
Remote Sensing Experiment

Sensors in the Far Field

many diameters/wavelengths

away

asymptotic formulas hold

Passive
The source radiates

utt − ∆u = F (x, t)

u(x, 0) = 0

ut(x, 0) = 0

Active
Incoming wave illuminates, pro-

ducing an induced source

utt − ∆u = (1 − n2(x))utt

u(x, 0) = g(θ)δ(t− |x| − r0)

ut(x, 0) = g(θ)δ′(t− |x| − r0)

Forward Scattering — compute the far field

Inverse Scattering — infer properties of the source

• Where is the source ? • What is the source ?
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Inverse Source Problem

utt − ∆u = F (x, t)

We measure only the field u radiated by the source. This

is why we start with zero intial conditions.

u(x, 0) = 0

ut(x, 0) = 0
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Time Harmonic Model

F (x, t) = eiωtF (x)

u(x, t) = eiωtu(x)

Wave equation becomes Helmholtz equation (k = n0ω)

(
∆ + k2

)
u = F (x, k)

What replaces the initial conditons?

We are already in the steady state.

Analyticity (Hardy Space Properties) in k in the lower

half plane characterizes the solution u which is zero in

the past.
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Paley-Wiener Theorem – time

u(x, k) =

∫ ∞

−∞
eiktu(x, t)dt

=

∫ ∞

0

e−iktu(x, t)dt

uη(x, k) =

∫ ∞

0

e−i(k+iη)tu(x, t)dt

||uη(x, k)||L2(dk) = ||eηtu(x, t)||L2(dt)

• u is holomorphic as a function of k + iη ∈ C−

• uη → 0 as η → −∞.

• uη → u as η → 0.

Conversely, by deforming the contour of integration

u(x, t) =

∫ ∞

−∞
eiktu(x, k)dk

=

∫ ∞

−∞
ei(k+iη)tu(x, k + iη)dk

≤ e−ηt||u||
→ 0 for t < 0 and η → ∞
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Limiting Absorption Principle

(
∆ + k2

)
u = F (x)

(
k2 − |ξ|2

)
û = F̂ (ξ)

û(ξ, k) =
F̂ (ξ)

k2 − |ξ|2

The quotient is ambiguous because the singularity is not

integrable. However, because u is zero in the past,

û(ξ, k) = lim
ε↓0

F̂ (ξ)

(k − iε)2 − |ξ|2

û(ξ, k) :=
F̂ (ξ)

(k − i0)2 − |ξ|2

which is equivalent to (and more frequently written as)

=
F̂ (ξ)

k2 − |ξ|2 − i0
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Three Scattering Subspaces

Outgoing Functions

(
F̂ (ξ)

k2 − |ξ|2 − i0

)∨

Incoming Functions

(
F̂ (ξ)

k2 − |ξ|2 + i0

)∨

Free (Herglotz Wave) Functions

(
F̂ (ξ)

k2 − |ξ|2 − i0
− F̂ (ξ)

k2 − |ξ|2 + i0

)∨

=
(
2iF̂ (ξ)dS|ξ|2=k2

)∨
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Three Special Functions

Outgoing Hankel Functions




(
|ξ|
ik

)n
einθ

k2 − |ξ|2 − i0





∨

= H−
n (kr)einφ ∼ e−ikr

r
einφ

Incoming Hankel Functions




(
|ξ|
ik

)n
einθ

k2 − |ξ|2 + i0





∨

= H+
n (kr)einφ ∼ eikr

r
einφ

Free Bessel Functions

(
(−i)neinθdS|ξ|2=k2

)∨
= einφJn(kr)

=
einφ

2

(
H+
n (kr) +H−

n (kr)
)
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The Paley-Wiener Theorem — space

û(ξ + iη, k) =

∫

BR

e−i(ξ+iη)·xu(x, k)dx ≤
∫

BR

e|η||x||u|dx

û(ξ) extends to be holomorphic for all ξ + iη ∈ C2 and

|û| ≤ CeR|η|

⇐⇒
supp (u) ⊂ BR

û =
F̂ (ξ)

k2 − |ξ|2 − i0

If F̂ (kΘ) vanishes, then the quotient is holomorphic and

has the same exponential growth properties as F̂ .

If F̂ (kΘ) vanishes,

supp (u) ⊂ supp (F )

and F has zero far field.
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Hankel Function Expansion

û =
F̂ (ξ)

k2 − |ξ|2 − i0

F̂ (k, θ) =
∑

fne
inθ

F̂H(ξ) =
∑

fne
inθ

(|ξ|
k

)n

F̂H − F̂ vanishes on |ξ|2 = k2

so u− uH vanishes outside a ball containing supp (F ).

Outside that ball,

u = uH

=
∑

fn





(
|ξ|
k

)n
einθ

k2 − |ξ|2 − i0





∨

=
∑

fne
inθH−

n (kr)

∼
(∑

fne
inθ
) e−ikr

ikr

∼ F̂ (k, θ)
e−ikr

ikr
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Descriptions of the Far Field

Source

F̂ (k, θ) =
∑

fne
inθ

The very Far Field

u∞ =
e−ikr

2ikr
F̂ (k, θ) + ...

The not so Far Field – outside a ball containing suppF

u =
∑

fne
inθH+

n (kr)

Near Field — for any Ω containing the support F

fn =

∫

∂Ω

{
u, einφJn(kr)

}

=

∫

Ω

FJn(kr)e
inφdV

{u, v} :=

(
u
∂v

∂ν
− v

∂u

∂ν

)
dS
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The Wronskian

{u, v} :=

(
u
∂v

∂ν
− v

∂u

∂ν

)
dS [v∇u− u∇v]

∫

∂Ω

{u, v} =

∫

Ω

(
v
(
∆ + k2

)
u− u

(
∆ + k2

)
v
)
dV

For an outgoing u and a free solution v, i.e.
(
∆ + k2

)
u = F (x)

(
∆ + k2

)
vf = 0

∫

∂Ω

{u, vf} =

∫

Ω

FvfdV

If we choose vf to be a eikΘ·x,

∫

∂Ω

{
u, eikΘ·x} = F̂ (kΘ)
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Wronskian continued

If we choose vf to be a Jn(r)e
inφ,

∫

∂Ω

{
u, Jn(kr)e

inφ
}

=

∫

Ω

FJn(kr)e
inφdV

lim
R→∞

∫

∂BR

{
u, Jn(kr)e

inφ
}

=

∑
fm

∫ 2π

0

{
Hm(kr)eimφ, Jn(kr)e

inφ
}
dφ =

fn {Hn(kr), Jn(kr)} =

2ikfn =

fn =
1

2ik

∫

Ω

FJn(kr)e
inφdV

|fn| ≤ 1

2k
||F ||L2||Jn(kr)||L2(supp (F ))
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The Far Field and the Support of F

If supp (F ) ⊂ BR,

|fn| ≤
1

2k
||F ||L2||Jn(kr)||L2(BR)

Translation Formula

Fc = F (x− c)

F̂c(kΘ) = eikΘ·cF̂ (kΘ)

f cn =
∑
Jn−m(k|c|)e−inθc

If supp (F ) ⊂ BR(c),

|f cn| ≤
1

2k
||F ||L2||Jn(kr)||L2(BR)

||Jn(r)||L2(B25)
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The Circular Paley-Wiener Theorem

F̂ (kΘ) = Σfne
inθ

There exists F supported in BR

⇐⇒




fn
(∫ R

0 J2
n(ks)ds

)1
2





ε l2

Translation Formula

Fc = F (x− c)

F̂c(kΘ) = eikΘ·cF̂ (kΘ)

f cn =
∑
Jn−m(k|c|)e−inθc

There exists F supported in
⋂
BRc(c)

⇐⇒




f cn
(∫ R

0 J2
n(ks)ds

)1
2





ε l2 ∀ c
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fn =

∫
F (x)eix·ξe−inθdxdθ

=

∫
F (rΦ)eirk cos(θ−φ)e−inθrdrdφdθ

=

∫ 2π

0

dφ

∫ R

0

rdreinφf(rΦ)

∫ 2π

0

eirk cos(θ)e−inθdθ

We make θ complex

= . . .

∫ 2π

0

eirk cos(θ+iψ)e−in(θ+iψ)

≤ eRk sin(θ) sinh(ψ)e−nψ ∼ e
Rk
2 eψ−nψ

Now choose ψ = log 2n
RK

to optimize

≤
(
eRk

2n

)n
1√
n
∼ Jn(kR)

Conversely, we may extend

F̂ (θ) = Σfne
inθ

from the circle to the entire plane by

F̂E(ρ, θ) = Σfne
inθJn(ρR)

Jn(kR)

and check that the sum converges and satisfies the ap-

propriate Paley-Wiener estimates.
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The Simplest Example

F = δ0(x)

u = H0(kr)

F̂ (k, θ) = 1

f0 = 1

F = δc(x)

u =
∑

Jn(k|c|)Hn(kr)e
in(θ−θc)

F̂ (k, θ) = eik|c| cos(θ−θc)

fn = Jn(k|c|)einθc

Translation Formula

Fc = F (x− c)

F̂c(kΘ) = eikΘ·cF̂ (kΘ)

f cn =
∑
Jn−m(k|c|)e−inθc
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Some Asymptotic Formulas

For n > R

Jn(R) ∼ 1√
n

(
eR

2n

)n

||Jn||L2(BR) ∼ Jn+1
2
(R) ∼ 0

For n < R

||Jn|| ∼ (R2 − n2)
1
4
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A Line Source (k = 100)

fn
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A Triangular Source (k = 100)
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Theory and Practice

Theory:

• Only the large n asymptotics of the Fourier coeffi-

cients matter.

Practice:

• Only the the Fourier coefficients with n < kR are

appreciably nonzero. We can use the “transition to

evanescence” to find the “scattering support”.

Theory or Practice ???

• The Far field α(θ) = F̂ (k, θ) is an analytic function

of θ. Therefore, the restriction of α to any open

interval (i.e limited aperture) completely determines

α.
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Problem with Circular Paley Wiener
Theorem

“There exists an F” isn’t good enough. The source that

the theorem promises might have nothing to do with the

source that I am looking for.

Two More Examples

supp (Φ) compact

F =
(
∆ + k2

)
Φ

u = Φ

fn = 0

F = Φ(r)

u = CH0(kr)

f0 = C

fn = 0
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Resolution
Suppose supp F1 ⊂ Ω1 supp F2 ⊂ Ω2 and that F1

and F2 produce the same far field, and that R
n \ (Ω1

⋃
Ω2) is

connected and contains a neighborhood of ∞. then there exists an

F3, suppF3 ⊂ Nε(Ω1 ∩ Ω2), which also produces that

far field.

Ω1 Ω2

v =






φu1, x ∈ R
n\Ω1

φu2, x ∈ R
n\Ω2

0, x ∈ Ω1 ∩ Ω2

is a well-defined C∞ function and v = u1 = u2 outside a

compact set so that

f3 = (∆ + k2)v

must also have far field α.

Ω2

Ω1
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The Convex Scattering Support

If we take the Ω’s to be convex, then the small print is al-

ways satisfied. Moreover, since the intersections of convex

sets are convex, we can intersect infinitely many sources

and assert that there is genuinely a “smallest convex set”

which supports a far field.

cSksuppα =
⋂

F̂ (kΘ)=α(θ)

ch(suppF ).

• Any F with far field α must contain cSksupp α in its

convex support.

• There is a source,F , supported on any neighborhood

of cSksuppα, that produces the far field α. In par-

ticular, cSksuppα can’t be empty unless α is zero.

There can’t be a “biggest convex set” because of the pre-

vious examples. i.e. we can always add
(
∆ + k2

)
Φ to

any F to increase the support without changing the far

field.
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Special Cases

The more about the source, we can say more about the

relation between the scattering support and the true sup-

port. We are only scratching the surface in understanding

the relationship between the two.

• If F has a convex corner, that corner must belong to

the scattering support. In particular, convex poly-

gons have true support and convex scattering sup-

port equal.

• The scattering support of the characteristic function

of an ellipse is the line between its foci (almost).

• All these criterion apply directly to the (active imag-

ing) inverse scattering problem with a single incident

wave.

However, if we know the source must be an induced

source, this is not a sharp criterion. In some cases we

can show that a far field could have been produced by

a source with small support, but an induced source

must have had larger support.
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Laplace’s Equation
Outgoing solutions

∆u = F

u =
∑

bn
einθ

r|n|

Free solutions

∆vf = 0

vf =
∑

anr
|n|einθ

−|n|anbn =

∫

∂BR

{u, vf} =

∫

BR

Fvf

|bn| =
1

2|n|

∫
Fr|n|einθ

≤ 1

2|n| ||F ||L2

(∫

suppF

r2|n|+1dr

)1
2

≤ 1

4|n||n + 1| ||F ||L2 R|n|+1

bn’s decay (or grow) like R|n|+1 iff there exists a source

supported inBR.

Multi–polish translation formula

bcm =
∑(

m + k

k

)
|c|kbm+ke

ikθc
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Maxwell’s Equations
Outgoing Solutions

dE − ik ∗H = 0

dH + ik ∗ E = j

Free Solutions

dEf − ik ∗Hf = 0

dHf + ik ∗ Ef = 0

{(
E

H

)
,

(
Ef

Hf

)}
= E ∧Hf − Ef ∧H

d

{(
E

H

)
,

(
Ef

Hf

)}
= Ef ∧ j

∫

∂BR

{(
E

H

)
,

(
Ef

Hf

)}
=

∫

BR

Ef ∧ j

|anm| , |bnm| ≤ ||j||L2||Jn(kr)||L2(supp (j)

Ef = ∗dYnmrJn(kr)
Ef = (dYnm(rJn(kr))

′ + rJn(kr)n(n + 1)Ynmdr)

E =
∑

anm ∗ dYnmrH+
n (kr) +

∑
bnm

(
dYnm(rH+

n (kr))′ + rH+
n (kr)n(n + 1)Ynmdr

)
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Inhomogeneous Media

The notion of scattering support can be extended to in-

homogeneous media (i.e. non-constant coefficient equa-

tions).

Lu = F

Lvf = 0

The Far Field Operator maps sources in Ω to far fields :

F
GΩ7→ u∞

is compact and has a singular value decompositon.

GΩ =
∑

σnΦn ⊗ Ψn

GΩ has a big kernel;

ker(GΩ) =
{
F
∣∣F = LΦ supp Φ ⊂ Ω

}

The orthognal complement to that kernel is spanned by

the restrictions to Ω of the free solutions.

ker(GΩ)⊥ =
{
χΩvf

∣∣Lvf = 0
}
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A far field belongs to the range of GΩ iff
{

(u∞,Φn)

σn

}
∈ l2

In the Helmholtz case, with Ω equal to BR,

Φn = einθ

Ψn = Jn(kr)e
inφ

σ2
n =

∫ R

0

J2
n(kr)rdr

and this is exactly the condition of the circular PW the-

orem.

Notice that the convexity of Ω isn’t necessary to char-

acterize the range of GΩ. It is , however, necessary to

conclude that:

Range(GΩ1) ∩ Range(GΩ2) ⊂ Range(Nε (GΩ1∩Ω2))

which allows us to conclude the existence of a smallest

convex set which supports the far field.

??? Do the ||Ψn||L2(Ω’s begin to decay at a specific thresh-

old like the ||Jn(kr)||L2(BR)’s ???
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Inverse scattering

(
∆ + k2

)
u = k2q(x)u

u = uf + uo

∫

BR

quvf =

∫

∂BR

{u, vf} =

∫

∂BR

{uo, vf}

= lim
R→∞

∫

∂BR

{uo, vf} = A(Θ1,Θ2)

If we choose

uf = eikΘ1·x

vf = eikΘ2·x

If instead we choose

u = Jn(kr)e
inφ + . . .

vf = Jm(kr)eimφ

It appears that the Fourier coeficients of the scattering

amplitude satisfy

Anm ≤ K||Jm(kr)||L2(supp (q))||Jn(kr)||L2(supp (q))

which gives a stronger criterion than simply applying the

previous results.
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