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Abstract. The interior transmission problem is a boundary value problem

that plays a basic role in inverse scattering theory but unfortunately does not
seem to be included in any existing theory in partial differential equations.This

paper presents old and new results for the interior transmission problem ,in par-

ticular its relation to inverse scattering theory and new results on the spectral
theory associated with this class of boundary value problems.

1. Introduction

The interior transmission problem is a boundary value problem arising in inverse
scattering theory that, to our knowledge, is not covered by any existing theory in
partial differential equations. Nevertheless, the problem is easy to state and a better
understanding of conditions under which this problem is well posed would almost
surely lead to major advances in inverse scattering theory. Of particular importance
is the spectral theory associated with this class of boundary value problems of
which essentially nothing is known in more than one dimension. Hence, in view of
the central role played by such problems in inverse scattering theory, we are writing
this paper in the hope of encouraging other mathematicians to investigate the many
unresolved problems associated with boundary value problems of this type.

The plan of our paper is as follows. In the next section we show how the interior
transmission problem arises in the scattering of time-harmonic acoustic waves by
an inhomogeneous medium of compact support. In particular, we show that the far
field operator associated with this scattering problem is injective with dense range
provided the wave number is not an eigenvalue of the interior transmission prob-
lem. We then consider the case of a spherically stratified inhomogeneous medium
and show in Section 3 that such transmission eigenvalues exist and, under certain
conditions, uniquely determine the speed of sound in the inhomogeneous medium.
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In higher dimensions the existence of transmission eigenvalues is unknown and in
Section 4 we provide some insight as to why establishing such a result is difficult.
However it can be shown that, again under certain conditions, if transmission eigen-
values exist they form at most a discrete set and in Section 5 we establish this fact
together with a lower bound for the spectrum. We conclude our presentation by
showing in Section 6 how the inhomogeneous interior transmission problem can be
used to show that the far field pattern of the scattered field uniquely determines the
shape of a penetrable, anisotropic medium. Our hope is that the above discussion
will not only convince the reader of the central importance of the interior trans-
mission problem to inverse scattering theory but will also encourage attempts to
answer the many open questions associated with boundary value problems of this
type.

2. The Far Field Operator and Transmission Eigenvalues

Under appropriate assumptions [5], the scattering of a time-harmonic plane wave
by a slowly varying inhomogeneous medium can be modeled by the scattering prob-
lem

(2.1) ∆u+ k2n(x)u = 0 in R3

(2.2) u = ui + us

(2.3) lim
r→∞

r

(
∂us

∂r
− ikus

)
= 0

where r = |x|, the inhomogeneous region is contained inside a ball B, the sound
speed c = c(x) is equal to a constant c0 for x ∈ R3 \ B. The time-harmonic term
e−iωt has been factored out, the wave number k is defined to be k = ω/c0,

n(x) = c20/c
2(x)

and the incident field ui is defined to be

ui(x) = eikx·d

where |d| = 1. The Sommerfeld radiation condition (2.3) satisfied by the scattered
field us is assumed to hold uniformly in all directions and the relative sound speed
n(x) is assumed to be piecewise continuously differentiable with a jump discontinuity
across the smooth boundary ∂D of the domain D where c(x) 6= c0. We assume that
D has a connected complement. Under these assumptions it can be shown [5] that
the scattered field has the asymptotic behavior

(2.4) us(x) =
eikr

r
u∞(x̂, d) + O

(
1
r2

)
as r → ∞ where x̂ = x/|x| and the wave number k is assumed to be fixed. The
function u∞ is called the far field pattern and is known to satisfy [5] the reciprocity
relation

(2.5) u∞(x̂, d) = u∞(−d,−x̂).
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The Interior Transmission Problem 15

Of basic importance in inverse scattering theory is the far field operator F :
L2(Ω) → L2(Ω), where Ω is the unit sphere, defined by

(2.6) (Fg)(x̂) :=
∫
Ω

u∞(x̂, d)g(d)ds(d).

The superposition principle tells us that (Fg)(x̂) is the far field of the solution
to (2.1-2.2-2.3) with incident wave ui equal to the Herglotz wave function vg with
kernel g

vg(x) :=
∫
Ω

eikx·dg(d)ds(d)

It can be shown [5], since n(x) is real, that the scattering operator S defined by

S := I +
ik

2π
F

is unitary. A direct consequence of the unitarity of S are the identities:

(2.7)
2π
ik

(F − F ∗) = FF ∗ = F ∗F

from which it follows that F is normal and therefore has identical kernel and cok-
ernel.

If an incident pattern belongs to the kernel of the far field operator, then the
corresponding incident wave produces no reflected or scattered wave. The inho-
mogeneity is invisible when illuminated by this pattern. Many inverse scattering
techniques, in particular, the linear sampling method, can be guaranteed to work
reliably only if this kernel is empty. The interior transmission problem, defined in
theorem 1 [5] below will serve as our tool for investigating this kernel. We will let
ν denote the unit outward normal to ∂D.

Theorem 1. The far field operator is injective with dense range if and only if there
does not exist a solution v, w ∈ C2(D)∩C1(D) of the interior transmission problem

∆w + k2n(x)w = 0 in(2.8)
∆v + k2v = 0 in D(2.9)

w = v,
∂w

∂ν
=
∂v

∂ν
on ∂D(2.10)

such that v is a Herglotz wave function with kernel g 6= 0.

Proof. Assume that there are no non-trivial solutions to (2.8) - (2.10) and further
that (Fg)(x̂) = 0 for x̂ ∈ Ω. Then by Rellich’s lemma [5] we have that

Us(x) :=
∫
Ω

us(x, d)g(d)ds(d)

is equal to zero for x ∈ R3\D. Hence if v = vg then from (2.1) - (2.3) we see that
v satisfies (2.8)-(2.10) for

w(x) :=
∫
Ω

u(x, d)g(d)ds(d).

Hence, by the hypothesis of the theorem, vg ≡ 0 and thus by the Fourier inversion
theorem for distributions g = 0. Hence F is injective.

Inverse Problems and Imaging Volume 1, No. 1 (2007), 1–29
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Conversely, it is easily verified that if there exists a nontrivial solution to (2.8) -
(2.10) such that v is a Herglotz wave function with kernel g 6= 0 than (Fg)(x̂) = 0
for x̂ ∈ Ω (use the uniqueness of the solution to (2.1)-(2.3)).

The interior transmission problem (2.8) - (2.10) is the main subject matter of this
paper. Values of k > 0 such that the interior transmission problem has a nontrivial
solution are called transmission eigenvalues.

The interior transmission problem depends analytically on the parameter k. We
will make use of this by applying the analytic Fredholm theory, but our application
will be complicated by the fact that the problem is not elliptic at any k. This
is what makes the interior transmission problem different from a standard elliptic
eigenvalue problem. We will describe this lack of ellipticity further in section 4, and
replace it with an elliptic problem in section 5. We end this section with one simple
illustration of this fact. If we set k = 0 in (2.8) - (2.10). The system becomes

∆w = 0 in D

∆v = 0 in D

w = v on ∂D

∂w

∂ν
=
∂v

∂ν
on ∂D

If (2.8) - (2.10) were elliptic at any k, then the k = 0 system would be a rela-
tively compact perturbation and hence have at most a finite dimensional null space.
However, {v = wequal to any harmonic function} constitute an infintie dimensional
subspace in the kernel of this system.

3. Spherically Stratified Media

In the case of a spherically stratified medium, a considerable amount of infor-
mation is known about the interior transmission problem (2.8) - (2.10) and in par-
ticular transmission eigenvalues. We begin by proving the existence of infinitely
many transmission eigenvalues with spherically symmetric eigenfunctions [6] (See
also Section 8.4 of [5]). To motivate the hypothesis of the following theorem, sup-
pose for the moment that n(x) is constant. If that constant is equal to one, there is
no inhomogeneity, no waves are scattered, and the far field mapping is identically
zero, so every k is a transmission eigenvalue. In order to exclude this case, we
assume that

(3.1)
1
a

∫ a

0

[n(ρ)]
1
2 dρ 6= 1

The quantity on the left hand side of (3.1) can be interpreted as one over the
harmonic average of the wave speed in the medium, which is the effective wavespeed
of a wave with large wavenumber k.

Theorem 2. Suppose that n(x) = n(r), Im n = 0, 1
a

∫ a
0

[n(ρ)]
1
2 dρ 6= 1 and n(r) ∈

C2(D) where D := {x : |x| < a}. Then there exist an infinite discrete set of
transmission eigenvalues with spherically symmetric eigenfunctions.
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Proof. It suffices to restrict our attention to solutions of (2.8) - (2.10) that depend
only on r = |x|. Then clearly v must be of the form

v(x) = a0j0(kr)

where j0 is a spherical Bessel function of order zero and a0 is a constant. Writing

w(x) = b0
y(r)
r

with a constant b0, straightforward calculations show that if y is a solution of

y′′ + k2n(r)y = 0

satisfying the initial conditions

y(0) = 0 , y′(0) = 1

then w satisfies(2.8) . We now use the Liouville transformation

ζ :=
∫ r

0

[n(ρ)]
1
2 dρ , z(ζ) := [n(r)]

1
4 y(r)

to arrive at the initial-value problem

(3.2) z′′ + [k2 − p(ζ)]z = 0

(3.3) z(0) = 0 , z′(0) = [n(0)]−
1
4

where

p(ζ) :=
n′′(r)

4[n(r)]2
− 5

16
[n′(r)]2

[n(r)]3
.

Rewriting (3.2) - (3.3) as a Volterra integral equation

z(ζ) =
sin kζ
k[n(0)]

1
4

+
1
k

∫ ζ

0

sin k(η − ζ)z(η)p(η)dη

and using the method of successive approximations, we see that the solution of (3.2)
- (3.3) satisfies

z(ζ) =
sin kζ
k[n(0)]

1
4

+ 0
(

1
k2

)
and z′(ζ) =

cos kζ
[n(0)]

1
4

+O

(
1
k

)
and hence

y(r) =
1

k[n(0)n(r)]
1
4

sin
(
k

∫ r

0

[n(ρ)]
1
2 dρ

)
+O

(
1
k2

)
and

y′(r) =
[
n(r)
n(0)

] 1
4

cos
(
k

∫ r

0

[n(ρ)]
1
2 dρ

)
+O

(
1
k

)
uniformly on [0, a].

The boundary condition (2.10) now requires that

b0
y(a)
a

− a0j0(ka) = 0

b0
d

dr

(
y(r)
r

)
r=a

− a0kj
′
0(ka) = 0.
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A nontrivial solution of this system exists if and only if

(3.4) d := det

(
y(a)
a −j0(ka)

d
dr

(
y(r)
r

)
r=a

−kj′0(ka)

)
= 0.

Since j0(kr) = sin kr/kr, from the above asymptotics for y(r) we find that

(3.5) d =
1
a2k

{B sin kδa cos ka− C cos kδa sin ka)}+O(1/k2)

where

(3.6) B =
1

(n(0)n(a))
1
4
, C =

(
n(a)
n(0)

) 1
4

and

(3.7) δ =
1
a

∫ a

0

[n(ρ)]
1
2 dρ.

If δ is a rational number different from one the claim follows easily since the
first term in (3.5) is then a periodic function taking positive and negative values.
This fact and (3.5) imply that for k sufficiently large there exists an infinite set of
values of k such that (3.4) is true. Each such k is a transmission eigenvalue and this
completes the proof of the theorem in this case. If δ = 1 and C = B this term is
identically zero but this case is excluded by the assumption. If δ is irrational we can
still draw the same conclusion. Indeed in that case this term is an almost-periodic
function since periodic functions are almost-periodic and almost-periodic functions
form an algebra. The claim follows by applying the definition of almost periodic
functions [c.f. [13] Section VI. 5].

Since the transmission eigenvalues can be determined from a knowledge of the
far field pattern [6], of particular interest in inverse scattering theory is whether
or not these eigenvalues determine the relative sound speed n(r). To this end we
have the following theorem due to McLaughlin and Polyakov [14]. Before stating
the theorem we define

A :=
∫ a

0

[n(r)]
1
2 dr

and note that the transmission eigenvalues kj satisfy [14]

k2
j =

j2π2

(A− a)2
+O(1)

provided that n(a) = 1 and that the assumptions of Theorem 2 are satisfied.

Theorem 3. Assume that n1(r) and n2(r) satisfy the assumptions of Theorem 2
and that n1(a) = 1 and n2(a) = 1. Define Ai by

Ai :=
∫ a

0

[ni(r)]2dr

for i = 1, 2. Suppose there exists M > 0 such that all transmission eigenvalues for
n1 and for n2 that are greater than M coincide. Then A1 = A2 = A. Suppose
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further that there is a common subsequence of the transmission eigenvalues denoted
by k2

j , j = 1, 2, . . . , such that 1) there exists a positive integer m0 such that

|k2
j | <

(m+ 1
2 )2π2

(A− a)2

for j = 1, 2, . . . ,m and m ≥ m0 and 2) for j > m0 all the k2
j are real and satisfy

|k2
j | >

(m0 + 1
2 )2π2

(A− a)2
.

Then if 3A < a we have that n1(r) = n2(r) for 0 ≤ r ≤ a.

An algorithm for using the transmission eigenvalues to determine n(r) can be
found in [15]. The algorithm is based on the Gelfand-Levitan integral equation
method [9] and its numerical implementation due to Rundell and Sacks [16].

4. Interior Transmission Problem vs. Usual Transmission Problem

In wave propagation the transmission of a wave from an empty space to a medium
with different sound speed is described by the transmission problem

(4.1) ∆w + k2n(x)w = 0 in D

(4.2) ∆v + k2v = 0 in R3\D

(4.3) lim
r→∞

r

(
∂v

∂r
− ikv

)
= 0

(4.4) w = v + ϕ0 on ∂D

(4.5)
∂w

∂ν
=
∂v

∂ν
+ ψ0 on ∂D

where ϕ0 and ψ0 are prescribed functions. In this section we compare the mathe-
matical structure of (4.1) - (4.5) to that of

∆w + k2n(x)w = 0 in D(4.6)
∆v + k2v = 0 in D(4.7)
w = v + ϕ0 on ∂D(4.8)

∂w

∂ν
=
∂v

∂ν
+ ψ0 on ∂D.(4.9)

Notice that both systems (4.1) -(4.5) and (4.6) -(4.9) depend analytically on k.
We will use the Calderón projectors below to see that the former system is elliptic,
varying k induces a relatively compact perturbation and the Fredholm theory will
apply. A similar analysis will show that the transmission eigenvalue problem is not
elliptic, and we will have to work harder (and make stronger assumptions) to apply
the Fredholm theory.

Inverse Problems and Imaging Volume 1, No. 1 (2007), 1–29
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To demonstrate this we employ the Calderón projectors

Pn =
1
2
(I +An) , where

An =
(
−Kn Vn
Dn K∗

n

)
.

Here Vn,Kn are the single layer and double layer operators corresponding to (4.1)
and Dn = − ∂

∂νKn. For the definition of these operators we refer to the article of
M. Costabel and E. Stephan [8], where the basic properties of An and Pn are given.
In particular

Pn : H1/2(∂D)⊕H−1/2(∂D) → H1/2(∂D)⊕H−1/2(∂D)

continuously and projects any element of this space to a Cauchy data of a solution
w ∈ H1(D) of (4.1).

Lemma: The following statements on
(
ϕ
ψ

)
∈ H1/2(∂D)⊕H−1/2(∂D) are equivalent:

• (i)
(
ϕ
ψ

)
is Cauchy data for same u ∈ H1(D) satisfying (4.1).

• (ii) An
(
ϕ
ψ

)
=
(
ϕ
ψ

)
.

• (iii) There exist
(
g
h

)
∈ H1/2(∂D)⊕H−1/2(∂D) such that(

ϕ

ψ

)
= Pn

(
g

h

)
.

Proof. The proof given in [8] is for the case n ≡ 1, but it works identically well in
the inhomogeneous case. This is so because the proof is based only on the jump
relations of the layer potentials and these are the same for n constant and for n
inhomogeneous.

Lemma 4.1 immediately implies the projection property P 2
n = Pn. This is clearly

equivalent to

A2
n = I.

In particular, An is invertible in H1/2(∂D)⊕H−1/2(∂D).
Similarly one also proves that 1

2 (I−A1), where A1 = An for n ≡ 1, is a projection
operator that projects any element of H1/2(∂D)⊕H−1/2(∂D) to a Cauchy data of
a solution to the exterior problem (4.2), (4.3). Hence it follows from the Lemma
that (4.1) - (4.5) is equivalent to

(4.10)
1
2
(I −An)

(
ϕ1

ψ1

)
= 0

(4.11)
1
2
(I +A1)

(
ϕ2

ψ2

)
= 0

(4.12)
(
ϕ2

ψ2

)
=
(
ϕ1

ψ1

)
−
(
ϕ0

ψ0

)
.

Note that all operators depend on the wave number k, i.e. An = An(k) etc. Thus,
for ϕ0 = ψ0 = 0, k > 0 is an eigenvalue for (4.1) - (4.5) if (4.10) - (4.12), has a
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non-zero solution
(
ϕ
ψ

)
∈ H1/2(∂D) ⊕H−1/2(∂D). Moreover, it easily follows from

(4.10) - (4.12) that
(
ϕ
ψ

)
then also satisfies the homogeneous integral equation

(4.13)
1
2
(An(k) +A1(k))

(
ϕ

ψ

)
= 0

The operator in the left hand side of (4.13) is a Fredholm operator of index zero
and hence the set of eigenvalues for (4.1) - (4.5) is discrete by the analytic Fredholm
theory.

To analyze the interior transmission problem in this manner we introduce con-
jugate Calderón projectors Qn and Q1 defined by

Qn =
1
2
(I −An) and Q1 =

1
2
(I −A1)

By the Lemma applied separately to n ≡ 1 and n 6= 1, the number k > 0 is a
transmission eigenvalue, if and only if the exist non-zero

(
ϕ
ψ

)
such that

1
2
(I −An(k))

(
ϕ

ψ

)
= 0 and

1
2
(I −A1(k))

(
ϕ

ψ

)
= 0

which is equivalent to

kerQn(k) ∩ kerQ1(k) 6= {0}.

We say that k > 0 is a conjugate transmission eigenvalue if

kerPn(k) ∩ kerP1(k) 6= {0}.

We have the following.

Theorem 4. The following two claims are equivalent.
• (i) k > 0 is either a transmission eigenvalue or a conjugate transmission

eigenvalue.
• (ii)

(4.14) ker(An(k)−A1(k)) 6= {0}.

Proof. Assume first that (i) does not hold and that

(An(k)−A1(k))
(
ϕ

ψ

)
= 0.

We need to show that
ϕ = ψ = 0.

To this end define

(4.15)
(
g

h

)
=

1
2
(I +A1(k))

(
ϕ

ψ

)
=

1
2
(I +An(k))

(
ϕ

ψ

)
.

Clearly (
g

h

)
∈ kerQn(k) ∩ kerQ1(k)

and by the assumption that (i) does not hold we have that
(
g
h

)
= 0. Thus (4.14)

implies that (
ϕ

ψ

)
∈ kerPn(k) ∩ kerP1(k)
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and our assumption yields (4.13). To prove the converse assume that (i) holds.
Then there exist non-zero

(
ϕ
ψ

)
such that either

(4.16) (I −An)
(
ϕ

ψ

)
= 0 and (I −A1)

(
ϕ

ψ

)
= 0

or

(4.17) (1 +An)
(
ϕ

ψ

)
= 0 and (I +A1)

(
ϕ

ψ

)
= 0.

Clearly either one of (4.16) or (4.17) implies

An

(
ϕ

ψ

)
= A1

(
ϕ

ψ

)
.

The crucial difference between the usual transmission problem and the interior
transmission problems lies in the fact that the operator 1

2 (An(k)+A1(k)) appearing
in (4.13) is Fredholm but the operator 1

2 (An(k)−A1(k)) appearing in (4.14) is not.
Indeed, one can show in the case where supp (n − 1) ⊂ D, that the operator
1
2 (An(k)−A1(k)) is infinitely smoothing.

5. The Countability of Transmission Eigenvalues

In contrast to the case of a spherically stratified media, very little is known
concerning transmission eigenvalues in the general case of a non-stratified media. Of
particular importance in inverse scattering theory is to determine whether or not the
set of transmission eigenvalues form a discrete set. In particular, if this set is discrete
then the far field operator is injective with dense range for almost all values of the
wave number. Under certain hypothesis, the fact that the transmission eigenvalues
form a discrete set has been established by Colton, Kirsch and Päivärinta [4] and
Rynne and Sleeman [17]. Here we shall outline the proof of this result very similar
to that given by Rynne and Sleeman [17].

5.1. The Born Approximation. The far field operator is a differentiable function
of n(x) = 1 +m(x). If the scattering is weak (i.e. |m(x)| is small compared to 1)
, the far field operator is often replaced by an operator that depends linearly on
m(x). This operator is called the Born approximation to the far field operator. The
linear dependence makes the analysis of the Born approximation easier than that of
the full far field operator. The Born approximation has many equivalent definitions.
We make our definition by defining a 1-parameter family of functions n via

n(x) = 1 + εm(x)
Let uε = ui + usε denote the corresponding one parameter family of solutions to

(2.1-2.3). The Born approximation to the scattered wave is

usB :=
d

dε

∣∣∣
ε=0

usε

and the Born approximation to the far field operator is defined analogously to (2.6),
that is,

(5.1) (Bg)(x̂) :=
∫
Ω

(uB)∞(x̂, d)g(d)ds(d).

Inverse Problems and Imaging Volume 1, No. 1 (2007), 1–29
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Bg is the far field pattern of uB , which solves

(5.2) ∆uB + k2uB = −k2mvg in R3

(5.3) uB = vg + usB

(5.4) lim
r→∞

r

(
∂usB
∂r

− ikusB

)
= 0.

While the far field operator F is normal, It follows from differentiating (2.7)
with respect to ε and setting ε = 0 that B is actually self-adjoint. In the Born
approximation, Theorem 1 becomes

Theorem 5. The Born far field operator is injective with dense range if and only
if there does not exist a solution v, w ∈ C2(D) ∩ C1(D) of

∆w + k2w = −k2mv in D

∆v + k2v = 0 in D

w = v,
∂w

∂ν
=
∂v

∂ν
on ∂D

such that v is a Herglotz wave function with kernel g 6= 0.

The proof is exactly the same as that of Theorem 1. Investigating the existence
of transmission eigenvalues for the Born approximation, however, is substantially
simpler than the corresponding question for the full far field operator. We shall
show that:

Theorem 6. Suppose that m(x) > δ > 0 for all x ∈ D, then the kernel of B is
empty for all k, i.e. there are no Born transmission eigenvalues

Proof. Suppose that g belongs to the kernel of B and that v = vg. If w = uB and
u = w−v then u vanishes, together with its normal derivative, on ∂D and satisfies

(5.5)
(
∆ + k2

)
u = −k2mv

If we divide both sides of (5.5) bym, multiply by the complex conjugate of
(
∆ + k2

)
u,

and integrate, we obtain∫
D

1
m

∣∣(∆ + k2
)
u
∣∣2 = −k2

∫
D

v(∆ + k2)u

= −k2

∫
D

u
(
∆ + k2

)
v − k2

∫
∂D

u
∂v

∂ν
− ∂u

∂ν
v.

But both the terms on the left hand side are zero, the first because v is a Herglotz
wave function and the second because u and its normal derivative vanish on ∂D.
Therefore we may conclude that u, which has vanishing Cauchy data on ∂D, satisfies(

∆ + k2
)
u = 0 in D

and hence must be identically zero. Thus by (5.5) v must vanish and hence also
g.
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5.2. The Full Far Field Operator. We now return to the full far field operator.
It is natural to mimic the proof we have just made for the Born approximation. Not
surprisingly, the situation here is more complicated. We will, however, prove the
following theorem:

Theorem 7. Suppose that m(x) > δ > 0 for all x ∈ D, then the set of transmission

eigenvalues is a (possibly empty) discrete subset of {|k| >
√

λ0(D)
supD n}, where λ0(D)

denotes the smallest Dirichlet eigenvalue of −∆ on D.

Proof. Suppose that k is a transmission eigenvalue. We rewrite equations (2.8-2.10)
to look like equations (5.2-5.4),

∆w + k2w = −k2mw in
∆v + k2v = 0 in D

w = v,
∂w

∂ν
=
∂v

∂ν
on ∂D.

We note that u = w − v vanishes, together with its normal derivative, on ∂D and
satisfies

(5.6)
(
∆ + k2

)
u = −k2mw.

As in the case of the Born approximation, we divide both sides of (5.6) by m and
multiply by the complex conjugate of

(
∆ + k2n(x)

)
z. In this case we do not choose

z(x) = u yet, but we insist that z ∈ H2
0 (D), in particular, that z and its normal

derivative vanish on ∂D. Integrating gives∫
D

((∆ + k2n) z)
1
m

((
∆ + k2

)
u
)

= −k2

∫
D

w(∆ + k2n) z

= −k2

∫
D

z
(
∆ + k2n

)
w(5.7)

−k2

∫
∂D

z
∂w

∂ν
− ∂z

∂ν
w.(5.8)

As before, the terms in (5.7) and (5.8) are zero. This together with the fact that
(∇+ k2)u = (∇+ k2n)u− k2mu allows us to conclude that

0 =
∫
D

((∆ + k2n) z)
1
m

((
∆ + k2

)
u
)

(5.9)

=
∫
D

((∆ + k2n) z)
1
m

((
∆ + k2n

)
u
)

+ k2(∇z · ∇u)− k4nzu.(5.10)

If we set z = u in (5.10), we can conclude that
(
∆ + k2n

)
u = 0, and hence that

u is identically zero whenever the sum of the last two terms is nonnegative. Because

inf
u∈H2

0 (D)

∫
D
|∇u|2∫
D
|u|2

≥ inf
u∈H1

0 (D)

∫
D
|∇u|2∫
D
|u|2

= λ0(D),

we have∫
D

k2(∇u · ∇u)− k4nuu ≥ k2||u||2L2(D)

(
λ0(D)− k2 sup

D
n

)
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and the term in parentheses is nonnegative whenever k2 ≤ λ0(D)
supD n , i.e. such k cannot

be transmission eigenvalues.

To see the discreteness, we rewrite (5.9) as

(5.11) 0 =
∫
D

(∆z)
1
m

(∆u) + k2z
1
m

∆u+ k2∆z
n

m
u+ k4z

n

m
u

and begin by finding a lower bound for the first term. Note that

||u||2H2 = ||u||2L2 + ||∆u||2L2

≤
(

1
λ0(D)2

+ 1
)
||∆u||2L2

so that ∫
D

(∆u)
1
m

(∆u) ≥
(

inf
D

1
m

)
||∆u||L2 ||∆u||L2

≥
(

inf
D

1
m

)(
1

λ0(D)2
+ 1
)−1

||u||H2 ||u||H2 .(5.12)

A consequence of (5.12) is that the self-adjoint map

∆
1
m

∆ : H2
0 (D) −→ H−2(D)

has a bounded inverse 1 , specifically,

||
(

∆
1
m

∆
)−1

|| ≤
(

sup
D
m

)(
1

λ0(D)2
+ 1
)
.

We next show that the remaining three terms in (5.11) define compact operators
from H2

0 (D) to H−2(D).
The second term defines the operator 1

m∆. This is a bounded operator
1
m

∆ : H2
0 (D) −→ L2(D)

Because the inclusion of L2(D) into H−2(D) is compact, we may conclude the
compactness of 1

m∆ as an operator from H2
0 (D) to H−2(D).

The third term defines ∆ n
m . This is easily seen to be a bounded operator

∆
n

m
: L2(D) −→ H−2(D)

The compactness of the inclusion of H2
0 (D) into L2(D) then implies that ∆ n

m is
compact as an operator from H2

0 (D) to H−2(D).
The fourth term defines the multiplication operator n

m which is compact for
similar reasons.

We have shown that, if k is a transmission eigenvalue, then the operator

∆
1
m

∆ + k2∆
n

m
+ k2 1

m
∆ + k4 n

m
has non-trivial kernel. This operator is the sum of an invertible operator plus a
compact operator which depends analytically on k. Since it is invertible at k = 0

1H−2(D) is exactly the dual to H2
0 (D), i.e. the space of bounded linear functionals on H2

0 (D),

not the Hilbert space dual.
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the analytic Fredholm theorem guarantees that this can happen at most on a discrete
set.

6. A Uniqueness Theorem for Anisotropic Media

Uniqueness theorems play a central role in inverse scattering theory. In partic-
ular, the basic uniqueness question associated with the inverse scattering problem
associated with (2.1)-(2.3) is whether or not a knowledge of the far field pattern
u∞(x̂, d) for x̂, d ∈ Ω uniquely determines the relative sound speed n(x). This ques-
tion was answered affirmatively by Ramm, Novikov and Nachman in 1988 and a
simplified proof of this result was given by Hähner in 1996 (See Section 10.2 of [5]).
In the case of anisotropic media, the scattering problem (2.1)-(2.3) is replaced by

∇ ·A∇v + k2nv = 0 in D(6.1)

∆u+ k2u = 0 in R3\D(6.2)
v − u = 0 on ∂D(6.3)

∂v

∂νA
− ∂u

∂ν
= 0 on ∂D(6.4)

(6.5) u = ui + us

(6.6) lim
r→∞

r

(
∂us

∂r
− ikus

)
= 0

where A = A(x) is a matrix with continuously differentiable entries in D such that
ReA and ImA are symmetric and

ξ · ImAξ ≤ 0

ξ ·ReAξ ≥ γ|ξ|2

for all ξ ∈ C3 and x ∈ D where γ is a positive constant. It is further assumed that
D is bounded, simply connected and has a smooth boundary ∂D with unit outward
normal ν,

∂v

∂νA
:= ν ·A∇v,

ui(x) = eikx·d, us is the scattered field and n ∈ C(D) with Im n ≥ 0. The far
field pattern u∞ is again defined by the asymptotic relation (2.4) and the inverse
scattering problem associated with (6.1)-(6.6) is to determine D from a knowledge
of u∞(x̂, d) for x̂, d ∈ Ω. We also note that in general A and n are not uniquely
determined by u∞ [10].

In his seminal paper [12], Hähner showed that for the scattering problem (6.1)-
(6.6) the support D of the inhomogeneity is uniquely determined by the far field
pattern u∞ of the scattered field us. His proof is based on certain properties of so-
lutions v, w ∈ H1(D) to the following inhomogeneous interior transmission problem
associated with the scattering problem (6.1)-(6.6).

∇ ·A∇v + k2nv = 0 in D(6.7)
∇w + k2w = 0 in D(6.8)

v − w = f on ∂D(6.9)
∂v

∂νA
− ∂w

∂ν
= h on ∂D(6.10)
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where f ∈ H
1
2 (∂D), h ∈ H− 1

2 (∂D) and H1(D),H
1
2 (∂D),H− 1

2 (∂D) are the usual
Sobolev spaces. In particular, in order to establish uniqueness for the inverse scat-
tering problem described above, the following simple lemma is needed [12]. (See
also Section 6.3 of [2]).

Lemma: Assume that either ξ ·Re Aξ ≥ γ|ξ|2 or ξRe A−1ξ ≥ γ|ξ|2 for some γ > 1.
Let {vn, wn} ∈ H1(D) × H1(D) be a sequence of solutions to the inhomogeneous
interior transmission problem (6.7)-(6.10) with boundary data fn ∈ H

1
2 (∂D) and

hn ∈ H− 1
2 (∂D) respectively such that {vn} and {wn} are bounded in H1(D). Then

there exists a subsequence {wnk
} which converges in H1(D).

We are now ready to prove our uniqueness theorem.

Theorem 8. : Let A1 and A2 satisfy the assumptions of the Lemma and ui(x̂, d)
be the far field pattern corresponding to (6.1)-(6.6) for A = Ai, D = Di and n =
ni, i = 1, 2. Then if u1

∞(x̂, d) = u2
∞(x̂, d) for x̂, d ∈ Ω, D1 = D2.

Proof. Let G be the unbounded connected component of R3\(D1∪D2) and Φ(x, z)
the fundamental solution to the Helmholtz equation given by (4.2). Choose a disk
ΩR such that D1 ∪ D2 ⊂ ΩR and k2 is not a Dirichlet eigenvalue for ΩR. Then
since {eikx·d : |d| = 1} is complete in H

1
2 (∂ΩR) (c.f. Lemma 4.4 of [2]), there exists

a sequence {uin} in span {eikx·d : |d| = 1} such that for z ∈ R3\ΩR
||uin − Φ(·, z)||

H
1
2 (∂ΩR)

→ 0

as n→∞ and hence uin approximates Φ(·, z) inH1(ΩR). Then, since u1
∞ = u2

∞ , the
solutions us1 and us2 of (6.1)-(6.6) for A = Ai, D = Di, n = ni, i = 1, 2, coincide in G
and by the above discussion and the continuous dependence of usi on the boundary
data we can now conclude that the solutions u1(·, z) and u2(·, z) corresponding to
the incident field Φ(·, z) coincide for fixed z ∈ R3\ΩR. Since u, (·, z) and u2(·, z)
are real analytic functions of z for z ∈ G we now see that u1(·, z) = u2(·, z) for all
z ∈ G.

Now assume that D1 is not included in D2 and choose a point z ∈ ∂D1 and
ε > 0 such that the points zn := z + ε

nν(z) lie in G for all n ∈ N where ν(z) is the
unit outward normal to ∂D1 at z. It is easily seen that ‖Φ(·, zn)‖H1(D1) → ∞ as
n→∞. We now define

(6.11) wn(x) :=
1

‖Φ(·, zn)‖H1(D1)
Φ(x, zn)

for x ∈ D1∪D2 and let vn1 , u
n
1 and vn2 , u

n
2 be the solutions of the scattering problems

(6.1)-(6.6) corresponding to A1, D1, n1 and A2, D2, n2 respectively with ui replaced
by wn. A rather tedious, but straightforward argument [12] now shows that there
exists a subsequence {unk

1 } such that

{unk
1 } and

{
∂unk

∂ν

}
converge in H

1
2 (∂D1) and H− 1

2 (∂D1) respectively.
The proof of the theorem is now easy. Since the functions vnk

1 (corresponding
to unk

1 ) and wnk (defined by (6.11)) are solutions of the inhomogeneous interior
transmission problem (6.7) - (6.10) for the domain D1 with boundary data f = unk

1

and h = ∂u
nk
1
∂ν , and since the H1(D1) norms of vnk

1 and wnk remain uniformly
bounded (by (6.11) and the well-posedness of (6.1) - (6.6), by the Lemma we can
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select a subsequence of {wnk}, again denoted by {wnk}, which converges in H1(D1)
to a function w ∈ H1(D1). As a limit of weak solutions to the Helmholtz equation,
w ∈ H1(D1) is a weak solution to the Helmholtz equation. Outside a neighborhood
of z ∈ ∂D1, w

nk converges uniformly to zero by (6.11) and hence w must be zero in
all of D1 by unique continuation of solutions to the Helmholtz equation. But this
contradicts the fact that ‖wnk‖H1(D1) = 1. Hence D1 must be included in D2. A
similar argument shows that D2 must be included in D1 and hence D1 = D2.

The extension of the above ideas to the inverse scattering problem for Maxwell’s
equations in an inhomogeneous anisotropic media has been done by Cakoni and
Colton [1]. The problem of the countability of the set of transmission eigenvalues
for the interior transmission problem for anisotropic media has been investigated
by Colton and Päivärinta [7] and Cakoni, Colton and Haddar [3].
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