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Abstract

We prove the existence of infinitely many real interior transmission
eigenvalues for positive contrasts that are bounded above and below
by a powers of the distance to the boundary, and give a lower bound
for the counting function.

1 Introduction

In this paper we will study the real interior transmission eigenvalues. We
will prove that positive values of the square of the wavenumber k2 for which
there is a non-trivial pair (U, V ) solving

∆U(x) + k2(1 +m(x))U(x) = 0, x ∈ D, (1.1)

∆V (x) + k2V (x) = 0, x ∈ D, (1.2)

U(x) = V (x), ∂U
∂ν

(x) = ∂V
∂ν

(x), x ∈ ∂D. (1.3)

are discrete and infinite for a class of positive measurable contrasts m which
vanish, or blow up, at the boundary of a bounded domain D ⊂ Rd like a
power of the distance to the boundary. We will also give a lower bound on
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the counting function for continuous contrasts.

The interior transmission eigenvalue problem arises naturally in inverse
scattering theory. If k2 is not a transmission eigenvalue then the relative
scattering, or far field, operator is injective with dense range. This condition
guarantees the success of certain inverse scattering algorithms ([6], [8]).

The study of the interior transmission problem and transmission eigenval-
ues has a long history. The problem was first introduced in 1988 by Colton
and Monk [7] in connection with an inverse scattering problem for the reduced
wave equation. The discreteness of the set of transmission eigenvalues was
established by Colton, Kirsch and Päivärinta [5]. Päivärinta and Sylvester
[18] proved the first existence result in 2008. The existence of an infinite set
of transmission eigenvalues was established by Cakoni, Gintides and Haddar
[2]. We also mention some results on transmission eigenvalues for Maxwell’s
equations and for the Helmholtz equation in presence of cavities [3], [13], [4],
as well as very recent results on transmission eigenvalues for elliptic oper-
ators of arbitrary order with constant coefficients of Hitrik, Krupchyk, Ola
and Päivärinta [10], [11], [12].

The knowledge of the transmission eigenvalues uniquely determines a ra-
dial scatterer [14], [15], [18]. For non-radial scatterers, transmission eigen-
values have also been used to infer simple properties of the scatterer [1].

2 Existence of Transmission Eigenvalues

We will follow the approach introduced in [20] and followed in [18], making
the substitution u = U − V , and applying the operator ∆ + k2 to (1.1). We
will seek values of k2 (we replace k2 with the letter τ below) for which there
is a nontrivial solution u to the fourth order boundary value problem.

(∆ + k2) 1
m

(∆ + τ(1 +m))u = 0 (2.1)

u(x) = 0, ∂u
∂ν

(x) = 0, x ∈ ∂D. (2.2)

We will work in different weighted Sobolev spaces, depending on how m
decays or grows as we approach the boundary. In all cases, when we say that
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τ is a transmission eigenvalue, we will mean the existence of a nontrivial
weak solution to (2.1) which belongs to the standard Sobolev spaces H2

loc(D)
and Hs

0(D) for some s > 3
2
, so that (2.2) is satisfied. The multiplicity of a

transmission eigenvalue is the dimension of the solution space.

We let Nm,D(τ) denote the counting function, the number of real trans-
mission eigenvalues (counting multiplicity) less than or equal to τ and let
ρ(x) denote the distance from x to the boundary of D. Our main result is
the following:

Theorem 1. Let D be a bounded domain in Rd, and suppose that there are
two positive constants mα and mβ such that

mβρ
β ≤ m(x) ≤ mαρ

α (2.3)

with
−1 < α ≤ β < α + 2

Then there is a constant K0 small enough, depending on both m(x) and D,
such that

Nm,D(τ) ≥ K0τ
d
2 − 1 (2.4)

A particular consequence of (2.4) is that there are infinitely many trans-
mission eigenvalues. We will give a more explicit description of the constant
K0 in proposition 11.

Because

Lτ = (∆ + τ)
1

m
(∆ + τ(1 +m)) = (∆ + τ(1 +m))

1

m
(∆ + τ) (2.5)

with a domain that includes the boundary conditions (2.2), is self-adjoint,
we may analyze its spectrum by considering the quadratic form

Qτ (u) =

∫
D

(∆ + τ)u
1

m
(∆ + τ(1 +m))u (2.6)

We will consider Qτ as an unbounded quadratic form on the Hilbert space
H = L2

−δ(D), the closure of C∞0 (D) in the norm
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||f ||−δ := ||ρ−δf ||L2(D) (2.7)

We will show that, if we choose δ satisfying

max(β − α
2
,−α

2
) ≤ δ < α

2
+ 2

then the domain of Qτ satisfies

M2
−(β

2
+2)
⊂ Dom(Qτ ) ⊂M2

−(α
2
+2)

where Mp
σ is the closure of C∞0 (D) in the norm

||f ||2p,σ :=

p∑
|η|=0

||Dηf ||2σ+|η| (2.8)

We will make use of a Hardy inequality and a few simple propositions:

Proposition 2. If δ > 1
2
, there is a positive constant K, depending on D

and δ, such that

||u||1,−δ ≤ K||∇u||−(δ−1) (2.9)

If δ > 3
2
, there is a positive constant K, depending on D and δ, such that

||u||2,−δ ≤ K||∆u||−(δ−2) (2.10)

Proposition 3. If u ∈ Mp
−δ with p > 1

2
and δ > 1

2
, then u vanishes on ∂D.

If p > 3
2

and δ > 3
2
, then ∇u vanishes on ∂D as well.

Proposition 4. If D1 ⊂⊂ D2 and δ1 ≥ p, then Mp
−δ1(D1) ⊂Mp

−δ2(D2).

Proposition 5. If p1 > p2, and δ1 > δ2, then the embedding of Mp1
−δ1 into

Mp2
−δ2 is compact.

Proposition 3 gives a convenient way to remember the inclusions among
the weighted spaces. A function in Mp

−δ vanishes to order δ at the boundary
of D as long as p is large enough to ensure that the restriction makes sense.
Proposition 4 says that compactly supported functions vanish to all orders at
the boundary, and proposition 5 says that spaces with more regularity and
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more decay are compactly embedded in spaces with less decay and regularity.

A proof of proposition 2 can be found in [16] or [21]. Note that a con-
sequence of proposition 2 is that the unweighted Sobolev space H2

0 (D) is
equivalent to M2

−2(D). Thus proposition 3 follows from the corresponding
statements for Hs

0(D) with s > 1
2

and s > 3
2
. Proposition 4 is a consequence

of the fact that an L2(D) function with compact support belongs to L2
δ(D)

for any δ.

Proof of Proposition 5. Suppose un converges weakly to zero in Mp1
−δ1 . We

need to show that ||un||p2,−δ2 → 0. Fix ε > 0 and define Dk = {ρ(x) ≥ 1
k
}.

Since the ||un||p1,−δ1 are uniformly bounded ,∫
D\Dk

|ρ|α|−δ2Dαun| ≤
(

1

k

)δ1−δ2 ∫
D\Dk

|ρ|α|−δ1Dαun| (2.11)

≤
(

1

k

)δ1−δ2
||un||p1,−δ1 ≤ ε (2.12)

if we choose k large enough. For each compact set Dk,∫
Dk

|ρ−δ2Dαun| ≤ kδ2||un||Hp2 (Dk) (2.13)

and ∫
Dk

|ρ−δ1Dαun| ≥ (diam(D))−δ1 ||un||Hp1 (Dk)

The compact embedding of Hp1(Dk) in Hp2(Dk) guarantees that choosing
n = n(k) large enough will ensure that the left hand side of (2.13) is less
than ε.

We will choose a Hilbert space H for which the quadratic forms Qτ are
bounded from below and have form domains which are compactly embedded
in H. To see what this requires,we note that

Q0(u) =

∫
(∆u)

1

m
(∆u)

and expand
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Qτ (u) = Q0(u) + 2τ<
∫
u

1

m
(∆u) + τ 2

∫
1

m
|u|2 + τ

∫
u∆u+ τ 2

∫
|u|2

We estimate each term,

Kα||u||2,−(α
2
+2) ≤

1

mα

||∆u||−α
2
≤ Q0(u) ≤ 1

mβ

||∆u||−β
2

(2.14)

where the inequality on the far left made use of the Hardy inequality (and
requires α > −1).∣∣∣∣∫ u

1

m
(∆u)

∣∣∣∣ ≤ 1

mβ

||u||−(β−α
2
)||∆u||−α

2
≤ εQ0 +

mα

m2
βε
||u||2−(β−α

2
)∫

1

m
|u|2 ≤ 1

mβ

||u||2−β
2∣∣∣∣∫ u(∆u)

∣∣∣∣ ≤ ||u||α
2
||∆u||−α

2
≤ εQ0(u) +

mα

ε
||u||2α

2∫
|u|2 ≤ ||u||20

If we choose δ ≥ max(β− α
2
, β
2
,−α

2
, 0), which is the same as max(β− α

2
,−α

2
),

then

(1− ε)Q0(u)−Kε||u||2−δ ≤ Qτ (u) ≤ (1 + ε)Q0(u) +Kε||u||2−δ (2.15)

and
|Qτ1(u)−Qτ2(u)| ≤ K|τ1 − τ2|max(1, τ1, τ2)

(
Q0(u) + ||u||2−δ

)
(2.16)

The inequality (2.15) tells us that, as unbounded quadratic forms on the
Hilbert space L2

−δ(D), the domain of Qτ is independent of τ , and

M2
−(β

2
+2)

(D) ⊂ Dom(Qτ ) = Dom(Q0) ⊂M2
−(α

2
+2)(D) (2.17)

which is compactly embedded in L2
−δ(D) as long as δ < α

2
+2. The inequality

(2.16) illustrates the (uniform on compact sets) continuous dependence of Qτ

on τ . A direct consequence is

Proposition 6. If −1 < α ≤ β < α + 2 and max(β − α
2
,−α

2
) ≤ δ < α

2
+ 2,

then the spectrum of the self adjoint generalized eigenvalue problem

Lτun = λn(τ)ρ2δun (2.18)
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is real, discrete, and infinite. Each λn(τ) depends continuously on τ . Each
un ∈ M2

−(α
2
+2)(D) and therefore must vanish, together with its first deriva-

tives, on ∂D. The eigenvalues may be characterized by the min-max principle

λn(τ) := max
Vn

min
u ∈ V ⊥n ∩Dom(Qτ )

||u||−δ = 1

Qτ (u) (2.19)

where Vn denotes any n-dimensional subspace of L2
−δ.

Proof. As a consequence of (2.15) and (2.17), Qτ is bounded below with
Dom(Qτ ) compactly embedded in H = L2

−δ, so has purely discrete spec-
trum, accumulating only at infinity and obeying (2.19) (see [19], page 780).
We may use (2.16) in combination with (2.19) to establish their continuous
dependence on τ .

Proposition 7 below is a slight generalization of the technique introduced
in [2] to show the existence of infinitely many transmission eigenvalues for
contrasts that are bounded from above and below. Recall that Nm,D(τ) is
the number of transmission eigenvalues less than or equal to τ .

Proposition 7. Suppose Nm0,D0(τ) ≥ 1, and suppose that {mj, Dj}Nj=1 rep-
resent translations of (m0, D0) (i.e. mj(x) = m0(x+ xj) on Dj = D0 + xj).
If the Dj are disjoint, each Dj ⊂ D, and m(x) ≥ mj(x) on each Dj, then

Nm,D(τ) ≥ N (2.20)

Proof. Let uτ0(x) denote the transmission eigenfunction for (m0, D0) and
uj the translated eigenfunction (with the same τ0) for (mj, Dj) Because
uj(x) ∈ H2

0 (Dj) = M2
−2(Dj), the extension of uj, defined to be zero in the

rest of D, belongs to M2
−δ for any δ. We have N such eigenfunctions, each

supported on disjoint sets, so they are linearly independent.

Because m(x) ≥ mj(x), the quadratic form Qτ0 , is non-positive on this
N -dimensional subspace, so, according to the min-max characterization of
the eigenvalues, Qτ0 has N non-positive eigenvalues. Because Q0 has all
positive eigenvalues, and they are continuous functions of τ , there must be
N transmission eigenvalues between τ = 0 and τ = τ0.
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We know that the unit disk in Rd , with any constant contrast, has
transmission eigenvalues [14] [15]. Because the unit disk is a subset of the
unit cube, proposition 7 assures us that the cube has one too. We will let
τ0(M, 1) denote the lowest transmission eigenvalue of the cube with side 1
with constant contrast M . We do not discuss its dependence on M , or on
the dimension d, here. Its dependence on the side length of the cube R is
easy to see by scaling. If u(x) is a transmission eigenfunction for the cube
with side length 1, then u( x

R
) is a transmission eigenfunction for the cube

with side length R, and the transmission eigenvalue decreases by a factor of
R2, i.e.

Proposition 8. The lowest transmission eigenvalue of the the cube with side
R and constant contrast M is τ0(M,1)

R2 .

An immediate consequence of proposition 7 is then

Proposition 9. Suppose m(x) > 0 in D and m(x) ≥ M on the disjoint
union of P cubes, all with identical side length R and all contained in D.
Then

Nm,D(
τ0(M, 1)

R2
) ≥ P (2.21)

Proposition 10. For any open set O ⊂ Rd, let P (R) denote the maximum
number of disjoint cubes of radius R contained in O. RdP (R) increases to
µ(O), the Lebesgue measure of O, as R decreases to zero.

Proof. The limsup of RdP (R) is the inner measure of the Borel set O. For
Borel sets, the inner measure equals the Lebesgue measure.

Proposition 11. Let O be an open subset of D on which m(x) > M . Then

lim
τ→∞

τ−
d
2Nm,D(τ) ≥ τ0(M, 1)−

d
2µ(O) (2.22)

If m(x) is continuous, then we may choose O = {m(x) > M}.

Proof. If we choose R =
√

τ0(M,1)
τ

, (2.21) becomes

Nm,D(τ) ≥ P

(√
τ0(M,1)

τ

)
(√

τ0(M,1)
τ

)d
Nm,D(τ) ≥

(√
τ0(M,1)

τ

)d
P

(√
τ0(M,1)

τ

)
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and proposition 10 tells us that the right hand side increases to the mea-
sure of O as τ approaches infinity.

Proposition 11 tells us that because Nm,D(τ) + 1 is bounded from below

by a constant times τ
d
2 for large enough τ . It is also bounded from below by

1, for all τ , so the conclusion (2.4) of theorem 1 follows for a small enough
choice of constant K0.

3 Conclusions

We have shown the existence of real transmission eigenvalues for degenerate
contrasts, which may vanish at the boundary to an arbitrarily high order,
but we require some uniformity in the boundary behavior. The upper and
lower bounds must involve powers of ρ which differ by no more than two. A
similar result, with a more general background but a more restricted contrast
was proved by Hickman [9]

With similar restrictions, we also allowed singular contrasts which grow at
the boundary more slowly than 1

ρ
. A scattering theory for singular contrasts

can be found in [17].
We have also proved a lower bound on the counting function, similar to

that for Dirichlet eigenvalues. If ωd is the volume of the unit disk in Rd,
the number of Dirichlet eigenvalues less than or equal to λ is asymptotic
to ωd

(2π)d
µ(D)λ

d
2 . Proposition 11 tells us that the number of transmission

eigenvalues less than or equal to τ is greater than or equal to a constant,
which depends on a lower bound for m, times µ(D)τ

d
2 . Unfortunately, we

have no upper bound. The dependence of τ0(M, 1) on the constant contrast
M is monotonic decreasing, but we know little else at present.
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