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Time Harmonic Waves and Far Fields

Free Waves
(
∆ + k2

)
u0 = 0 H : µ0 7→ u0

u0 ∼ µ0(Θ)
e ikr

(ikr)
n−1

2

+ µ0(−Θ)
e−ikr

(−ikr)
n−1

2

Total Waves
(
∆ + k2(1 + m)

)
um = 0 S : µm 7→ γ

um ∼ (µm(Θ) + γ(Θ))
e ikr

(ikr)
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2

+ µm(−Θ)
e−ikr

(−ikr)
n−1

2

Outgoing Waves
(
∆ + k2

)
u+ = f H∗ : f 7→ µ+

u+ ∼ µ+(Θ)
e ikr

(ikr)
n−1

2
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Sampling ,Factorization, and TE’s supp m ⊂ D

Linear Sampling and the Factorization Method

If Rn \ D is connected, m > 0, and k is not a TE, the ranges of

HD
∗HD , and (S∗S)

1
2 coincide. In particular, the range of (S∗S)

1
2

is independent of m, and provides a means for calculating D.

S = HD
∗
[
k2m

(
I − G+

k k2m
)−1

]
HD

Interior Transmission Problem

A wavenumber k is called a TE if there exists a non-trivial pair
(u0, um) solving:(

∆ + k2(1 + m)
)
um = 0 in D(

∆ + k2
)
u0 = 0 in D

u0 = um,
∂u0

∂ν
=
∂um

∂ν
on ∂D
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Lots of Previous Work

Colton and Monk (1988) — spherically stratified medium –
there exist infinitely many TE’s

McLaughlin, Polyakov, and Sacks (1994)– spherically
stratified medium — transmission eigenvalues determine n(r)

Colton, Kirsch and Päivärinta (1989) — If m > 0,
transmission eigenvalues form a discrete set

Rynne and Sleeman (1991) — if m > 0, TE’s discrete via 4th
order operator.

Colton-Päivärinta-S. (2006) if m > 0 No Born TE’s,
k2 > λ0(D)

Colton, Cakoni, Haddar — Maxwell’s, anisotropic

Päivärinta - S. — m > CD , the discrete set is not empty.
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Time Harmonic Waves and Far Fields

Free Waves
(
∆ + k2

)
u0 = 0 H : µ0 7→ u0

u0 ∼ µ0(Θ)
e ikr

(ikr)
n−1

2

+ µ0(−Θ)
e−ikr

(−ikr)
n−1

2

Total Waves
(
∆ + k2(1 + m)

)
um = 0 S : µm 7→ γ

um ∼ (µm(Θ) + γ(Θ))
e ikr

(ikr)
n−1

2

+ µm(−Θ)
e−ikr

(−ikr)
n−1
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Outgoing Waves
(
∆ + k2

)
u+ = f H∗ : f 7→ µ+

u+ ∼ µ+(Θ)
e ikr

(ikr)
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Estimates, Spaces, and Duality

Estimate (
∆ + k2

)
u+ = f

||u+||B∗ ≤ C0
1
k ||f ||B

Spaces

B = L2
δ(Rn) δ > 1

2 ||f ||L2
δ

= ||(1 + |x |2)
δ
2 f ||L2

B = B
1
2
,1

2 ||f ||B = ||
√

2j ||f ||L2(|x |∈[2j ,2j+1])||l1

B
1
2
,1

2 , far fields exhaust L2(Sn−1).

If m∗ : B∗ −→ B and 1 + m > 0(
∆ + k2(1 + m)

)
u+ = f

||u+||B∗ ≤ Cm(k)||f ||B
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All Waves belong to B∗ Warning: B0
DandBm

D

Start with a total wave um ∈ B∗:(
∆ + k2

)
um = −k2mum

Find the unique u+ with source −k2mum(
∆ + k2

)
u+
m = −k2mum

Define
u0 = um − u+

m

Unique Decomposition theorems

um ! = u0 + u+

u0 ! = um − u+

The missing decomposition

u+ !
?
= um − u0
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Outside the support of the scatterer – Radiated Waves

Defintions – All sources and scatterers compactly supported in D

The radiated wave is the outgoing wave u+ outside the
support of the source.

Is every radiated wave an m-scattered wave?
Does every incident wave u0radiate?

u+
∣∣∣
Rn\D

?
= um − u0

0
?
= (um − u0)

∣∣∣
Rn\D

Outside D, u+, u0, um, all satisfy the same equation, P0v = 0.

Notation

P0 :=
(
∆ + k2

)
Pm :=

(
∆ + k2(1 + m)

)
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Outgoing Waves inside D u+ ?
= um − u0

Most functions inside D extend to be outgoing

Any φ00 ∈ H2
0 (D) is an outgoing wave.

P0φ00 = f
∂φ00

∂ν

∣∣∣
S∞

= ikφ00

∣∣∣
S∞

More generally, any φ that satisfies ∂φ
∂ν

∣∣∣
∂D

= ikΛ+φ
∣∣∣
∂D

is outgoing.

Λ+ is the exterior outgoing DN map.

m-scattered waves inside D are special

An m-scattered wave is an outgoing wave that is the difference of
solutions to 2nd order PDE’s.
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m-scattered waves inside D

Theorem: For m > 0 in D

An outgoing wave, u+, is an m-scattered wave iff

Pm 1

m
P0u+ = 0 in D

Proof

u+ is m-scattered if u+ = um − u0. If m is constant, the two
operators commute, so the kernel of the product contains the sum
of the kernels. Because the characteristic varieties are disjoint, we
can change contains to equals. If m is not constant, P0 and Pm

don’t commute, but

P0 1

m
Pm = Pm 1

m
P0

(Pm 1
mP0) is formally self-adoint
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Consequences u+ !
?
= um − u0

Corollary: The following are equivalent:

0 6∈ σ
(
(Pm 1

mP0)00

)
Every radiated wave (i.e. u+ outside) is m-scattered.

Every incident wave radiates, i.e. k2 6= TE

More Definitions

(Pm 1
mP0)00 is the unbounded self-adjoint operator on L2(D)

with domain H2
0 (D)

⋂
H4(D).

Two sources are equivalent if they radiate the same wave.

A source is non-radiating if its radiated wave is zero.

Corollary: These are equivalent too:

Every source is equivalent to one of the form f = mvm.

No nonzero f = mvm is non-radiating.
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the Spectrum of Pm 1
mP0 m > 0 is constant

The quadratic form with form domain H2
0 (D)

Tτ =
(
∆ + k2(1 + m)

) (
∆ + k2

)
tτ (u) = τ2(1 + m)||u||2 − 2τ

(
(1 + m

2 )||∇u||2
)

+ ||∆u||2

t0(u) = ||∆u||2 ≥ µ0(D)||u||2

Continuity of eigenvalues

If tτ∗(u
∗) < 0, for some (τ∗, u∗), then tτ∗ has a negative

eigenvalue, and, for some 0 < τ < τ∗, tτ has a zero eigenvalue.

Completing the Square

tτ (u) = A(u)
(
τ − B(u)

)2
+ C (u)

If C (u∗) < 0 and B(u∗) > 0, then tB(u∗) has a negative eigenvalue.
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A(u)(τ − B(u))2 + C (u) Restricted to ||u||2 = 1

A(u) = (1 + m)
1+m

2
1+mλ0(D) ≤ B(u) =

1+m
2

1+m ||∇u||2 ≤ 1+m
2

1+m ||∆u||

C (u) = ||∆u||2 − (1+m
2
)2

1+m ||∇u||4

With u∗= lowest clamped plate eigenfunction ∆2u∗ = µ0u
∗

0 < B(u∗) ≤
1 + m

2

1 + m
µ

1
2
0

C (u∗) ≤ µ0 −
(1 + m

2 )2

1 + m
λ2

0

Conclusion

If
(1+m

2
)2

1+m > µ0

λ2
0
, then there is a TE with k2 ≤ 1+m

2
1+mµ

1
2
0
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More TE’s if m i s bigger

tτ (u) = τ2(1 + m) − 2τ
(
(1 + m

2 )||∇u||2
)

+ ||∆u||2

≤ τ2(1 + m) − 2τ(1 + m
2 )λ0 + ||∆u||2

On the span of the lowest n clamped plate eigenfunctions.

≤ τ2(1 + m) − 2τ(1 + m
2 )λ0 + µn

= (m + 1)
(
τ − 1+m

2
1+mλ0

)2
+ µn −

(1+m
2
)2

1+m λ2
0

Conclusion

If
(1+m

2
)2

1+m > µn

λ2
0
, then t( 1+ m

2
1+m

λ0(D)

) has n negative eigenvalues, so

there must be n TE’s (counting multiplicity) with k2 ≤ 1+m
2

1+mλ0
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No small TE’s Restricted to ||u||2 = 1

Tτ =
(
∆ + k2(1 + m)

) (
∆ + k2

)
Tτ = (∆ + τ(1 + m))2 −mτ (∆ + τ(1 + m))

tτ (u) = || (∆ + τ(1 + m)) u||2 + mτ
(
||∇u||2 − (1 + m)τ

)
≥ mτ

(
||∇u||2 − (1 + m)τ

)
≥ 0 if τ <

λ0

1 + m

No Born TE’s either

Bτ = (∆ + τ)2 with domain H2
0 (D)

bτ (u) = || (∆ + τ) u||2

which is strictly positive for every τ .
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Relation to Factorization

Non-Radiating Sources equal (Free Waves)⊥

∫
fv0 =

∫
D

(
∆ + k2

)
u+v0 =

∫
∂D

∂u+

∂ν
v0 − u+∂v0

∂ν

RHS is zero for all v0 iff u+ ≡ 0 outside i.e. u+ ∈ H2
0 (D)

f NRD =
(
∆ + k2

)
φ00

Every D-source has a unique equivalent D-free source

f NR + f 0 = f(
∆ + k2

)
φ00 + f 0 = f(

∆ + k2
)2
φ00 =

(
∆ + k2

)
f

Solve, and set
f 0 := f −

(
∆ + k2

)
φ00

John Sylvester Transmission Eigenvalues and Non-Radiating Sources



Relation to Factorization

SD : B0
D −→ B0

D B0
D = L2(D)

⋂
{P0v0 = 0} in D

SD : v0 7→ vm 7→ [f 0 ∼ −k2mvm]

HD : L2(Sn−1)
1−1−→B0

D

H∗D : B0
D

1−1−→ L2(Sn−1)

S = H∗DSDHD

TE’s are the wavenumbers for which 0 ∈ σ(SD)

John Sylvester Transmission Eigenvalues and Non-Radiating Sources


