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1 Fourier Transform

Fourier Transform

f̂(ξ) =

∫ ∞

−∞
eixξf(x)dx

Properties

̂(( d
dx)

n
f) = (iξ)n f̂

(ix)n f =

(
d

dξ

)n

f̂

f̂(x+M) = eiMξf̂(ξ)

̂eiMxf(x) = f̂(ξ +M)

Schwartz Class

S =

{
f
∣∣∣ sup

∣∣∣∣x
m(

(
d

dx

)n

f

∣∣∣∣ <∞
}

Inverse Fourier Transform

f(x) =
1

2π

∫ ∞

−∞
e−ixξf̂(ξ)dξ

Plancherel Equality

∫
f(x)g(x)dx =

1

2π

∫
f̂(ξ)ĝ(ξ)dξ
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Theorem 1 (Paley-Wiener Theorem). f ∈ S

supp f ⊂ R+

⇐⇒
f extends to a bounded holomorphic function on C+

Proof.

F (ζ) =
1

2π

∫ ∞

0

eitζf(t)dt

because <(itζ) ≤ 0,

|F (ζ)| =
1

2π

∫ ∞

0

|f(t)|dt

The converse is harder.

If F (ζ) is holomorphic and bounded on C+, so is

Fε(ζ) =
F (ζ)

(1 − iεζ)2

and for ζ ∈ C+,

|Fε(ζ)| ≤
1

1 + |εζ |2

As ε → 0, Fε(ζ) → F (ζ), so fε(t) → f(t), so if we prove that supp fε ⊂ R+,
then so is supp f .

fε(t) =

∫

R

e−itζFε(ζ)dζ

For t < 0, and γ(R) a semi-circular contour in the upper half plane,
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∫

−R R

e−itζFε(ζ)dζ = 0

R∫

−R

e−itζFε(ζ)dζ =

∫

−R R

e−itζFε(ζ)dζ

≤ πR

1 + |εR|2 → 0 as R → ∞

Corollary 2 (Paley-Wiener Theorem II). f ∈ S

supp f ⊂ [−M,M ]
⇐⇒

f̂ extends to a bounded holomorphic function on C with

|f̂(ζ)| ≤ KeM |=(ζ)|

Proof. Apply the previous theorem to f(x+M) and f(x−M), recalling the
formula for f̂(x+M)

2 The One Dimensional Wave equation

Utt − Uxx = −F (x, t) [= −F (x)δ(t)]

Initial Conditions

U(x, 0) = 0

Ut(x, 0) = 0
[U(x, t) ≡ 0 for t < 0]
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Fourier Transform in time

u(x, k) =

∫ ∞

−∞
eiktU(x, t)dt

f(x, k) =

∫ ∞

−∞
eiktF (x, t)dt

Helmholtz Equation

uxx + k2u = f(x) [= f(x, k)]

What about intial conditions ?

u(x, k) =

∫ ∞

0

eiktU(x, t)dt

f(x, k) =

∫ ∞

0

eiktF (x, t)dt

Because u(x, t) ≡ 0 for t < 0, u(x, k) extends to a bounded holomorphic
function on C+.

Corollary 3 (Corollary of Paley-Wiener Theorem). There exists at most
one causal solution to the Helmholtz equation.

Proof.

v′′ + k2v = 0

v = Aeikx +Be−ikx

Exercise Show that there is no choice of A and B such that

v = Aeiζx +Be−iζx

remains bounded for all x ∈ R and all ζ ∈ C+.

Constructing the Causal Solution

u′′ + k2u = f(x)

Fourier Transform in x,

û(ξ, k) =

∫ ∞

−∞
e−ixξu(x, k)dx
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(
−ξ2 + k2

)
û = f̂(ξ)

û =
f̂(ξ)

k2 − ξ2

u(x, k) =
1

2π

∫ ∞

−∞
eixξ

f̂(ξ)

k2 − ξ2
dξ

What does
∫

1
k2−ξ2 mean? Because 1

k2−ξ2 is not an integrable function, the

formula for u could mean different things. We will use causality.

u(x, k + iε) =
1

2π

∫ ∞

−∞
eixξ

f̂(ξ)

(k + iε)2 − ξ2
dξ

For ε > 0, the denominator never vanishes, so we know exactly what this
means.

The integrand is an analytic
function of ξ (for compactly
supported f(x)), so we may
view this as a contour integral.

We deform the contour of inte-
gration,

and then let k+ iε return to k.

k+iε

−k−iε

k+iε

−(k+iε)

k−k

Theorem 4. The unique causal solutiion to the Helmholtz solution is given
by:

u(x, k) =
1

2π

∫

k−k

eixξ
f̂(ξ)

k2 − ξ2
dξ
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Evaluate by residues for x > supp f
Suppose x > supp f (this means x > M = sup

x∈supp f
x)

∫

k−k

eixζ
f̂(ζ)

k2 − ζ2
dζ = 2πi

∑
residues

Only one residue at ζ = k.

= 2πi
−eixk f̂(k)

2k

u =
eixkf̂(k)

2ik
+

∫

−R R

eixζ
f̂(ζ)

k2 − ζ2
dζ

But, for ζ ∈ C+,

|eixζ f̂ | ≤ Ke−x=ζeM=ζ

= Ke(M−x)=ζ < K for x > M

and
∣∣∣∣

dζ

k2 − ζ2

∣∣∣∣ ≤
∣∣∣∣
Rdθ

R2 − k2

∣∣∣∣

so

∫

−R R

eixζ
f̂(ζ)

k2 − ζ2
dζ

R→∞−→ 0

Theorem 5. There exists a unique causal solution to

u′′ + k2u = f

For x outside the convex hull of the support of f ,

u+(x, k) =
1

2ik
eik|x|f̂(±k)
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with the ± sign equal to minus if x < supp f . u+ satisfies the Sommerfeld
Radiation Condition (SRC):

sgn (x)
d

dx
u+ = iku

The SRC solution is unique.

Proof. Check that

v = Aeikx +Be−ikx

cannot satisfy the SRC.

Fundamental Causal/SRC Solution
We could have written u as a convolution of f with a fundamental solution,

u+(x, k) =
1

2ik

∫

R

eik|x−y|f(y)dy

and then noted that, for x outside the convex hull of the support of f ,

eik|x−y| = eik|x|e±iky

3 The Two Dimensional Helmholtz Equation

(
∆ + k2

)
u = f

Fourier Transform

û =

∫

R2

e−i(xξ+yη)u(x, y)dxdy

û =
f̂(ξ, η)

ξ2 − (k2 − η2)

1
ξ2−(k2−η2)

is not integrable. The denominator vanishes simply on the circle
of radius k.
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Causality

û = lim
ε↓0

u(x, k + iε)

û(x,k+iε) =
f̂(ξ, η)

ξ2 − ((k + iε)2 − η2)

No zeros in denominator.
Define:

ω(ζ) =
√
ζ2 − η2

ωε = ω(k + iε)

ω = ω(k)

Properties of ω We make a precise defintion of ω, for each fixed real η.

ω(ζ) =
√
ζ2 − η2

For ζ large, we choose ω ∼ ζ

= ζ

√

1 −
(
η

ζ

)2

ω is holomorphic in C \ [−η, η]; it has a branch cut along the real interval
[−η, η]. As a function of ζ , ω maps each of the quarter planes to itself, In
particular,

=ζ ≥ 0 ⇒ =ω(ζ) ≥ 0

−η η →

−iη

iη

Exercise Use the maximum prinicple for harmonic functions to show that
=ω(ζ) ≥ =ζ for all ζ ∈ C+.
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uε =

∫

R

eiηy




∫

R

eiξx
f̂(ξ, η)

ξ2 − ω2
ε

dξ



 dη

We treat the inner integral, as we did in the one dimensional case.

Recall that f̂ extends to be
holomorphic in ξ (and in
η) because f is compactly
supported.

We deform the contour of inte-
gration,

and then let ε decrease to zero
so that ωε returns to ω.

ωε

−ωε

ωε

−ωε

ω−ω

u(x, y) =
1

(2π)2

∫

R

eiηy




∫

ω−ω

eiξx
f̂(ξ, η)

ξ2 − ω2
dξ



 dη

Evaluate by Residues

For x > supp f ,

∫

−R R

eiξx
f̂(ξ, η)

ξ2 − ω2
dξ −→

R→∞
0
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so

∫

ω−ω

eiξx
f̂(ξ, η)

ξ2 − ω2
dξ = 2πi (Residue at ω)

= 2πi
eiωxf̂(ω, η)

2ω

u =
1

2π

∫

R

ei(ηy+ωx)
f̂(ω, η)

2iω
dη

Integrable Singularity Note that 1
ω

= 1√
k2−η2

is singular at η = ±k, but

the singularity is integrable. This means that the integral above is unam-
biguously defined.

The Hankel Contour

u =
1

2π

∫

R

ei(ηy+ωx)
f̂(ω, η)

2iω
dη

η2 + ω2 = k2

so a trigonometric substitution will remove the singularity.

η = k sin θ

ω = k cos θ

dθ =
dη

ω

Its obvious that this change of variables takes η ∈ [−1, 1] to θ ∈ [−π
2
, π

2
], but

we need to make θ complex to cover the intervals (−∞,−1] and [1,∞).
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−π/2
π/2

γ(t) =






−π
2
− i(t+ π

2
) t < −π

2

t −π
2
< t < π

2
π
2
− i(t− π

2
) t > π

2

sin γ(t) =






− cosh(t+ π
2
) t < −π

2

sin t −π
2
< t < π

2

cosh(t− π
2
) t > π

2

cos γ(t) =






−i sinh(t+ π
2
) t < −π

2

cos t −π
2
< t < π

2

yi sinh(t− π
2
) t > π

2

For x > supp f

u(x, y) =
1

2πi

∫

γ

eik(x cos θ+y sin θ)f̂(k cos θ, k sin θ)dθ

or, in polar coordinates

u(r, φ) =
1

2πi

∫

γ

eikr cos(θ−φ)f̂(k, θ)dθ

This is only valid, and (the integral can only be shown to converge), for
r cosφ > supp f . But we can shift the contour of integration:

−π/2
π/20 −→

φ−π/2
φ+π/2φ

u(r, φ) =
1

2πi

∫

γφ

eikr cos(θ−φ)f̂(k, θ)dθ

=
1

2πi

∫

γ0

eikr cos θf̂(k, θ + φ)dθ
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This integral converges and gives u(r, φ) for all points outside the convex hull
of the support of f — although I haven’t quite explained why this is so.

Method of Steepest Descent
We want to evaluate (approximate)

u(r, φ) =
1

2πi

∫

γ0

ekrΦ(θ)f̂(k, θ + φ)dθ

where Φ(θ) = i cos θ as r −→ ∞ for fixed k.

1. Φ is imaginary so eΦ oscillates between −π
2

and π
2

2. Φ is real and negative on the vertical segments so eΦ decays (rapidly)

3. We expect only the stationary point at θ = 0 to contribute significantly
for large r.

Steepest Descent Contour

1. passes through stationary point

2. imaginary Φ is constant so no oscillation in eΦ. Nothing cancels

3. real Φ gets more negative as we move away from the stationary point,
so only a small neighborhood of the stationary point will contribute
significantly.

θ = σ + iβ

Φ(θ) = i cos(σ + iβ) = i cos(σ) cosh(β) + sin(σ) sinh(β)
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γst = {=Φ(σ + iβ) = =Φ(0) = 1}
= {cos σ cosh β = 1}

cosh β =
1

cos σ

eβ + e−β =
2

cos σ

0 = (eβ)2 − 2

cosσ
(eβ) + 1

β = log

(
1 − sin σ

cosσ

)

−π/2

π/2

γ
st

On γst, Φ = i+ sin σ sinh β

u(r, φ) =
eikr

2πi

∫

γst

ekr sinσ sinhβ f̂(k, σ + iβ + φ), d(σ + iβ)

=
eikr

2πi

∫ π
2

−π
2

e−kr
sin2 σ
cosσ f̂(k, σ + iβ + φ)(1 − i

cosσ
)dσ

We could use these exact formulas to see the asymptotic behavior of u. In-
stead, we proceed in a way that is a little less explicit, but is a better template
for applying the method to other problems.

We divide the contour integral into two parts; The δ in the calculation below
will wind up being about π

4
and the corresponding ε about 1√

2
.
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∣∣∣∣∣∣∣

∫

γ∩{|θ|>δ}

eikr cos θf̂(k, θ + φ)dθ

∣∣∣∣∣∣∣
≤

∫

γ∩{|θ|>δ}

e−kr sinσ sinhβ |f̂(k, θ + φ)||dθ|

≤
∫

γ∩{|θ|>δ}

e−kr sinσ sinhβekR sinhβ||f ||L1|dθ|

where R is the radius of the smallest ball containing the support of f

=

∫

γ∩{|θ|>δ}

e(−kr sinσ+kR) sinhβ|dθ| ||f ||L1

On γst, |θ| > δ implies that |σ| > ε and |β| > ε, and |dθ| ≤ dβ (you can check
this directly from the formula, or believe the picture, or think about what a
steepest descent contour has to do) so that

≤
∫ ∞

ε

e(−kr sin ε+kR) sinh(β)dβ

≤
∫ ∞

ε

e(−kr sin ε+kR) sinh(β) cosh β

cosh ε
dβ

=
e(−kr sin ε+kR) sinh(ε)

(kr sin ε− kR) cosh ε

The conclusion is that this part of the integral is exponentially decaying in
kr. The other part contains the behavior that dominates when kr is large.

∫

γ∩{|θ|<δ}

eikr cos θf̂(k, θ + φ)dθ = eikr
∫

γ∩{|θ|<δ}

e2ikr sin2( θ2)f̂(k, θ + φ)dθ

Here we can make the substitution w = sin θ
2

to obtain

= eikr
∫

γ∩{|θ|<δ}

e2ikrw
2

f̂(k, 2 arcsin(w) + φ)
2√

1 − w2
dw
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and use a convergent series expansion,

= eikr
∫

γ∩{|θ|<δ}

e2ikrw
2

(
1 +

1

2
w2 + . . .

) (
f̂(k, φ) + f̂ ′(k, φ)w + . . .

)
dw

= eikr



f̂(k, φ)

∫

γ∩{|θ|<δ}

e2ikrw
2

dw + f̂ ′(k, φ)

∫

γ∩{|θ|<δ}

e2ikrw
2

wdw + . . .





Finally set v =
√
krw to reveal the dependence on kr

= eikr



f̂(k, φ)

∫

γ∩{|θ|<δ}

e2iv
2 dv√

kr
+ f̂ ′(k, φ)

∫

γ∩{|θ|<δ}

e2ikrw
2 vdv

(kr)
+ . . .





and remember that we are on the steepest descent contour1 v =
√
iτ

=
eikrf̂(k, φ)

√
i√

kr

(∫ kr arcsin δ

−kr arcsin δ

e−2τ2

dτ + . . .

)

=
eikrf̂(k, φ)

√
i√

kr

(∫ ∞

−∞
e−2τ2

dτ + . . .

)

1All of our changes of variables have been analytic in a ball about θ = 0 and preserved

the real axis. The steepest descent contour, originally defined to be the one on which the

real part of an analytic function was constant and the imaginary part grew fastest, is still

the one that keeps the real part of that analytic function, now described in terms of a

different variable v2, constant.
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Summary

1. Define the Far Field α radiated by the source f :

α(θ) := f̂(k cos θ, k sin θ)

= f̂(k, θ)

= f̂(k, σ + iβ)

2. Outside the convex hull of the support of f , the radiated field u is given
by

u(r, φ) = 〈Γφ, α〉 =
1

2πi

∫

γφ

eikr cos(θ−φ)α(θ)dθ ∼ eikrei
π
4√

2πkr
α(φ)

−π

π

φ
0

φ
1

Contours γ
φ
 in the complex θ plane

π

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

σ

sin2σ/cosσ and σ2

3. α is entire and 2π periodic and

|α(σ + iβ)| ≤ Kessupp f (σ) sinh(β)

where ssupp f (φ) is the support function of the set Ω = supp f .

The Support Function

Notation:

Φ =

(
cosφ
sin φ

)

D is a domain in R2.

16



sD(Φ) := sup
x∈D

(Φ · x)

ch (D) =
{
x
∣∣x · Φ ≤ sD(Φ)

}

Fact:

sch (D)(Φ) = sD(Φ)

Corollaries of item 3

1. Rellich’s Lemma – α(θ) vanishes (on any subset of C with a limit
point) if and only if supp u ⊂ ch supp f .

2. If |α(φ+ iβ)| grows fast enough as β increases, i.e.

|α(φ+ iβ)| ≥ KeM sinh(β)

supp f must include some points above the line x · Φ = M .

4 The Hankel function, Real analytcity and

unique continuation

In the following section, we will make use of the fact, that a radiated waves
with zero far field is identically zero off the support of its source. We have
proven that this is true off the convex hull of the support of the source. The
unique continuation property will allow us to extend this conclusion beyond
the convex hull.

Unique Continuation Property A collection of functions has the unique
continuation property if the following holds:

If u and all its derivatives vanish at a point, then u is identically zero.

Theorem 6. Solutions to the free Helmholtz equation in a path-connected
domain D have the UCP.
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Sketch of Proof.

Lemma 7. Real analytic functions have the UCP.

Lemma 8. The Hankel function H0(|x|) is real analytic in R2 \0. Its Taylor
series expansion at a point p ∈ R2 has a radius of convergence r(p) = |p|.
Lemma 9. If v0(x) satisfies

(
∆ + k2

)
v0 = 0 in D

and
∫

∂D

|v0(y)|dsy <∞ (4.1)

and
∫

∂D

|∂v
0

∂ν
(y)|dsy <∞ (4.2)

then

v0(x) =

∫

∂D

(
H0

∂v0

∂ν
− v0∂H0

∂ν

)
ds (4.3)

and v0 is real analytic in D

proof that real analytic function have the UCP. .

Definition of Real Analytic A function is real analytic in a domain D if
its Taylor series expansion has a nonzero radius of convergence at every point
in D.
A sufficient condtion that a function is real analytic at p with radius of
convergence r(p)2 is that its partial derivatives satisfy:

|∂xn1∂xm2 u(p)| ≤ n!m!

(r(p))n+m
(4.4)

2Actually, this condition guarantees convergence in the square {|x1| < r} ∩ {|x2| < r}.
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Lemma 10. If If u is real analytic and r(p) denotes the radius of convergence
at a point p, then

r(q) ≥ r(p) − |p− q| (4.5)

and r(p) is a continuous function of p

Proof. To establish (4.5), we need to show the estimate (4.4) at the point q.
We may assume p = 0. We will give the proof for a single variable,

u(q) =
∑

anq
n

∂xku(q) =

∞∑

n=k

an
n!

(n− k)!
qn−k

|∂xku(q)| ≤
∞∑

n=k

(r(p))n
n!

(n− k)!
|q|n−k

but we can recognize the series on the right as

≤ ∂

∂qk

(
1

r − q

)

=
k!

(r − q)k

which is the estimate needed in (4.4), with r − q in place of r.
Does the one-dimensional proof imply the two dimensional result by con-
sidering u(q cos θ, q sin θ) as a function of the one-dimensional variable q, for
every parameter θ?

Since p and q are interchangeable, continuity is an immediate consequence
of (4.5).

Suppose u is real analytic and vanishes to infinite order at p. Then u is
identically zero inside the ball about p with radius r(p). Let q be another
point and connect p to q with a (compact) path of finite length.r(p) has a
minimum on the path. Cover the path with a finite number of balls of that
minimum radius. Each centered at a point within the previous ball. Since u
vanishes identically in the first ball, it vanishes to infinite order at the center
of the second ball, etc.
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Proof that the Hankel function is real analytic.

H0(kr) =

∫

−π/2
π/20

eikr cos(θ)dθ

As a function of r, eikr cos(θ) is complex analytic in all of C, so the integral
over θ will also be analytic wherever it converges (the integral is a limit
of Riemann sums, which we will show converge uniformly for r in compact
subsets of C \ {0} ). The only place convergence is an issue is on the vertical
segments. Along the segment γ = −iπ

2
+ t the integral is dominated by

∫ ∞

0

e−re
−ψ

dψ

which converges uniformly as long as <r ≥ δ > 0 is positive.The other ver-
tical segment is estimated similarly.

Taylor series for complex analytic functions converge in the largest ball for
which the function is analytic, so the series for H0(r− |p|) has radius of con-
vergence r(p) = |p|.

Warning I have been a bit cavalier about equating the convergence of the
Taylor series for H0(r− |p|) on the real axis with that for H0(|x− p|) in R2.
I should really say something about composition or real analytic functions
and square roots.

Modifying the contour from γ0 to γφ, as we did on page ???, will give an
analytic continuation of H0 to any r ∈ C \ {0}, but 0 is a branch point with
a logarithmic singularity. We can see this by returning to

∫ ∞

0

e−re
−ψ

dψ =

∫ ∞

0

e−e
log r−ψ

dψ

=

∫ ∞

− log r

e−e
−τ

dτ

=

∫ 0

− log r

e−e
−τ

dτ +

∫ ∞

0

e−e
−τ

dτ
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the second integral is a constant and the first is bounded (both above and
below) by a multiple of log r.

Proof that v0 is real analytic. .

The formula

v0(x) =

∫

∂D

(
H0(|x− y|)∂v

0

∂ν
− v0∂H0(|x− y|)

∂ν

)
dsy

shows v0(x) as a limit of Riemann sums of H0(|x − yk|) and its derivative.
Each of the functions H0(|x − yk|) is real analytic at x = p with radius of
convergence rk = |p − yk|, All the yk’s are on the boundary of B, so all
the individual Taylor series converge in any ball about x = p which doesn’t
intersect the boundary. The finite sum of real analytic functions is real
analytic, so each Riemann sum is real analytic in a ball of radius d(p), where
d(p) is the distance from p to the boundary of D.
Passing to the limit requires a little care. One way to prove a function is real
analytic is to estimate its derivatives. The derivatives of H0(|x− y|) satisfy

|∂xn1∂xm2 H0(|p− y|)| ≤ log |p− y| 1

|p− y|n+m
n!m!

because of the fact that H0(r) is holomorphic (Cauchy integral formula) and
the estimate |H0(r)| ≤ log(|r|). We can differentiate under the integral sign
and check that

|∂xn1∂xm2 v0(p)| ≤
∫

∂B

log |p− y|
(

1

|p− y|n+m
|∂v

0

∂ν
(y)| + 1

|p− y|n+m+1
|v0|

)
dsy

≤ log(d(p))
1

d(p)n+m+1
n!m!

∫

∂D

(
|v0(y)| + |∂v

0

∂ν
(y)|

)
dsy

where d(p) is the distance to the boundary. This shows that as long as we
know that the boundary values of v0 are integrable, v0 is analytic in the
interior.
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5 Inverse Source Problem

Question: Deduce some useful information about f from its far field, α(θ) =

f̂(k cos(θ), k sin(θ)).

5.1 Non-Radiating Sources, and Equivalent Sources

Reminder: All sources are compactly supported.

The radiated wave is the causal/outgoing solution to the Helmholtz equa-
tion outside the support of the source.

The far field is the asymptotic behavior of the radiated wave.

Non-radiating Source: A source is non-radiating if the following equivalent
conditions are satisfied:

1. The far field vanishes.

2. The radiated wave vanishes.

Equivalent Sources: Two sources are equivalent if they radiate the same
wave.

D-Free waves satisfy the free Helmholtz equation in the domain D.

(
∆ + k2

)
v0 = 0

Theorem 11. A source f ∈ L2(D) is non-radiating if and only if either of
the conditions below hold

1. f = (∆ + k2) Φ00

2. f is orthogonal to all D- free waves

where the notation Φ00 means that ( Φ ∈ H2
0 (D)) Φ and its first order and

second order derivatives are square integrable and Φ vanishes outside D.

Proof. If f is non-radiating, then the radiated wave is the Φ00. If 1 holds then
Φ00 satisfies the (SRC), so is the unique outgoing solution to the Helmholtz
equation, so f is non-radiating.
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∫

D

v0f =

∫

D

v0
(
∆ + k2

)
u+

=

∫

D

(
∆ + k2

)
v0u+ +

∫

∂D

v0∂u
+

∂ν
− u+∂v

0

∂ν

= 0 +

∫

∂D

v0∂u
+

∂ν
− u+∂v

0

∂ν

If f is non-radiating, then u+ and its first derivatives vanish on ∂D, so 2
holds. If 2 holds, then choose v0 = eikΘ·x to see that

0 =

∫
eikΘ·xf(x)dx

= f̂(kΘ)

so the far field vanishes and f is non-radiating.

Theorem 12. Every source supported in D has an equivalent D-free source
(supported in D).

Proof. The fourth order PDE,

(
∆ + k2

)2
Φ00 =

(
∆ + k2

)
f (5.1)

has a unique solution (this requires a proof I haven’t given – the unbounded
operator is self adjoint, so has compact resolvent; if zero were an eigenvalue,
this would violate uniqueness for the Cauchy problem for (∆ + k2)).
Because (∆ + k2) Φ00 is non-radiating, f − (∆ + k2) Φ00 radiates the same
far field as fand is D − free because of (5.1).

Theorem 13. Fix any open neighborhood of ∂D and call it Nε(∂D). Every
source supported in D has an equivalent source supported in Nε(∂D).

Proof. Let u+ be the radiated wave and let φε be a smooth function which
is identically equal to one in the unbounded component of R2 \ (Nε(∂D) and
identically equal to zero in all bounded components of R2 \ (Nε(∂D). It is
easy to check that f = (∆ + k2) (φu+) is supported in Nε(∂D) and that φu+,
which has the same far field as u+, is the unique outgoing solution.
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5.2 The Support of a Far Field

We want to say something about the support of a source that radiates a given
far field. The theorems above show that:

1. If f radiates α and supp f ⊂ D, then there exists another source (e.g.
the unique D-free source) whose support is all of D. Hence we can
always make the support bigger without changing the far field.

2. If supp f is properly contained in the interior of D, so that supp f ∩
Nε(∂D) = ∅, then we can find another source with support that is
disjoint from the support of f . In fact, we can find a combination of
single and double layer potentials supported exactly on (∂D).

Carrier A set D carries a far field α if, for every ε > 0, there exists a source
f , supported in Nε(D), that readiates α.

Minimal Carrier D is a minimal carrier for α if no proper subset of D
carries α.

Theorem 14. If α has a compact carrier, then α has a unique minimal
conxex carrier.

Minimal Convex Carrier D is a minimal convex carrier for α if no proper
convex subset of D carries α.

The convex support of a Far Field is the unique minimal convex carrier.

Lemma 15. If Ω1 and Ω2 carry α, and Rn \ (Ω1 ∪ Ω2) is connected, then
Ω1 ∩ Ω2 carries α.

Remark – Rn \ (Ω1 ∪ Ω2) is connected means:

and not

Proof.
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(∆ + k2)u1 = F1

(∆ + k2)u2 = F2

v =






φu1, x ∈ Rn\Ω1

φu2, x ∈ Rn\Ω2

0, x ∈ Ω1 ∩ Ω2

v = u1 v = 0 v = u2

v = u1 = u2

F3 = (∆ + k2)v

v is a well-defined function as long as u1 = u2 on Rn \ (Ω1

⋃
Ω2), which

follows from Rellich’s lemma and unique continuation. �

Proof. of theorem 14
The unique minimal convex set must be the intersection of all convex sets
that carry α.

csupp α :=
⋂

D∈D
D

We must show that csupp α carries α. We first will show that, for any ε > 0,
there is a finite subcollection such that

Nε(csupp α) ⊃
N⋂

n=1

Dn (5.2)

Once we have established (5.2), then we can use induction and the intersec-
tion lemma to complete the proof. Convexity is used in two places:

1. The intersection of convex sets is convex.

2. The complement of the union of two convex sets is connected. The
complement of the union of three convex sets need not be connected. A
triangle is the union of three line segments

We will deduce (5.2) from the fact that every open cover of a compact set
has a finite subcover.

Since α has at least one compact carrier, say B, csupp α ⊂ B
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csupp α =
⋂

D∈D
D ∩ B

Taking complements

B \ csupp α =
⋃

D∈D
B \ (D ∩B)

B \Nε(csupp α) ⊂
⋃

D∈D
B \ (D ∩B)

Now B \Nε(csupp α) is compact and B \ (D∩B) are open (as subsets of B),
so a finite subcollection covers, i.e.

B \Nε(csupp α) ⊂
N⋃

n=1

B \ (Dn ∩ B)

or, taking complements

Nε(csupp α) ⊃
N⋂

n=1

(Dn ∩B)

Unions of Well Separated Convex Sets - A set is UWSCS if

B =
⋃
Bk

Each Bk is convex

diam(Bk) < dist
j 6=k

(Bk, Bj)

Theorem 16. If α has a compact carrier, then α has a unique minimal
UWSCS carrier.

5.3 Thin Sources — Single and Double layers

Suppose that D is a smooth domain, and we have two smooth functions, one
defined inside D and the other defined outside D.
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v =

{
v1 for x ∈ D

v2 for x ∈ R2 \D

We want to define (∆ + k2) v. If vε are smooth functions (across ∂D) that
approximate v, and Φ is an arbitrary smooth compactly supported function,
then

∫

R2

Φ
(
∆ + k2

)
vε =

∫

R2

vε
(
∆ + k2

)
Φ

but the limit on the right hand side always exists, so we may define:

〈
(
∆ + k2

)
v,Φ〉 :=

∫

R2

v
(
∆ + k2

)
Φ

We have defined (∆ + k2) v by saying what is does to a smooth function Φ.
This makes sense for any integrable function v, but for a v which is smooth
inside and outside D, we can compute a more explicit formula.

〈
(
∆ + k2

)
v,Φ〉 =

∫

R2

v
(
∆ + k2

)
Φ

=

∫

D

v
(
∆ + k2

)
Φ +

∫

R2\D

v
(
∆ + k2

)
Φ

=

∫

D

Φ
(
∆ + k2

)
v +

∫

∂D

Φ
∂v

∂ν
− v

∂Φ

∂ν

+

∫

R2\D

Φ
(
∆ + k2

)
v −

∫

∂D

Φ
∂v

∂ν
− v

∂Φ

∂ν

=

∫

D

Φ
(
∆ + k2

)
v1 +

∫

R2\D

Φ
(
∆ + k2

)
v2 +

∫

∂D

Φ[
∂v

∂ν
] − [v]

∂Φ

∂ν

where [v] = v1 − v2 means the jump in v across ∂D.
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If we choose v1 and v2 to be solutions to the free Helmholtz equation in D

and R2 \D, respectively, then

〈
(
∆ + k2

)
v,Φ〉 =

∫

∂D

Φ[
∂v

∂ν
] − [v]

∂Φ

∂ν

which we write as

(
∆ + k2

)
v = [

∂v

∂ν
]δ∂D + [v]δ′∂D

For a smooth curve γ, we define the dirac delta on γ by

〈δγ ,Φ〉 =

∫

γ

Φdγ =

∫ L

0

Φ(γ(s))ds

〈δ′γ ,Φ〉 =

∫

γ

∂Φ

∂ν
dγ =

∫ L

0

∂Φ

∂ν
(γ(s))ds

where s is the arclength parameter.

A thin source is a distribution that is supported on a set of measure zero (a
single or a double layer on a curve) such that the solution to the Helmholtz
equation is a (locally L1) function.

Example of a thin source

f = aδγ + bδ′γ

where a and b are functions defined on γ.

Theorem 17. A thin source ω is non-radiating if and only if

1. supp ω is the boundary of a bounded open set D
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2. ω is the Cauchy data of a D-free wave restricted to ∂D, i.e.

ω = ∂v0

∂ν
δ∂D + v0δ′∂d

where

(∆ + k2) v0 = 0 inside D

Proof in the case that supp ω is a smooth curve. The if direction is easy, if
we start with a D and a v0, then define

u =

{
v0 x ∈ D

0 x ∈ R2 \D

then the jump formula tells us that (∆ + k2) u = ω and because u = 0 out-
side D, it satisfies the (SRC).

For the other direction, observe that R2 \ supp ω has one unbounded and
(possibly) one or more bounded components. If ω is non- radiating, then the
solution uto

(
∆ + k2

)
u = ω

is identically zero on the unbounded component, and satisfies (∆ + k2)u = 0
in the open bounded components D.

If D has a smooth boundary, then

(
∆ + k2

)
u = ω = [

∂u

∂ν
]δ∂D + [u]δ′∂D

but u is zero outside D, so the jump across D is just the boundary values of
u from the inside.

If R2\supp ω contains a curve which is not part of the boundary of a bounded
component, then u ≡ 0 on both sides of that curve supp ω, so the jumps are
zero, hence ω ≡ 0.

The same proof holds without smoothness assumptions, but we need to use
the language of distributions to replace the jump formulas.
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Arcs — A set γ of measure zero is an arc if R2 \ γ is connected.
Arcs are the opposite of boundaries.

Theorem 18. Arcs are minimal carriers, i.e. if ω radiates α and γ = supp ω
is is an arc, then no source supported on a subset of γ can radiate α.

Proof. If u is any solution to

(
∆ + k2

)
u = ω

then, the jump formula tells us that

ω = [
∂u

∂ν
]δγ + [u]δ′γ

Let ω2 and be another source supported in γ that radiates α, and u2 the
radiated wave.

(
∆ + k2

)
u2 = ω2

Then, the jump formula tells us that

ω2 = [
∂u2

∂ν
]δγ + [u2]δ

′
γ

but Rellich’s lemma and unique continuation tell us that u = u2 on R2 \ γ,
so ω2 = ω, and therefore supp ω2 = supp ω = γ.

Examples of Equivalent Minimal Sources.

1. The Cauchy data of a free solution, restricted to a boundary ∂D is a
non-radiating source ω.

2. Cut the boundary into 2 halves; ∂D = γ1 ∪ γ2.

3. ω1 and −ω2 are equivalent sources.

4. γ1 and γ2 are minimal carriers.

5. Ergo, there cannot exist a unique minimal carrier.
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Example 1 Let v0 = eikΘ·x or v0 = J0(kx),then

ω =
∂v0

∂ν
δγ + v0δ′γ

is nonradiating, so

ω1 =
∂v0

∂ν
δγ1 + v0δ′γ1

and

−ω2 = −∂v
0

∂ν
δγ2 − v0δ′γ2

are equivalent minimal sources. Moreover,

ω3 =
∂v0

∂ν
δγ3 + v0δ′γ3

is also equivalent,and γ3 is the unique minimal
convex carrier.

γ1

γ2

Example 2

We define ω1 and −ω2 just as in the previ-
ous example. Both sources are equivalent and
both γ1 and γ2 are minimal carriers that are
unions of convex sets. Only γ1, however, is
well-separated.

γ2

γ2

γ1γ1

6 Computing the Support of a Far Field

The Restricted Restricted Fourier Transform and its Singular Value Decomposition

L2(BR(0))
FR−→ L2(S1)

f(r, φ)
FR7−→ f̂(k, θ)
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Theorem 19.

FR =
∑[

2π

k2
σn(kR)

] [
einθ√
2π

]
⊗

[
k2einφJn(kr)√

2πσn(kR)

]

So that the singular values of FR are 2π
k2σn(kR) with

σ2
n(s) =

∫ s

0

|Jn(r)|2rdr

Proof.

FRf =

∫ R

0

∫ 2π

0

eikr cos(θ−φ)f(r, φ)rdrdφ

F∗
Rα =

∫ 2π

0

e−ikr cos(θ−φ)α(θ)dθ

We apply F∗
R to einθ

F∗
Re

inθ =

∫ 2π

0

e−ikr cos(θ−φ)einθdθ

=

∫ 2π

0

e−ikr cos(ψ)einψdψeinφ

= (−i)nJn(kr)einφ

We conclude that

FR =
∑

einθ ⊗ Jn(kr)e
inφ

and normalize the right and left eigenfunctions

=
∑

2πβn
einθ√
2π

⊗ einφJn(kr)√
2πβn
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where

β2
n =

∫ R

0

|Jn(kr)|2rdr

=
1

k2

∫ R

0

|Jn(kr)|2krd(kr)

=
1

k2

∫ kR

0

|Jn(s)|2sds

=
1

k2
σn(kR)

Corollary 20. α(θ) is the restricted Fourier transform of a function f ∈
L2(BR(0)), if and only if

α(θ) =
∑
αne

inθ

with

∑ | αn
σn(kR)

|2 <∞
and

∑ | α
p
n

σn(kR)
|2 = ||f ||L2(BR(0))

Corollary 21. α(θ) is the restricted Fourier transform of a function f ∈
L2(BR(p)), if and only if

ei|p| cos(θ−φp)α(θ) =
∑
αpne

inθ (6.1)

with

∑ | α
p
n

σn(kR)
|2 <∞ (6.2)

Proof. The Fourier Transform of a translated function is the Fourier trans-
form of the function multiplied by a phase factor, i.e.

̂f(x− p) = f̂ eip·ξ

or, in polar coordinates

= f̂ × eiρ|p| cos(θ−φp)

Setting ρ = k gives formula for the restricted Fourier transform.
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Corollary 22. α(θ) is the restricted Fourier transform of a function f ∈
N⋂
j=1

L2(BRj (pj)), if and only if (6.1) and (6.2) hold for every j.

Proof. We just combine the intersection lemma 15 with the previous corollary
21.

Rapid Transition to Evanescence

Below is a plot of σn(25) as a function of n.
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σ n

• σn(R) uniformly big if n < R

• σn(R) uniformly small if n > R

• Uniform contrast between big and small
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An Algorithm based on the Rapid Transition

• Expand the far field α(θ) in a Fourier series

• Plot the modulus of the Fourier coefficients.

• Find the value of n where they become effectively zero.

• The convex support of the far field is contained in the ball of radius
R = n

k
centered at zero.

• Replace α(θ) by eikΘ·cα = eik|c| cos(θ−φc)α(θ) and repeat.

Locating the Scattering Support (k = 10)
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20% additive gaussian noise (k = 10)
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50% additive gaussian noise (k = 10)
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A Pentagon and 100 circles
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Some Analytical Justification

Lemma 23. For fixed s and n ≥ 0 , σ2n+1(s) and σ2n(s) are monotone
decreasing functions of n.

Proof.

J ′
n =

Jn+1 − Jn−1

2
n

r
Jn =

Jn+1 + Jn−1

2
n

2r
(J2
n)

′ =
J2
n+1 − J2

n−1

4∫ R

0

n

2r
(J2
n)

′rdr =
σ2
n+1 − σ2

n−1

4

2nJ2
n(R) = σ2

n+1 − σ2
n−1

σ2
n−1(R) = 2nJ2

n(R) + σ2
n+1

= 2nJ2
n(R) + (2n+ 2)J2

2n+2(R) + . . .

Lemma 24.

σ2
n(R) = (RJ ′

n(R))2 + (R2 − n2)J2
n(R)
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Proof.
(
r
d

dr

)2

Jn + (k2r2 − n2)Jn = 0

multiply by 2
(
r d
dr

)
Jn

(
r
d

dr

) (
r
d

dr
Jn

)2

+

(
r
d

dr

) (
(k2r2 − n2)J2

n

)
= 2k2r2J2

n

multiply by 1
r

and integrate from 0 to R.

(
r
d

dr
Jn

)2 ∣∣∣
r=R

+ (k2R2 − n2)J2
n(R) = 2k2σ2

n

Lemma 25. For n < R, with cosα = n
R
, and consequently n tanα =

R sinα =
√
R2 − n2,

Hn(R) = ei(n(tanα−α)+π
4
)

√
1

2πn tanα

(
1 +O

(
1√

n tan3 α

))

Jn(R) = cos(n(tanα− α) +
π

4
)

√
1

2πn tanα

(
1 +O

(
1√

n tan3 α

))

RH ′
n(R) = ei(n(tanα−α)+π

4
) iR sinα

√
1

2πn tanα

(
1 +O

(
1√

n tan3 α

))

RJ ′
n(R) = R sinα sin(n(tanα− α) +

π

4
)

√
1

2πn tanα

(
1 +O

(
1√

n tan3 α

))

σ2
n(R) =

1

π
n tanα

(
1 +O

(
1√

n tan3 α

))

(very sketchy) Sketch of Proof. Set R = n
cosα

and apply the method of steep-
est descent to the integral which defines the Hankel function

Hn =

∫

γ1

ei(R sin(θ)−nθ)dθ

where γ1 is the contour γst we used before shifted by π
2
.
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Theorem 26. There is a constant K, such that, for any constant M , and
n < R−MR

1
3

(
1 − K

M2

)√
R2 − n2 ≤ πσ2

n(R) ≤
(

1 +
K

M2

)√
R2 − n2

The theorem says: If we plot σ2
n(R) for fixed R as a function of n, it really

looks like a semicircle of radius R on the blue part.

(R−R1/3,R2/3)(−R+R1/3,R2/3)

x = n    R=10

y = πσ
n
2(R)

(1−R−2/3,R−1/3)(−1+R−2/3,R−1/3)

x = n/R   R=100

y = πσ
n
2(R)/R
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