℓ1κρm that satisfies the constraint
of (4.5).
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On the other hand, the second part of Theorem 3.1 implies that for any admissible b =
[b1, . . . , bm] ∈ ℓ1κρ1 × · · · × ℓ1κρm satisfying the constraint of (4.5) the sequences T ∗

z1b1, . . . , T
∗
zmbm

are the Fourier coefficients of a solution to the far field splitting problem with Br1(z1), . . . , Brm(zm)
replaced by Bρ1(z1), . . . , Bρm(zm). Since these are unique, we find that (4.5) has a unique solu-
tion.

Alternatively, if only perturbed observations u∞,δ of the true far field data u∞ are available,
and these observations satisfy

‖u∞ − u∞,δ‖L2(S1) ≤ δ and ‖u∞,δ‖L2(S1) > δ (4.6)

for some δ > 0, then the Fourier coefficients aδ = (aδj)j∈Z of u∞,δ satisfy ‖a − aδ‖ℓ2 ≤ δ/
√
2π and

‖aδ‖ℓ2 > δ/
√
2π. Accordingly, we modify (4.5) and consider the constrained optimization problem

minimize

m∑

j=1

‖bj‖ℓ1κρj subject to
∥∥∥aδ −

m∑

j=1

T ∗
zjbj

∥∥∥
ℓ2

≤ δ/
√
2π . (4.7)

It is well known that (4.7) is equivalent to minimizing the Tikhonov functional5

Ψα,ρ(b) =
∥∥∥aδ −

m∑

j=1

T ∗
zjbj

∥∥∥
2

ℓ2
+ α

m∑

j=1

‖bj‖ℓ1κρj , b = [b1, . . . , bm] ∈ ℓ2 × · · · × ℓ2 , (4.8)

for a suitably chosen regularization parameter α > 0 (see, e.g., [11, Prop. 2.2]).
Before we discuss the existence and uniqueness of minimizers of Ψα,ρ, we introduce as a short

hand notation the operator K : ℓ2 × · · · × ℓ2 → ℓ2,

Kb =
m∑

j=1

T ∗
zjbj , (4.9)

and note that its adjoint K∗ : ℓ2 → ℓ2 × · · · × ℓ2 is given by

K∗c = [Tz1c, . . . , Tzmc] .

Since the convolution operators T ∗
zj , j = 1, . . . ,m, from (2.20) are ℓ2 isometries, the operator norm

of K is bounded by6 ‖K‖ ≤ √
m, and therefore ‖K∗K‖ℓ2×···×ℓ2 ≤ m. Choosing 0 < ω < 1/m such

that ‖ωK∗K‖ < 1, it follows immediately from [8, Prop. 2.1] that any minimizer b
∗ = [b∗1, . . . , b

∗
1]

of the Tikhonov functional Ψα,ρ from (4.8) satisfies the fixed point equation

b
∗ = Sωα,ρ(b

∗ + ωK∗(a−Kb
∗)) , (4.10)

where the non-linear thresholding function Sωα,ρ is defined componentwise by

Sωα,ρb = [Sωα,ρ1b1, . . . , Sωα,ρmbm] , b = [b1, . . . , bm] ∈ ℓ2 × · · · × ℓ2 ,

5In (4.8) the index ρ stands for [ρ1, . . . , ρm].
6We consider the norm ‖(a1, . . . , am)‖ℓ2×···×ℓ2 =

(
∑m

j=1 ‖aj‖
2
ℓ2

) 1
2 on ℓ2 × · · · × ℓ2.
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with

(Sωα,ρjbj)n =





(
|bj,n| −

ωα

2σ1,n(κρj)

)
ei arg(bj,n) if |bj,n| ≥ ωα

2σ1,n(κρj)
,

0 if |bj,n| < ωα
2σ1,n(κρj)

,
n ∈ Z ,

for j = 1, . . . ,m. (cf. [8, Remark 2.5]). In particular, minimizers of Ψα,ρ have only finitely many
nonzero coefficients, and therefore two minimizers of Ψα,ρ have to coincide except for possibly
finitely many coefficients.

Although the operator K of (4.9) is clearly not injective, we show in the next lemma that its
restriction to any finite dimensional subspace has trivial null space. This property is often called
finite basis injectivity (see, e.g., [2]), and together with what we have seen so far, it guarantees
uniqueness for the minimizer of Ψα,ρ.

Lemma 4.1. Let z1, . . . , zm be distinct points in R
2. Then the restriction of the operator K from

(4.9) to any finite dimensional subspace of ℓ2 × · · · × ℓ2 is injective.

Proof. Let b1, . . . , bm ∈ ℓ2 such that each bj, j = 1, . . . ,m, has only finitely many non-zero coeffi-
cients and suppose that

T ∗
z1b1 + · · ·+ T ∗

zmbm = 0 . (4.11)

Then, with s2n(κr), n ∈ Z, denoting the rescaled singular values of the restricted far field operator
FBr(0) from (2.10), the sources

fj(x) =





2πκ2
∑

n∈Z

bj,n
s2n(κr)

ineinϕx−zjJn(κ|x− zj |) , |x− zj | < r ,

0 , |x− zj | ≥ r ,

j = 1, . . . ,m ,

are well defined and have disjoint supports for some sufficiently small value of r > 0. Moreover, it
follows immediately from (2.10) that fj, j = 1, · · · ,m, radiates the far field pattern

v∞j (x̂) =
∑

m∈Z

(T ∗
zjbj)meimt , x̂ = (cos t, sin t) ∈ S1 ,

respectively. Since (4.11) implies that v∞1 +· · ·+v∞m = 0, the fact that two disjoint bounded domains
with connected complement cannot carry the same far field implies that b1 = · · · = bm = 0.

Corollary 4.2. Suppose that u∞ is a superposition of m far field patterns u∞1 , . . . , u∞m that are
radiated from well separated balls Br1(z1), . . . , Brm(zm), and denote by a = (an)n∈Z the Fourier
coefficients of u∞. Then for any α > 0 the unconstrained minimization problem

minimize Ψα,ρ(b) =
∥∥∥aδ −

m∑

j=1

T ∗
zjbj

∥∥∥
2

ℓ2
+ α

m∑

j=1

‖bj‖ℓ1κρj over b ∈ ℓ2 × · · · × ℓ2 , (4.12)

with ρj > rj, j = 1, . . . ,m, such that Bρj (zj) ∩ Bρl(zl) = ∅ for 1 ≤ j, l ≤ m, j 6= l, has a unique
solution b

∗
α,ρ ∈ ℓ1κρ1 × · · · × ℓ1κρm satisfying (4.10) for any 0 < ω < 1/m.
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Figure 4.1: Left: Geometry of the scatterers (solid lines), convex scattering supports of u∞
1 , u∞

2 , and u∞
3

(dashed lines), and a priori guess for the source locations (dashed circles). Right: Same as left but with
convex scattering supports of v∞1 , v∞2 , and v∞3 from Example 4.3 (dashed lines)

Although b
∗
α,ρ does of course not solve (4.5) exactly, the corresponding Fourier series

v∞j (x̂) =
∑

n∈Z

T ∗
zjbj e

int , x̂ = (cos(t), sin(t)) ∈ S1 , j = 1, . . . ,m ,

are at least in the range of FBrj
(zj), respectively. Moreover, it can be shown that (4.12) together

with an appropriate parameter choice rule α = α(δ, u∞,δ) constitutes a convergent regularization
method (see, e.g., [8, 10, 11]), i.e.,

lim
δ→0

(
sup

‖u∞−u∞,δ‖L2(S1)≤δ

∥∥b∗α(δ,u∞,δ),ρ − b
†
∥∥
ℓ2

)
= 0 .

In our numerical computations we solve (4.12) for fixed α > 0, by applying the iterative soft
thresholding algorithm from [8]. Choosing 0 < ω < 1/m and an initial guess b

(0) ∈ ℓ2 × · · · × ℓ2

(e.g., b(0) = (0, . . . , 0)), the corresponding sequence of iterates is given by

b
(k+1) = Sωα,ρ(b

(k) + ωK∗(aδ −Kb
(k))) , k = 0, 1, . . . . (4.13)

If follows from [8, Thm. 3.1] that (b(k))k∈N converges strongly to the unique minimizer b
∗
α,ρ of Ψα,ρ,

regardless of the choice of b(0).

Example 4.3. To illustrate this weighted ℓ1 far field splitting algorithm, we consider a scattering
problem with three obstacles (an ellipse, a nut, and a kite) as shown in Figure 4.1 The three
obstacles are illuminated by an incoming plane wave ui(x) = eiκx·d, x ∈ R

2, with incident direction
d = (1, 0) and wave number κ = 5. Assuming that the ellipse is sound soft whereas the kite and the
nut are sound hard, the scattered field us satisfies the homogeneous Helmholtz equation outside the
obstacles together with the Sommerfeld radiation condition at infinity and Neumann (for the ellipse)
or Dirichlet boundary conditions (for the kite and the nut) on the boundaries of the obstacles. We
note that the same example has been used in [12, Sect. 7] to test the Galerkin scheme for the far
field splitting problem and hence, the results can easily be compared.
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Figure 4.2: Scatter plots of the absolute values of the Fourier coefficients of v∞j vs. u∞
j for j = 1, 2, 3

(ω = 1/4, α = 10−2, 104 iterations).

It is well known that the far field pattern u∞ of us can be written as a superposition of three far
field patterns u∞1 , u∞2 , u∞3 radiated by three individual smooth sources supported in arbitrarily small
neighborhoods of the three scatterers, respectively (cf., e.g., [21, Lemma 3.6]). In our computations
the exact far field pattern u∞ has been simulated on an equidistant grid with 512 points on the
unit circle using the Nyström method as described in [7, 19]. As a byproduct this implementation
also provides access to the exact far field components u∞j , j = 1, 2, 3. Using lighter dashed lines we
include in Figure 4.1 (left) the boundaries of the convex scattering supports C (u∞j ), j = 1, 2, 3, of
these exact far field components, which have been evaluated numerically using the implementation
of the convex scattering support described in [12, Sect. 7].

We apply the iterative soft thresholding procedure (4.13) to compute approximations v∞j of

u∞j , j = 1, 2, 3. To this end we use b
(0) = (0, . . . , 0) as initial guess, and we choose ω = 1/4 and

α = 10−2 for the regularization parameter. We use the dashed circles shown in Figure 4.1 as a
priori information on the approximate source locations Brj (zj), j = 1, 2, 3, and we choose ρj = rj ,
j = 1, 2, 3, in the Tikhonov functional Ψα,ρ from (4.8). More precisely, z1 = (20, 0), z2 = (−25, 20),
z3 = (−10,−22), and r1 = r2 = r3 = 15. This a priori information is considerably less accurate than
the a priori guess used in [12, Sect. 7]. Our stability analysis from [12] indicates that the Galerkin
scheme from [12] is severely ill-conditioned for these less accurate a priori data, and numerical tests
confirm that the Galerkin algorithm does not give useful reconstructions. In fact, the condition
number of the corresponding linear system is 6.1× 1015.

The absolute values of the approximations of the Fourier coefficients of v∞j obtained by the

iterative soft thresholding algorithm after 104 iterations are plotted against the absolute values of
the Fourier coefficients of the exact far field components u∞j for j = 1, 2, 3 in Figure 4.2. While
the reconstructions of the largest Fourier coefficients of the individual far field components is rel-
atively decent, the smaller Fourier coefficients are still not recovered well. Accordingly the convex
scattering supports C (v∞j ), j = 1, 2, 3, of these approximate far field components shown in Fig-
ure 4.1 (right) do not yield satisfactory reconstructions of the locations and shapes of the unknown
scatterers. However, the results are much better than the corresponding results obtained with the
Galerkin scheme from [12], where almost all reconstructed Fourier coefficients of the corresponding
approximation v∞j in the index range −eκrj/2 ≤ n ≤ eκrj/2 are of order one. This is the expected

behavior for an ℓ2 based reconstruction scheme, and it illustrates the advantage of the sparsity
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promoting weighted ℓ1 approach.
Finally, we note that, due to the notoriously slow convergence of the iterative soft thresholding

algorithm, further iterations do not change the results significantly. ♦

We observed in Example 4.3 that the numerical results obtained by solving the minimization
problem (4.12) given inaccurate a priori information on the approximate source locations are better
than the corresponding results for the Galerkin scheme from [12] with the same a priori information,
but still may not be satisfactory. Therefore, in the following sections we combine the minimization
problem (4.12) with an iterative reweighting strategy that aims to gradually improve the quality of
the available a priori information by solving a sequence of weighted ℓ1 minimization problems, and
incorporating information on the source locations obtained from the value of the current solution
in the next iteration. To this end we need an algorithm to estimate the centers and the radii of
balls Brj (zj) containing the convex scattering supports C (v∞j ) of the current approximations v∞j ,
j = 1, . . . ,m. This is the subject of the next section.

5 The narrow box principle

In Section 2 we observed that the Fourier coefficients a = (an)n∈Z of the far field pattern u∞ radiated
by a not too exotic source f ∈ L2

0(Br(z)) are essentially supported in the index range |n| . κ(r+|z|).
Clearly, moving the origin closer to the source by shifting z into the origin as in (2.18)-(2.20), makes
this index range smaller. Accordingly, the magnitudes of the Fourier coefficients ãn = (Tza)n,
|n| . κr, should on average exceed the magnitudes of the Fourier coefficients an, |n| . κ(r + |z|),
since the corresponding transformation Tz from (2.20) is ℓ2 unitary.

In the following we formalize this narrow box principle and discuss some simple consequences.

Theorem 5.1. Let u∞ be the far field pattern radiated by a compactly supported source f ∈
L2(Br(z)) with z ∈ R

2 and r > 0, denote by a = (an)n∈Z the Fourier coefficients of u∞, and
let ∆κr,u∞ be as defined in (2.13). Then the following hold:

(a) Suppose 1 ≤ q ≤ 2. The inequality

1 ≤ ‖Tza‖ℓq
‖Tza‖ℓ2

≤ (2N + 1)
1
q
− 1

2

(
1 + 2

1
q (2π2κr)

1
2

(eκr
2N

)N
∆κr,u∞

)
(5.1)

is valid for all N ∈ N satisfying N ≥ eκr/2.
(b) Suppose 2 ≤ q ≤ ∞. The inequality

1 ≤ ‖Tza‖ℓ2
‖Tza‖ℓq

≤ (2N + 1)
1
2
− 1

q

(
1− (2π2κr)

1
2

(eκr
2N

)N
∆κr,u∞

)−1

(5.2)

is valid for all N ∈ N satisfying N ≥ eκr/2.

Proof. As before, we denote by ã := (ãn)n∈Z = Tza the Fourier coefficients of the shifted far field
pattern Mzu

∞.
We first consider the case 1 ≤ q ≤ 2, and note that

‖ã‖ℓq ≤
( ∑

|n|≤N

|ãn|q
) 1

q
+
( ∑

|n|>N

|ãn|q
) 1

q
. (5.3)
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Hölder’s inequality implies that the first term on the right hand side of (5.3) can be estimated by

∑

|n|≤N

|ãn|q ≤ (2N + 1)1−
q
2

( ∑

|n|≤N

|ãn|2
) q

2 ≤ (2N + 1)1−
q
2 ‖ã‖q

ℓ2
. (5.4)

Combining Hölder’s inequality with (2.16) and (2.15) gives an estimate for the second term on the
right hand side of (5.3), i.e.

∑

|n|>N

|ãn|q =
∞∑

k=0

N2k+1∑

|n|=N2k+1

|ãn|q ≤
∞∑

k=0

(2N2k)1−
q
2

( N2k+1∑

|n|=N2k+1

|ãn|2
) q

2

≤
∞∑

k=0

(2N2k)1−
q
2∆q

κr,u∞sq
N2k+1

(κr)‖ã‖q
ℓ2

≤ (2N)1−
q
2∆q

κr,u∞ ‖ã‖q
ℓ2

∞∑

k=0

2k(1−
q
2
)
(2π2(κr)2

N2k + 2

( eκr

2(N2k + 1)

)2(N2k+1)) q
2
.

Assuming that N ≥ eκr/2, we can further estimate

∑

|n|>N

|ãn|q

≤
(
(2N)

1
q
− 1

2∆κr,u∞

(2π2(κr)2

N

) 1
2
(eκr
2N

)N
‖ã‖ℓ2

)q ∞∑

k=0

2k(1−(2+N2k)q)
(eκr
2N

)(N(2k−1)+1)q

≤
(
(2N)

1
q
− 1

2∆κr,u∞ (2π2κr)
1
2

(eκr
2N

)N
‖ã‖ℓ2

)q ∞∑

k=0

2−k

≤
(
2

1
q (2N + 1)

1
q
− 1

2∆κr,u∞ (2π2κr)
1
2

(eκr
2N

)N
‖ã‖ℓ2

)q

.

(5.5)

Combining (5.3)–(5.5) yields the upper bound in (5.1). To obtain the lower bound, we note that
Parseval’s theorem, Hölder’s inequality, and the Hausdorff-Young inequality imply that

‖ã‖ℓ2 = (2π)−
1
2‖Mzu

∞‖L2(S1) ≤ (2π)−
1
p ‖Mzu

∞‖Lp(S1) ≤ ‖ã‖ℓq . (5.6)

In order to prove the second statement we proceed similarly. Assuming 2 ≤ q ≤ ∞, we note
that

‖ã‖ℓ2 ≤
( ∑

|n|≤N

|ãn|2
) 1

2
+
( ∑

|n|>N

|ãn|2
) 1

2
, (5.7)

and use Hölder’s inequality to estimate the first term on the right hand side of (5.7), obtaining

∑

|n|≤N

|ãn|2 ≤ (2N + 1)
1− 2

q ‖ã‖2ℓq . (5.8)

The second term on the right hand side of (5.7) can be estimated with the aid of (2.16) and (2.15),

∑

|n|>N

|ãn|2 ≤ s2N+1(κr)∆
2
κr,u∞‖ã‖2ℓ2 ≤ 2π2(κr)2

N + 2

( eκr

2N + 2

)2N+2
∆2

κr,u∞‖ã‖2ℓ2 .
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For N ≥ eκr/2, this implies that

∑

|n|>N

|ãn|2 ≤
(
(2π2κr)

1
2

(eκr
2N

)N
∆κr,u∞‖ã‖ℓ2

)2
. (5.9)

Combining (5.7)–(5.9) yields the upper bound in (5.2). The lower bound then follows by applying
the Hausdorff-Young inequality, Hölder’s inequality, and Parseval’s theorem,

‖Tza‖ℓq ≤ (2π)−
1
p ‖Mzu

∞‖Lp(S1) ≤ (2π)−
1
2 ‖Mzu

∞‖L2(S1) ≤ ‖Tza‖ℓ2 . (5.10)

This ends the proof of the theorem.

To illustrate the estimates (5.1) and (5.2) from Theorem 5.1, we consider the special case of a
far field pattern radiated by a single point source. Although point sources are not square integrable,
similar estimates can be obtained by slightly modifying the arguments of the proof of Theorem 5.1.

Example 5.2. The far field pattern u∞ radiated by a point source f = δz at z = rz(cos φz, sinφz) ∈
R
2 is given by

u∞(x̂) = e−iκx̂·z =
∑

n∈Z

ane
−int , x̂ = (cos t, sin t) ∈ S1 ,

with Fourier coefficients
an = an(z) = (−i)ne−inφzJn(κrz)

(cf. (2.6)). Accordingly, the sequence a(z) = (an(z))n∈Z satisfies

‖a(z)‖ℓq =

{∑
n∈Z |Jn(κrz)|q , 1 ≤ q < ∞ ,

supn∈Z |Jn(κrz)| , q = ∞ .

The estimates (5.4) and (5.8) for the lower order Fourier coefficients an, |n| ≤ N , as well as the
lower bounds (5.6) and (5.10), carry over to the setting considered in this example without changes.
On the other hand, assuming N ≥ ⌈eκrz − 1⌉, the estimate (2.8) implies that

∑

|n|>N

|an|q =
∑

|n|>N

|Jn(κrz)|q ≤
∑

|n|>N

2−q|n| = 2
2−q(N+1)

1− 2−q
, 1 ≤ q ≤ 2 .

Recalling that ‖a‖ℓ2 = ‖(Jn(r))n∈Z‖ℓ2 = 1 (see, e.g., [1, 9.1.76]) and choosing N = ⌈eκr − 1⌉, we
obtain that

1 ≤ ‖a(z)‖ℓq ≤ (2⌈eκrz⌉ − 1)
1
q
− 1

2 +
2

1
q 2−⌈eκrz⌉

(1− 2−q)
1
q

, 1 ≤ q ≤ 2 , (5.11)

1 ≤ 1

‖a(z)‖ℓq
≤ (2⌈eκrz⌉ − 1)

1
2
− 1

q +
2

1
2 2−⌈eκrz⌉

(1− 2−2)
1
2

1

‖a(z)‖ℓq
, 2 ≤ q ≤ ∞ . (5.12)

These estimates should be compared to (5.1) and (5.2).
In Figure 5.1 we plot ‖a(z)‖ℓ1 = ‖(Jn(κrz))n∈N‖ℓ1 (left) and 1/‖a(z)‖ℓ4 = 1/‖(Jn(κrz))n∈N‖ℓ4

(right) as a function of rz ∈ [0, 10] for κ = 5 (solid line). Note that these functions have a two-scale
behavior: They are monotonically increasing on a macroscopic scale, but also contain high frequency
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Figure 5.1: Left: ‖(Jn(κrz))n∈N‖ℓ1 (solid) and the bounds of (5.11) (dashed) versus rz for κ = 5. Right:
1/‖(Jn(κrz))n∈N‖ℓ4 (solid) and the bounds of (5.12) (dashed) versus rz for κ = 5.

oscillations with small amplitude on the micro scale. The dashed lines in these plots correspond to
the lower and upper bounds from (5.11) (left) and (5.12) (right). The first term on the right hand
side of these estimates is included as lighter solid curve in Figure 5.1. Although the bounds are
clearly not sharp, they give at least the right qualitative behavior. The second term in the upper
bounds in (5.11) and (5.12) diminishes quickly away from the origin. ♦

The estimates (5.1) and (5.2) immediately suggest a numerical procedure for approximating the
center z and the radius rz of the smallest ball Brz(z) containing the convex scattering support C (u∞)
of the far field pattern u∞ radiated by a single localized source f : First use (2.17) to determine an
approximation ρ̃0 of the radius of the smallest circle around the origin enclosing C (u∞). This gives
a preliminary rough estimate of a region of interest containing C (u∞). Then, again denoting the
Fourier coefficients of u∞ by a = (an)n∈Z, evaluate

z̃ = argminy∈Bρ̃0
(0) ‖Tya‖ℓq for some 1 ≤ q < 2 (5.13a)

or

z̃ = argmaxy∈Bρ̃0
(0) ‖Tya‖ℓq for some 2 < q ≤ ∞ . (5.13b)

According to (5.1) and (5.2), this point z̃ should be close to C (u∞). Finally, apply (2.17) to Tz̃a
to determine an approximation ρ̃z̃ of the radius of the smallest ball around z̃ that contains C (u∞).
The ball Bρ̃z̃(z̃) constitutes a new approximation of Brz(z).

Example 5.3. To illustrate this algorithm we again consider the scattering problem with three
obstacles illuminated by a single plane wave incident field from the left that has been introduced
in Example 4.3. For j = 1, 2, 3 we denote the Fourier coefficients of the exact far field component

u∞j by a(j) = (a
(j)
n )n∈Z, and show in Figure 5.2 gray scale images of ‖Tya

(j)‖ℓ1 (left) and ‖Tya
(j)‖ℓ4

(right) locally around the corresponding scatterers. More precisely, these figures contain plots of
‖Tya

(j)‖ℓ1 and ‖Tya
(j)‖ℓ4 for y ∈ Brj (zj), j = 1, 2, 3, where the balls Brj(zj) coincide with the priori

information on the approximate source location used in Example 4.3. These visualizations confirm
that the position of the minimum of ‖Tya

(j)‖ℓ1 and of the maximum of ‖Tya
(j)‖ℓ4 is quite close to

the position of jth scatterer for each j = 1, 2, 3.
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Figure 5.2: Left: ‖Tya
(j)‖ℓ1 , j = 1, 2, 3 (gray scale), approximation of the source location Bρ̃z̃

(z̃) (dashed),
and geometry of the scatterers (solid). Right: ‖Tya

(j)‖ℓ4 , j = 1, 2, 3 (gray scale), approximation of the source
location Bρ̃z̃

(z̃) (dashed), and geometry of the scatterers (solid).

As in (5.13), we denote the positions of these minima or maxima by z̃j , j = 1, 2, 3, and apply
(2.17) with threshold parameter η = 10−4 to the transformed Fourier coefficients Tz̃ja

(j) to approxi-
mate the radius of the smallest ball around z̃j containing C (u∞j ). The corresponding circles Bρ̃z̃(z̃),
j = 1, 2, 3, are shown in Figure 5.2 (dashed lines) together with the geometry of the true scatterers
(solid lines). It can be seen that this procedure significantly improves the quality of the a priori
information on the approximate source locations from Example 4.3. The results are slightly better
for the ℓ1 norm than for the ℓ4 norm. We note that the picture on the right does not change much,
if we replace the ℓ4 norm by the ℓ∞ norm. ♦

6 Iteratively reweighted ℓ
1 far field splitting

Having shown how to estimate the center and the radius of the smallest ball containing the convex
scattering support of a given far field pattern radiated by a single localized source numerically, we
now combine this procedure with the weighted ℓ1 minimization algorithm for the far field splitting
problem from Section 4. The aim is to successively improve the given a priori information on the
approximate source locations that determines the weights used in the minimization problem (4.12)
by solving a sequence of these weighted ℓ1 minimization problems, where the a priori information
used for the next iteration is computed from the value of the current solution. Improving the a
priori information on the approximate source locations also enhances the stability of the splitting
algorithm and thus, it improves the quality of the reconstructions.

In Algorithm 6.1 we describe this reweighting strategy in more detail. In our numerical compu-
tations we solve the constrained minimization problem in step 5 as before by applying the iterated
soft shrinkage procedure from (4.13) to approximate a minimizer of the corresponding Tikhonov
functional from (4.12). In step 6 of the algorithm we use the criterion (5.13) with q = 1 to update
the a priori information zj , j = 1, . . . ,m, on the approximate source locations, since this ℓ1 criterion
usually gave the best results in our numerical tests. When updating rj , j = 1, . . . ,m, we prevent
increasing radii by comparing the new estimate with the radius used in the previous step of the
iteration. We note that there is no guarantee that none of these balls Brj(zj) is too small, i.e.,
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Algorithm 6.1 Far field splitting by iteratively reweighted ℓ1 minimization

Suppose noisy observations u∞,δ of u∞ = u∞
1 + · · · + u∞

m where u∞
1 , . . . , u∞

m are radiated from
Br1(z1), . . . , Brm(zm), respectively, satisfying (4.6) are given.

1: function [v∞1 , . . . , v∞m ] =Splitting (u∞,δ, δ, κ, z1, . . . , zm, r1, . . . , rm)
2: Compute the Fourier coefficients of u∞,δ and store the result in aδ.

3: Set z
(0)
j = zj and r

(0)
j = rj for j = 1, . . . ,m.

4: for l = 0, 1, 2, . . . do

5: Compute

b
(l) = argmin

( m∑

j=1

‖b(l)j ‖ℓ1
κr

(l)
j

)
subject to

∥∥∥aδ −
m∑

j=1

T ∗

z
(l)
j

bj

∥∥∥
ℓ2

≤ δ/
√
2π .

6: Update a priori information: For j = 1, . . . ,m compute

z
(l+1)
j = z

(l)
j + argminy∈B

r
(l)
j

(0) ‖Tyb
(l)
j ‖ℓ1 .

Choose a threshold parameter 0 < η < 1, evaluate for j = 1, . . . ,m the expression

ρ̃j := κ−1 min
{
N ∈ N

∣∣∣
∑

|n|≤N

|b(l)j,n|2
/
‖bj‖2ℓ2 ≥ 1− η

}

from (2.17), and set

r
(l+1)
j = min{r(l)j , ρ̃j} .

7: Terminate on convergence or when l attains a specific max. number of iterates lmax.
8: end for

9: The entries of T ∗

z
(l)
1

b
(l)
1 , . . . , T ∗

z
(l)
m

b
(l)
m are the Fourier coefficients of the far field components

v∞1 , . . . , v∞l , respectively.
10: end function

smaller than the corresponding convex scattering support C (u∞j ) after this update, but using an
appropriate threshold parameter η in (2.17) we did not observe such a behavior in our numerical
tests.

Typically a small number of iterations in the overall procedure is sufficient to obtain a very good
estimates for the balls Br1(z1), . . . , Brm(zm) containing the individual source components, and thus
to enhance the reconstructions of the ℓ1 far field splitting procedure significantly. However, since
even with very good a priori information the iterative soft shrinkage still converges rather slowly,
we propose to apply the Galerkin scheme from [12] as a final post processing step using the accurate
a priori information obtained in the last step of the iteration in Algorithm 6.1. This then typically
yields highly accurate results.

Example 6.1. We return to the scattering problem with three obstacles from Example 4.3, and
apply Algorithm 6.1 to compute approximations v∞j of the individual far field components u∞j ,
j = 1, 2, 3. We start with the same a priori information as used in Example 4.3 (cf. Figure 4.1),
and solve the constrained optimization problems in step 5 of Algorithm 6.1 using the iterated soft
thresholding procedure from (4.13) with initial guess b

(0) = (0, . . . , 0), ω = 1/4, and regularization
parameter α = 10−3. We stop each iterative thresholding procedure after 103 iterations. Then
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Iteration counter Centers Radii

l z
(l)
1 z

(l)
2 z

(l)
3 r

(l)
1 r

(l)
2 r

(l)
3

0 (20.0,−0.0) (−25.0, 20.0) (−10.0,−22.0) 15.0 15.0 15.0

1 (22.0,−5.0) (−23.3, 22.6) (−14.4,−20.0) 13.6 10.6 15.0

2 (22.9,−4.9) (−22.2, 22.3) (−14.5,−19.9) 5.4 6.0 4.6

3 (24.2,−4.2) (−21.2, 23.4) (−14.6,−20.0) 5.0 5.4 4.4

4 (24.2,−4.2) (−21.3, 23.4) (−14.6,−20.0) 4.6 5.2 4.0

5 (24.2,−4.2) (−21.2, 23.4) (−14.7,−20.0) 4.4 5.2 3.8

10 (24.2,−4.2) (−21.3, 23.4) (−14.6,−20.0) 4.0 5.2 3.8

20 (24.2,−4.2) (−21.2, 23.4) (−14.7,−20.0) 4.0 5.2 3.8

Table 1: Convergence history of updates of the a priori information on the approximate source locations.
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Figure 6.1: Left: Convergence history of the updated a priori information on the source locations (dashed
circles) and geometry of the scatterers (solid lines). Right: Convex scattering supports of v∞1 , v∞2 , and v∞3
(dashed lines) and geometry of the scatterers (solid lines).

we update the estimates for the centers and radii of the disks containing the individual source
components as outlined in step 6 of Algorithm 6.1, using the thresholding parameter η = 10−4.

The convergence history of the successively improved a priori information is shown in Table 1.
We observe that the quality of the updated a priori information improves rather quickly. After
10 iterations the estimates for the centers and radii become stationary for this example. The

corresponding disks B
r
(l)
j

(z
(l)
j ), l = 0, . . . , 5, are also shown as dashed circles in Figure 6.1 (left). We

note that already a very small number of iterations in the overall procedure is sufficient to improve
the given a priori information in this example substantially.

The absolute values of the approximations of the Fourier coefficients of v∞j obtained by Algo-

rithm 6.1 after 5 iterations with 103 iterated soft thresholding steps each, are plotted against the
absolute values of the Fourier coefficients of the exact far field components u∞j for j = 1, 2, 3 in
Figure 6.2. The reconstructions of the largest Fourier coefficients of the individual far field compo-
nents are significantly better than the corresponding results without reweighting from Example 4.3.
Using this approximate far field split we compute the convex scattering supports C (v∞j ), j = 1, 2, 3,
of the individual far field components shown in Figure 6.1 (right). Comparing these reconstructions
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Figure 6.2: Scatter plots of the absolute values of the Fourier coefficients of v∞j vs. u∞
j for j = 1, 2, 3

(ω = 1/4, α = 10−2, η = 10−4, after 5 iterations in Algorithm 6.1 with 103 iterated soft thresholding steps
each).
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Figure 6.3: Scatter plots of the absolute values of the Fourier coefficients of v∞j vs. u∞
j for j = 1, 2, 3

(Galerkin scheme using the improved a priori information after 5 iterations in Algorithm 6.1).

with the convex scattering supports C (u∞j ), j = 1, 2, 3, of the exact far field components shown
in Figure 4.1 (left) and with the convex scattering supports C (v∞j ), j = 1, 2, 3, of the approxi-
mate far field components obtained without reweighting in Example 4.3 and shown in Figure 4.1
(right) confirms that the far field splits obtained with Algorithm 6.1 allow for significantly improved
reconstructions of the supports of the unknown scatterers in this example.

We note that the overall computational costs of Algorithm 6.1 in this example are actually lower
than in Example 4.3, where we considered 104 iterations in the soft thresholding procedure, whereas
here we have 5× 103 soft thresholding iterations plus 5 updates of the a priori information on the
approximate source locations.

Using the improved a priori information obtained after 5 iterations in Algorithm 6.1, we compute
an even more accurate far field split by applying the Galerkin method from [12] as a post processing
step. The absolute values of the corresponding approximations of the Fourier coefficients of v∞j are
plotted against the absolute values of the Fourier coefficients of the exact far field components u∞j
for j = 1, 2, 3 in Figure 6.3. For details on the numerical implementation of the Galerkin scheme
we refer to [12].

Finally, to get an idea about the performance of the algorithm for noisy data, we redo this
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Figure 6.4: Same as Fig. 6.2, but using data containing 10% uniformly distributed noise (ω = 1/4, α = 10−1,
η = 10−4, after 5 iterations in Algorithm 6.1 with 103 iterated soft thresholding steps each).

computation (without the post-processing step) but add 10% uniformly distributed relative error
to the simulated far field data before splitting the far field pattern. We use the same a priori guess
for the scatterers, and the same initial guess and parameters in Algorithm 6.1 as before, except for
the regularization parameter in the soft thresholding procedure, for which we choose α = 10−1 to
account for the noise in the data. The resulting scatter plots (after 5 iterations with 103 iterated
soft thresholding steps each) are shown in Figure 6.4. The shaded region in these plots indicates
the Fourier coefficients with absolute value less than 10% of their maximum. The results are clearly
less accurate due to the noisy data, but the reconstructions of the largest Fourier coefficients are
still useful. ♦

Conclusions

We have discussed a numerical scheme for the inverse problem of decomposing the far field pattern
radiated by an ensemble of well separated compactly supported sources into the far field components
radiated by each of these sources separately. We have developed an ℓ1 characterization of these far
field components and used it to reformulate the far field splitting problem as a constrained weighted
ℓ1 minimization problem. We have analyzed the well-posedness of this optimization problem, and
verified the conditions for convergence of an iterated soft thresholding procedure to approximate
the minimum numerically. We have also suggested an iterative reweighting strategy to successively
improve the required a priori information on the approximate source locations, which in particular
gradually enhances the stability of the splitting algorithm. Numerical examples for an inverse
obstacle scattering problem confirm that this iteratively reweighted ℓ1 far field splitting algorithm
can handle much less accurate a priori information than the Galerkin far field splitting scheme
considered in [12].
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