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Abstract

Wavelength plays a distinguished role in classical electromagnetic
and acoustic scattering. Most significant features of the far field pat-
terns radiated by a collection of sources or scatterers are related to
their sizes and relative distances, measured in wavelengths. These sig-
nificant features are reflected in the invariance of the Helmholtz equa-
tion with respect to translation, and its homogeneous scaling with
respect to dilations. The weighted norms that were first developed
to capture the correct decay properties of waves in Rn do not scale
homogeneously and are not invariant with respect to translation. Lp

estimates scale homogeneously and commute with translations and ro-
tations. However, their scaling properties give estimates with a weaker
dependence on wavenumber (for bounded sources and scatterers with
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support that extends over many wavelengths). We introduce some
norms and estimates that commute with translations and scale homo-
geneously under dilations, while retaining the same sharp dependence
on wavelength for extended sources as that of the weighted estimates.

1 Introduction

This paper is about estimates for the resolvent of the Laplacian in Rn. The
Laplacian (−∆) is an unbounded self-adjoint operator on L2(Rn), with do-
main H2(Rn). Consequently, for every λ ∈ C \ R+, and f ∈ L2

(∆ + λ)u = f (1.1)

has a unique solution u ∈ L2(Rn), and

||u||L2 ≤ 1

=(λ)
||f ||L2 (1.2)

||u||H2 ≤ Cn
=(λ)

||f ||L2

where =(λ) means the imaginary part of λ, the constant Cn depends only on
the dimension n, and the Hm-norm is defined as

||f ||Hm =

∑
|α|<m

||Dαf ||2L2

 1
2

with α denoting a multi-index and Dα a partial derivative.

If we substitute k2 for λ, then we call (1.1) the Helmholtz equation. Real
k denotes wavenumber, and wavelength is 2π

k
.

(∆ + k2)u = f (1.3)

Whenever we consider (1.3), we shall consider k ∈ C+, the closed upper half
plane. By the square root, k =

√
λ, we will always mean the holomorphic

map from C\R+ to C+. In particular, when k tends to the positive real axis,
R+, λ tends to R+ from above (i.e. with positive imaginary part). When k
tends to R−, λ tends to R+ from below. If we denote the solution operator
to (1.3) as R(k), then (1.2) becomes

||R(k)|| ≤ 1

=(k2)
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Although R(k) is a holomorphic function for k ∈ C+, with values in
the space of bounded maps from L2 to itself, it does not have a continuous
extension to the real axis. However, R(k) can be extended continuously to
the real axis as a function whose values are bounded linear operators between
other Hilbert spaces. For this purpose, Agmon introduced the L2

δ spaces.

||f ||L2
δ

:= ||(1 + |x|2)
δ
2f ||L2

||f ||Hm,δ =

∑
|α|<m

||Dαf ||2L2
δ

 1
2

and proved the following (see Lemma 4.1 of [1]).

Theorem 1. Let K > 1, δ > 1
2
, and k ∈ C+ with K−1 < |k| < K. There

exists a constant C(K, δ), such that, for all u ∈ H2(Rn),

||u||L2
−δ
≤ C(K, δ)||

(
∆ + k2

)
u||L2

δ
(1.4)

He also remarked that, for k uniformly close to the real axis, the depen-
dence of the constant C(K, δ) could be described more explicitly, i.e.

||u||L2
−δ
≤ C(n, δ)

(1 + |k|2)
1
2

||
(
∆ + k2

)
u||L2

δ
(1.5)

Agmon used this inequality, along with the Holder continuity of R(k) to
show a limiting absorption principle, which extended R(k) (Agmon actually
considered R(k2)) by continuity to the real axis as a bounded operator from
L2
δ to L2

−δ . We refer to u+ = R(k)f (for real, as well as complex k) as the
unique outgoing solution to (1.3).

For k ∈ C+ and f ∈ L2
δ , u

+ := R(k)f satisfies the Sommerfeld radiation
condition

lim
r→∞

r
n−1

2

(
du+

dr
− iku+

)
= 0

This property extends (at least for f ∈ C∞0 ) by continuity to k ∈ C+,
and provides an alternate characterization of the unique outgoing solution to
(1.3).
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Corollary 2. For k ∈ C+, and f ∈ L2
δ, there exists a unique outgoing

u ∈ L2
−δ satisfying (

∆ + k2
)
u = f (1.6)

Moreover,

||u||L2
−δ
≤ C(K, δ)||f ||L2

δ
(1.7)

Agmon and Hormander [2] showed that estimate (1.4) held with the L2
δ

norms replaced by the norms below, i.e.

Definition 3. Let A0 denote the unit ball and Aj the annulus {2j−1 ≤ |x| ≤
2j} for j ≥ 1. the norms

||f ||B =
∞∑
j=0

√
2j ||f ||L2(Aj)

||u||B∗ = sup
j

1√
2j
||u||L2(Aj)

Theorem 4. There exists a constant C(n,K), such that, for all u ∈ H2(Rn),

||u||B∗ ≤ C(n,K)||
(
∆ + k2

)
u||B (1.8)

The large k dependence of the constant in (1.8) was made more explicit
in [8], i.e.

||u||B∗ ≤
C(n)

(1 + k2)
1
2

||
(
∆ + k2

)
u||B

Lp estimates,derived as a combination of the arguments in [16] and [9],
and presented in [14] and [15], show that

Theorem 5. Let k > 0 and 2
n
≥ 1

q
− 1

p
≥ 2

n+1
for n ≥ 3 and 1 > 1

q
− 1

p
≥ 2

3

for n = 2, where 1
q

+ 1
p

= 1. There exists a constant C(n, p), independent of

k, such that, for u solving (1.6)

||u||Lp(Rn) ≤ C(n, p)kn( 1
q
− 1
p

)−2||f ||Lq(Rn) (1.9)
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Because they scale homogeneously, the dependence of the Lp estimates
on wavenumber follows simply once one has proved the estimate for a single
nonzero value of k. An important restatement of this homogeneity in k, is
that Lp norms have units1, so that criteria based on the size of such norms
can be directly related to physical parameters. To see this more clearly, it
is convenient to multiply the right hand side of the free Helmholtz equation
by k2 — this gives both u and f the same units, as is the case in acoustic
scattering.

(
∆ + k2

)
u = k2f (1.10)

Equation (1.10) is invariant with respect to scaling (change of units).
Specifically, if

u(x) = v(αx)

f(x) = g(αx)

then (v, g) satisfy (1.10) with at a different wavenumber:

(∆ +

(
k

α

)2

)v =

(
k

α

)2

g (1.11)

Once we have an estimate at one wavenumber, say k = 1,

||v||Lp ≤ C(n, p) ||g||Lq
implies

||u(
x

k
)||Lp ≤ C(n, p)||f(

x

k
)||Lq

so that the equivalent of (1.9)

||u||Lp(Rn) ≤ C(n, p)kn( 1
q
− 1
p

)||f ||Lq(Rn) (1.12)

simply by changing variables in both of the integrals above. The difference in
the power of k is simply because we have included a factor of k2 in the right

1If x has units of length and u is unitless, then
∫

Rn u(x)pdx has units of lengthn and
its pth root has units of length

n
p .
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hand side of (1.10). The homogeneous scaling is more than a convenience. It
implies that the constant C(n, p) is unitless, which means that criteria that
depend on its size can be physically meaningful. Notice also that Lp norms,
and therefore estimates in terms of those norms, are translation invariant.
The properties of the scattering operator with respect to translation play an
important role in inverse scattering, so norms that transform simply with
translation are likely to be more useful in understanding this operator.

Estimates in weighted norms share neither the homogeneous scaling nor
the translation invariance. This means that the constants in the correspond-
ing estimates depend on a choice of units, so a criterion based on these
constants will be, at the least, difficult to interpret physically. Translating a
source or scatterer can make it larger in weighted norms, which is inconsis-
tent with the underlying physics. Weighted estimates involve the choice of
an origin. For a source which is supported in a ball, it is sensible to choose
the origin at the center of that ball, but for a source supported in a union
of balls, which are far apart, there is no appropriate choice of center. In
weighted norms, translating a source, can change its norm, which is inconsis-
tent with what we know about the Helmholtz equation and scattering theory.

The Lp estimates are stronger than the weighted estimates for sources
which are supported on small sets (i.e. sets with diameters that are less than
a wavelength in diameter). However, most inverse scattering/remote sensing
applications involve sources (f ’s) that are supported on sets which are many
wavelengths in diameter. In this regime, the weighted estimates are stronger.
As we move through the allowable ranges of p’s and q’s in theorem 5, the

dependence of the constant in (1.9) ranges between k0 and k
−2
n+1 , while the

weighted estimates hold with a constant proportional to k−1.

We will introduce some norms that scale homogeneously and are invari-
ant with respect to translations. The corresponding estimates will scale as
k−1, so they exhibit comparable behavior to the weighted norms at large
wavenumbers. Moreover, we will show that all the estimates for weighted
spaces are immediate corollaries of the estimates we will prove below.
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Definition 6. For each unit vector Θ ∈ Sn−1, and domain D ⊂ Rn, let

||u||Θ∞,2(D) = sup
τ∈R

 ∫
D∩{x·Θ=τ}

|u|2dS


1
2

||f ||Θ1,2(D) =

∫
τ∈R

 ∫
D∩{x·Θ=τ}

|f |2dS


1
2

dτ

In most cases we will chooseD = Rn, and write simply ||f ||Θ1,2 or ||u||Θ∞,2 .
We let Θ1,2 and Θ∞,2 denote the Banach spaces consisting of measurable
functions for which the corresponding norms are finite. C∞0 is dense in Θ1,2,
but not in Θ∞,2. It is easy to check that these norms scale simply.

||u(
x

k
)||Θ∞,2 = |k|

n−1
2 ||u||Θ∞,2

||f(
x

k
)||Θ1,2 = |k|

n+1
2 ||f ||Θ1,2

Our estimates will make use of n+ 1 different Θ’s.

Definition 7. Let {Θj}nj=1 be an orthonormal basis for Rn, and Θ0 = 1√
2

(Θ1 + Θ2).
We will denote this collection of n+ 1 vectors by

Jn = {Θj}nj=0

Our main theorem, which we will prove in section 2, is

Theorem 8. Let k ∈ C+, f ∈ C∞0 , and let u be the unique outgoing solution
to the Helmholtz equation (1.6). There is a constant C(n), such that

u =
n∑
i=0

ui

||ui||Θ∞,2i
≤ C(n)

|k|
||f ||Θ1,2

i
(1.13)
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In addition,

∇u =
n∑
i=1

wi (1.14)

||wi||Θ∞,2i
≤ C(n) ||f ||Θ1,2

i
(1.15)

||∆u||Θ∞,2i
≤ C(n)

(
||f ||Θ∞,2i

+ |k| ||f ||Θ1,2
i

)
(1.16)

Theorem 8 decomposes u as a sum and estimates each summand ui in
a different norm. the paragraph below is a brief, and admittedly imprecise,
motivation for this decomposition.

If f were a function of the single variable, τ = x · Θ, we would ex-
pect u to also be a function of a single variable, and an easy estimate of
the outgoing solution to the one dimensional Helmholtz equation would
give ||u||L∞ ≤ C

k
||f ||L1 , where the L1 norm means integration in τ . If

f = F (τ)eiky, where y = x · ξ with ξ a unit vector perpendicular to Θ,
separating variables reveals that the same estimate cannot hold. The sub-
space spanned by these functions f is the kernel of the (n − 1) dimensional
Helmholtz operator in the Θ⊥ plane. The proof of theorem 8 decomposes f
into a sum of n + 1 functions, each of which is orthogonal to this subspace
(for different Θ’s). It turns out that this is enough to give the estimates
(1.13) for each ui.

The next few lemmas show that, for every Θ, the Θ1,2 norm is dominated
by, and Θ∞,2 norm dominates, the corresponding weighted norms as well as
L2 norms on compact sets. Thus (1.13) and (1.15) directly imply estimates
that do not require a decomposition.

Lemma 9. Let δ > 1
2

and Θ ∈ Sn−1, for every f ∈ L2
δ, and every u ∈ Θ∞,2,

||f ||Θ1,2 ≤
(

2δ

2δ − 1

) 1
2

||f ||L2
δ

(1.17)

||u||L2
−δ
≤

(
2δ

2δ − 1

) 1
2

||u||Θ∞,2 (1.18)

Proof. For Θ ∈ Sn−1, we let

x = tΘ + y
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decompose x ∈ Rn into components parallel to and orthogonal to Θ.

||f ||Θ1,2 =

∫
R

(∫
Rn−1

|f(t, y)|2dy
) 1

2

dt

=

∫
R

(∫
Rn−1

|f(t, y)|2dy
) 1

2

(1 + t2)
δ
2 (1 + t2)

−δ
2 dt

≤
(∫

R

∫
Rn−1

|f(t, y)|2dy(1 + t2)δdt

) 1
2
(∫

R
(1 + t2)−δdt

) 1
2

≤
(∫

R

∫
Rn−1

|f(t, y)|2(1 + t2 + |y|2)δdydt

) 1
2
(∫

R
(1 + t2)−δdt

) 1
2

≤ ||f ||L2
δ

(
2δ

2δ − 1

) 1
2

The verification of (1.18) by calculation is similar and we omit it. In fact,
(1.13) follows from (1.17) by duality because L2

−δ is the dual of L2
δ and Θ∞,2

is the dual of Θ1,2.

Lemma 10. Let D be a bounded domain in Rn. Let µ1 denote one-dimensional
Lebesgue measure and define

d(D,Θ) = sup
x∈D

µ1

({
t
∣∣x+ tΘ ∈ D

})
d(D) = sup

Θ
d(D,Θ)

Then, for very Θ,

1√
d(D,Θ)

||f ||Θ1,2(D) ≤ ||f ||L2(D) ≤
√
d(D,Θ)||f ||Θ∞,2(D) (1.19)

The constant d(D) satisfies

1. d(D) is less than or equal to the diameter of D.

2. If D =
⋃
Di, then d(D) ≤

∑
d(Di).

In particular, d(D) is less than or equal to the sum of the diameters of the
connected components of D.
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Proof.∫
D

|f |2dx =
∞∫
−∞

[ ∫
D
⋂
{x·Θ=τ}

|f |2dSΘ⊥

]
dτ ≤ d(D,Θ)||f ||2Θ∞,2(D)

Because d(D,Θ) is the measure of the intersection of a line (in the Θ direc-
tion) with D, it is certainly less than the diameter of D. The intersection of a
line with the union D =

⋃
Di is equal to the union of the latter intersections,

so the measure of the former is less than or equal to the sum of the measures
of the intersections, which shows that d(D) ≤

∑
d(Di).

The left hand inequality in (1.19) follows from the right hand one by
duality, i.e.,

||f ||Θ1,2(D) = sup
w∈Θ∞,2(D)

〈w, u〉
||w||Θ∞,2(D)

(1.20)

≤ sup
w∈Θ∞,2(D)

〈w, u〉
√
d(D,Θ)

||w||L2(D)

=
√
d(D,Θ)||u||L2(D)

As is the case with the L2
δ norms, the B and B∗ norms do not transform

simply under dilations and translations. However, we have the analog of
lemma 9 for these norms as well.

Lemma 11.

||f ||Θ1,2 ≤ ||f ||B
||u||B∗ ≤ ||u||Θ∞,2

Proof.

||f ||Θ1,2 =
∞∑
j=0

||f ||Θ1,2(Aj)

Because 2j is the diameter of Aj, we may apply (1.19) to each summand
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≤
∞∑
j=0

√
2j ||f ||L2(Aj)

= ||f ||B
Similarly,

||u||B∗ = sup
j

1√
2j
||f ||L2(Aj)

≤ sup
j
||u||Θ∞,2(Aj)

≤ ||u||Θ∞,2

Corollary 12. Theorem 1 holds with C(K, δ) = C(n)
|k|

2δ
2δ−1

and theorem 4

holds with constant C(n, k) = C(n)
|k| . If f is supported in the bounded domain

D, then, with d = d(D),

||u+||L2(D) ≤ C(n)
d

|k|
||f ||L2(D) (1.21)

Proof. We will prove (1.21). The proofs that theorems 1 and 4 hold with the
new constants are exactly analogous.

According to theorem 8, we may write u+ =
∑
ui,

||u+||L2(D) ≤
∑
||ui||L2(D)

which, according to (1.19)

≤
∑√

d||ui||Θ∞,2(D)

Applying (1.13) gives

≤ C(n)

|k|
∑√

d||f ||Θ1,2(D)

and then (1.19) again

≤ C(n)

|k|
∑

d||f ||L2(D)

≤ (n+ 1)C(n)d

|k|
||f ||L2(D)
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The applications we will give in section 3 could depend only on this
corollary. Nevertheless, for the sake of completeness, we define some spaces:

Definition 13.

J 1,2
∩ =

n⋂
j=0

Θ1,2
j

||f ||J 1,2
∩

= max
0≤j≤n

||f ||Θ1,2
j

J∞,2+ =
n
+
j=0

Θ∞,2j

||u||J∞,2+
= inf

u=
∑
uj

∑
||uj||Θ∞,2j

With these definitions, we may restate (1.13) as

||u||J∞,2+
≤ C(n)

|k|
||f ||J 1,2

∩
(1.22)

2 Proof of Theorem 8

Because the norms on both sides of (1.13) scale naturally with dilations, it
would be enough to prove the theorem for |k| = 1. We will nevertheless carry
out the proof for general k ∈ C+, because we feel that it emphasizes the role
that translations and dilations play in scattering problems. Let Θ ∈ Rn be
a unit vector, we let

x = tΘ + y

ξ = τΘ + η (2.1)
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denote the unique decompositions of x ∈ Rn, and ξ ∈ Rn, into vectors parallel
to Θ and one perpendicular to Θ. We denote the Fourier transform as

f̂(ξ) =

∫
Rn

eix·ξf(x)dx

which we may write as

f̂(τ, η) =

∫
Rn

eitτeiy·ηf(t, y)dy

We denote the partial Fourier transform, in the Θ⊥ hyperplane, by

f̃(t, η) = FΘf =

∫
x·Θ=t

eiη·yf(t, y)dy

We emphasize that this partial transform depends on the choice of Θ (we
will make several different choices), and that η denotes a vector in the (n−
1)-dimensional subspace Θ⊥. When we use the notation f̃ below, we are
referring to a single, fixed, but arbitrary choice of Θ. We begin by applying
the partial Fourier transform to the Helmholtz equation,(

∆ + k2
)
u = f (2.2)

d2ũ

dt2
+ (k2 − |η|2)ũ = f̃

For k ∈ C+, there is a unique u ∈ H2(Rn) solving (2.2), for every f ∈ L2,
and it is straightforward to check that

ũ(t, η) =

∫
R

ei
√
k2−|η|2|t−s|

2i
√
k2 − |η|2

f̃(s, η)ds (2.3)

The formula (2.3) represents many different formulas, one for each choice
of Θ. We intend to decompose every f ∈ C∞0 into a sum of f ’s, using different
choices of Θ to avoid the zeros of the denominator in (2.3). We need to be
sure that they all represent the same solution u to (1.3). Our estimates below
will verify that the right hand side of (2.3) defines an L2 function for k ∈ C+,
so that we can invoke uniqueness to guarantee that all the representations are
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equal. Once we have avoided the zeros of the denominator, we will see that k
times the right hand side of (2.3) is continuous on C+, which then guarantees
that for nonzero real k, (2.3) represents the unique outgoing solution to (1.3).

In order to construct our decomposition, we define:

W ε
Θ =

{
ξ ∈ Rn

∣∣∣ |1− |η|2| ≤ ε2
}

(2.4)

which is the same as

=
{
ξ ∈ Rn

∣∣∣ |1− |ξ|2 + (Θ · ξ)2| ≤ ε2
}

because η = ξ − (Θ · ξ)Θ. We also note that, for α > 0

αW ε
Θ =

{
ξ ∈ Rn

∣∣∣ |α2 − |η|2| ≤ ε2α2
}

(2.5)

Proposition 14. Let ε ≤
√

n−1
4(n+1)n

, α > 0, {Θj}nj=1 be an orthonormal basis

for Rn, and Θ0 = 1√
2

(Θ1 + Θ2). There is a constant C(n), such that every
f ∈ C∞0 can be decomposed as

f =
n∑
j=0

fj (2.6)

with

||fj||Θ1,2
j
≤ C(n)||f ||Θ1,2

j
(2.7)

and

supp f̂j
⋂

αW ε
Θj

= ∅ (2.8)

or, equivalently,

supp (FΘjfj)
⋂ {

(t, η)
∣∣ η ∈ αW ε

Θj

}
= ∅ (2.9)

The proof of Theorem 8 is a direct consequence of this proposition.

Proof of Theorem 8. Let ui denote the solution to (2.2) with f = fi, and
apply the partial Fourier transform as in (2.3) with Θ = Θi.
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ũi(t, η) =

∫
R

ei
√
k2−|η|2|t−s|

2i
√
k2 − |η|2

f̃i(s, η)ds

∫
|ũi|2dη =

∫
Rn−1

∫
R

ei
√
k2−|η|2|t−s|

2i
√
k2 − |η|2

f̃i(s, η)ds

∫
R

ei
√
k2−|η|2|t−r|

2i
√
k2 − |η|2

f̃i(r, η)dr

 dη

Because =(
√
k2 − |η|2) ≥ 0, the exponential is bounded by one. We can

find an upper bound for the denominator by noting that |
√
k2 − |η|2| ≥

|
√
|k|2 − |η|2|, and combining (2.9) and (2.5) with α = |k|, so that

|
∫
|ũi|2dη| ≤

1

(ε|k|)2

∫
Rn−1

∫
R

|f̃i(s, η)|ds

∫
R

|f̃i(r, η)|dr

 dη

=
1

(ε|k|)2

∫
R×R

∫
Rn−1

|f̃i(s, η)| |f̃i(r, η)|dηdsdr

≤ 1

(ε|k|)2

∫
R×R

||f̃i(s, ·)||L2||f̃i(r, ·)||L2drdt

which, according to the Plancherel equality,

=
1

(ε|k|)2

∫
R×R

||fi(s, ·)||L2||fi(r, ·)||L2drdt

≤ 1

(ε|k|)2
||fi||2Θ1,2

We don’t need the decomposition to estimate the first derivatives. In-
stead, we note that

v · ∇u =
n∑
i=1

(v ·Θi)Θi · ∇u

We can estimate the derivative in the Θi direction by applying the partial
Fourier transform, FΘi , and differentiating (2.3) to obtain
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dũ(t, η)

dt
=

∫
R

ei
√
k2−|η|2|t−s|f̃(s, η)ds

so that ∣∣∣∣∣∣∣∣dũ(t, η)

dt

∣∣∣∣∣∣∣∣
Θ∞,2i

≤ ||f ||Θ1,2
i

We need only note that

||Θi · ∇u||Θ∞,2i
=

∣∣∣∣∣∣∣∣dũ(t, η)

dt

∣∣∣∣∣∣∣∣
Θ∞,2i

to prove (1.15). Finally, we verify (1.16) by writing

∆u = f − k2u

||∆u||Θ∞,2i
≤ ||f ||Θ∞,2i

− |k|2||u||Θ∞,2i

≤ ||f ||Θ∞,2i
− C(n)|k| ||f ||Θ1,2

i

which completes the proof of theorem 8.

Proof of Proposition 14. We define

σΘ(ξ) = ξ · ξ − (Θ · ξ)2 (2.10)

and, as in (2.4),

W ε
Θ :=

{
ξ ∈ Rn

∣∣|σΘ(ξ)− 1| < ε2
}

Our first task is to show that the complements of the W ε
Θ cover Rn.

Lemma 15. Let ε ≤
√

n−1
4(n+1)n

, {Θj}nj=1 be an orthonormal basis for Rn, and

Θ0 = 1√
2

(Θ1 + Θ2). Then

n⋂
k=0

W ε
Θ = ∅ (2.11)

Proof. For ξ ∈ Rn, we let the ξk denote its coordinates in the basis formed
by the {Θj}nj=1. We let τ denote the vector with components τk = ξ2

k and
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1 denote the vector with all components equal to 1. It is straightforward to
check that ξ ∈

⋂n
k=1W

0
Θ if and only if τ satisfies the linear equation

Mτ = 1 (2.12)

where M is the matrix with 0’s on the diagonal and ones elsewhere, i.e.

M = 1⊗ 1− I

M−1 =
1

n− 1
1⊗ 1− I

and

||M−1||∞,∞ = 2− 1

n+ 1
(2.13)

The norm in (2.13) views M as a linear map on Rn with the l∞ norm.

The unique solution to (2.12) is

τ =
1

n− 1
1

so that if ξ ∈
⋂n
k=1W

ε
Θ then

||τ − 1

n− 1
1||l∞ ≤ (2− 1

n+ 1
)ε2

and, in particular, for each 1 ≤ k ≤ n

|ξk| ≥
√

1

n− 1
− (2− 1

n+ 1
)ε2 (2.14)

We can express σΘ0 as

σΘ0 − 1 =
1

2
(σΘ1 − 1) +

1

2
(σΘ2 − 1)− ξ1ξ2

which implies that, for ξ ∈
⋂n
k=1W

ε
Θ

|σΘ0 − 1| ≥ |ξ1ξ2| − ε2

Using (2.14) gives,

17



|σΘ0 − 1| ≥ 1

n− 1
− (3− 1

n+ 1
)ε2

so that (2.11) follows as long as

ε2 ≤ 1

n− 1
− (3− 1

n+ 1
)ε2

or, equivalently,

ε2 ≤ n− 1

4(n+ 1)n

Our next task is to construct a partition of unity, subordinate to the
WΘk ’s, and prove that the associated Fourier multipliers are bounded oper-
ators in the Θ1,2 norms. Let Φ ∈ C∞0 (R) satisfy

Φ(s) =

{
1 |1− s| < ε

2

0 |1− s| > ε
(2.15)

As before, for each fixed Θ, we let

ξ = τΘ + η

denote the unique decomposition of ξ ∈ Rn into a vector parallel to Θ and
one perpendicular to Θ. We define

φΘ(ξ) = φΘ(τ, η)

= Φ(|η|2)

= Φ(σΘ(ξ)) (2.16)

where σΘ(ξ) is defined in (2.10).

Lemma 16. 1.

supp φΘ ⊂ W ε
Θ

supp (1− φΘ)
⋂

W
ε
2

Θ = ∅

2. The Fourier transform of φΘ, which we denote by φ̂Θ, is a bounded
measure with norm

|||φ̂Θ|||1 :=

∫
Rn

|φ̂Θ|

18



3. For any α > 0, the ||| |||1-norm of the Fourier transform of φΘ( ξ
α

)is
independent of α.

4. For ε ≤
√

n−1
4(n+1)n

, {Θj}nj=0 defined as in lemma 15, and using φj to

denote φθj

n∑
m=0

(
(1− φm(ξ))

∏
j<m

φj(ξ)

)
= 1 (2.17)

Proof. The two statements in item 1 follow directly from the definitions (2.15)
and (2.16).

Because Φ ∈ S(R), φ(η) := Φ(|η|2) ∈ S(Θ⊥), so its Fourier transform,

φ̂(y) is also a Schwartz class function of (n− 1) variables. Because φΘ is the
product of φ(η) and a (constant) function of τ , its Fourier transform is the
product of the two Fourier transforms.

φΘ(τ, η) = φ(η)⊗ 1

φ̂Θ = φ̂(y)⊗ δ(t)

from which we see that φ̂Θ is a measure supported on the plane x · Θ = 0
with a Schwartz class density φ̂, and therefore

|||φ̂Θ|||1 =

∫
Rn−1

|φ̂(y)|dy

Item 3 follows from the scaling properties of the Fourier transform (it’s ho-
mogeneous of degree (−n)), but we make a simpler, more explicit, calculation
below

̂
φΘ(

ξ

α
) = φ̂(

η

α
)⊗ 1̂

= αn−1φ̂(αy)⊗ δ(t)

so that the norm of the measure is the L1(Rn−1)-norm of αn−1φ̂(αy),which
is independent of α.
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To establish item 4, we expand the sum in (2.17) to see that

n∑
m=0

(
(1− φm(ξ))

∏
j<m

φj(ξ)

)
= 1−

n∏
j=0

φj(ξ)

and note that the final term on the left can only be nonzero on
⋂n
k=0W

ε
Θ,

which is empty according of lemma 15.

As a consequence of (2.17), (2.6) and (2.8) both hold if we define

f̂m =

(
(1− φm(

ξ

α
))
∏
j<m

φj(
ξ

α
)

)
f̂

Because f̂m is the product of f̂ with at most n functions, and the Fourier
transform of each of these is a bounded measure (with a bound that is inde-
pendent of α, according to item 3 of lemma 16); the estimate (2.7) will follow
once we show that convolution with a bounded measure maps Θ1,2(Rn) to
itself. This is the content of lemma 17 below, which we state and prove in a
slightly more general context.

Let 1 ≤ p ≤ ∞, 1 ≤ q ≤ ∞, V a subspace of Rn and V ⊥ its orthogonal
complement, i.e.

Rn = V ⊕ V ⊥

We define the function space V p,q(Rn) to be the measurable functions
with finite V p,q norm,i.e.

||f ||V p,q :=

∫
V

∫
V ⊥

|f |q


p
q


1
p

= || ||f(v, ·)||Lq(V ⊥) ||Lp(V )

Lemma 17. Convolution with a bounded measure induces a bounded map
from V p,q to itself, i.e.,

||f ∗ µ||V p,q ≤ |||µ|||1 ||f ||V p,q
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Proof.

||f ∗ µ||pV p,q =

∫
V

(∫
V ⊥

[∫
Rn−1

f(x− x′, y − y′)µ(x′, y′)

]q
dy

) p
q

dx

≤
∫
V

(∫
V ⊥

[(∫
Rn
|f(x− x′, y − y′)|qµ(x′, y′)

)(∫
Rn
µ(x′, y′)

) q
q′
]
dy

) p
q

dx

=

∫
V

[(∫
V ⊥
|f(x− x′, y − y′)|qdy

)(∫
Rn
µ(x′, y′)

)1+ q
q′
] p
q

dx

=

∫
V

(∫
V ⊥
|f(x− x′, y − y′)|qdy

) p
q

dx

(∫
Rn
µ(x′, y′)

)p
= ||f ||pV p,q |||µ|||

p
1

This completes the proof of Proposition 14.

3 Unitless criteria related to Born Series and

Transmission Eigenvalues

We will use the estimates we have just derived to give a criterion for judg-
ing the applicability of the Born approximation for a compactly supported
scatterer. By this we mean a medium with index of refraction n(x) which
is identically equal to one outside a compact set. It is common to write
n2(x) = 1 + m(x) with −1 < m(x) referred to as the contrast. Note that
n(x) is the ratio of the wave speed in the vacuum to the wave speed in the
medium, and therefore unitless.

The following theorem describes the Born approximation, and contains a
summary of a very minimal scattering theory for a compactly supported scat-
terer. Equation (3.1) below is satisfied by the total wave, which is expressed
as the sum of an incident wave, which satisfies the free equation (3.3) below,
and the scattered wave, which is required to be outgoing. We will allow two
different possibilities for describing incident and total waves:

1. A = L2(D) – Incident waves need only be defined and satisfy (3.3) in
D. Total waves are defined and satisfy (3.1) only in D. Scattered waves
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are still outgoing, defined in all of Rn, and have far fields (asymptotics
at infinity).

2. A = J∞,2+ – Incident waves, total waves, and outgoing scattered waves
are all defined and satisfy partial differential equations in Rn.

See [10], [13] or [5] for more complete descriptions of scattering theories,
and [12] for a discussion of how the very minimal theory described in item 1
can be viewed as an extension of the classical one.

Theorem 18. Suppose that supp m ⊂ D and let d(D) be the constant in
lemma 10 ( which is less than the diameter of D, and less than the sum of
the diameters of its components). Let um ∈ A and solve(

∆ + k2(1 +m)
)
um = 0 (3.1)

Then um has a unique decomposition into an incident plus an outgoing wave

um = u0 + u+ (3.2)

where (
∆ + k2

)
u0 = 0 (3.3)

u0 ∈ A and u+ ∈ J∞,2+ .
If

C(n)|k|d ||m||L∞(D) < 1 (3.4)

then the Born series

u+ =
∞∑
j=1

[k2R(k)m]ju0 (3.5)

converges, we can estimate the scattered wave with

||u+||A ≤
C(n)|k|d ||m||L∞(D)

1− C(n)|k|d ||m||L∞(D)

||u0||A (3.6)

and the Born approximation, u+
B = k2R(k)mu0 satisfies

||u+ − u+
B||A ≤

C(n)|k|d ||m||L∞(D)

1− C(n)|k|d ||m||L∞(D)

||u+
B||A (3.7)

22



Remark 19. Notice that the criterion (3.4), and the constants in (3.6) and
(3.7) are unitless. The index of refraction (a ratio of wavespeeds) , and hence
the contrast, is unitless. The unitless quantity kd must be less than or equal
to the diameter of D measured in wavelengths. A similar result, based on
weighted estimates, appears in [11].

We can also base our convergence criterion on the Lp estimates of theorem
5. In this case we obtain a criterion which is stronger for kd < 1 and weaker
for kd > 1.

Theorem 20. Under the hypotheses of theorem 18, the Born series converges
if

C(n)(kd)s < 1 (3.8)

where 2n
n+1
≤ s ≤ 2 for n ≥ 3 and 2n

n+1
≤ s < 2 for n = 2.

The proof of theorem 18 will be based on a lemma.

Lemma 21. Let m ∈ L∞(D) (i.e. m ∈ L∞(Rn) and supp m ⊂ D), and A
be either L2(D), or J∞,2+ . Then

||k2R(k)mv||A ≤ C(n)||m||L∞(D)|k| d(D) ||v||A (3.9)

Proof. According to (1.21),

||k2R(k)mv||L2(D) ≤ |k|d||mv||L2(D) ≤ |k|d||m||L∞||v||L2(D)

Similarly, it follows from (1.22) that

||k2R(k)mv||J∞,2+
≤ C(n)|k| ||mv||J 1,2

∩

which, for some j
= C(n)|k| ||mv||Θ1,2

j

Now apply (1.19),

≤ C̃(n)|k|
√
d||mv||L2(D)

≤ C̃(n)|k|||m||L∞(D)

√
d||v||L2(D)

≤ C̃(n)|k|||m||L∞(D)

√
d inf
v=
∑
vi

∑
||vi||L2(D)

and then apply (1.19) again
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≤ C̃(n)|k|||m||L∞(D)

√
d inf
v=
∑
vi

∑√
d||vi||Θ∞,2i

≤ C̃(n)|k|||m||L∞(D)d||v||J∞,2+

Proof of theorem 18. Note that(
∆ + k2

)
um = −k2mum (3.10)

Define u+ to be the unique outgoing solution to(
∆ + k2

)
u+ = −k2mum (3.11)

and define
u0 = um − u+

As um ∈ A, the right hand side of (3.11) belongs to J 1,2
∩ , so u+ ∈ J∞,2+ , which

is contained in A. As u+ is unique and belongs to A, u0 is also unique and
belongs to A. Subtracting (3.11) from (3.10) shows that u0 satisfies (3.1).
Moreover,

u+ = k2R(k)mum

= k2R(k)m(u0 + u+)

from which we see that u+ is given by the Born series (3.5), when it converges.
The fact that (3.4) implies convergence, and the two estimates, (3.6) and
(3.7), then follow from (3.9) of lemma 21.

Theorem 18 tells us that the Born series converges, and the Born approx-
imation is accurate, for a single small scatterer or for a collection of small
scatterers as long as the sum of the diameters is small enough.

Remark 22. In treating a collection of scatterers theorem 18 makes essential
use of the translation invariance of our new norms. In the L2

δ or B∗ norms,
the norm of operator of multiplication by m as a map from L2

−δ to L2
δ, or

from B∗ to B, changes as we translate m, which makes any estimate of this
sort difficult, if not impossible, to obtain with these norms.

A wavenumber k is called a transmission eigenvalue (see [5, 6, 3]) for m
in D if there exists a um ∈ L2(D), such that the corresponding (as in (3.2))
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scattered wave u+ is supported in D. That is, um = u0 is an incident wave
that doesn’t scatter. As another application, we show that small scatterers,
or collections of small scatterers, don’t have small transmission eigenvalues.
A similar result, with dk replaced by (dk)2 log(dk), appears in [3].

Theorem 23. If k is a transmission eigenvalue for m ≥ 0 in D, then

1 ≤ C(n)dk sup |m|

Proof. Let v0 be any incident wave (i.e. solution to (3.3)). If we multiply
(3.11) by v0,

∫
D

v0
(
∆ + k2

)
u+ = −

∫
D

k2mumv0 (3.12)

If k is a transmission eigenvalue

0 =

∫
D

k2mumv0

where the last line follows by integration by parts, together with the fact
that u+ ∈ H2

loc vanishes outside D. We recall (3.2), multiply both sides by
mum,

um = u0 + u+ (3.13)∫
m|um|2 =

∫
mumu0 +

∫
mumu+

and note that, because of (3.12), the first term on the right is zero. Therefore,

∫
m|um|2 =

∫
mumu+

≤ ||mum||L2(D)||u+||L2(D)

≤ ||mum||L2(D)

C(n)d

k
||k2mum||L2(D)

Making use of (1.21) gives
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≤ C(n)dk||mum||2L2(D)∫
m|um|2 ≤ C(n)dk

∫
m2|um|2

1 ≤ C(n)dk sup |m|

We give one last corollary, which is an immediate consequence of (1.22).
The Hardy space properties of the the resolvent play an important role in
one dimensional inverse scattering. The theorem below shows that the free
resolvent in higher dimensions shares one of these properties.

Theorem 24. As an operator valued function of k, taking values in the
space of bounded maps from J 1,2

∩ to J∞,2+ , kR(k) belongs to the Hardy class
H∞(C+).

4 Conclusions

We have introduced some new norms and used them to study the depen-
dence of the free Helmholtz equation (the resolvent of the Laplacian) in Rn

on wavenumber. The new norms are translation invariant and scale homoge-
neously with dilations, which allows them to exploit the natural invariance
of the Helmholtz equation. We utilized these invariance properties to prove
some estimates for the free Helmholtz equation with exactly the same depen-
dence on wavelength as in the one dimensional case.

We gave some simple corollaries, which included a rigorous mathematical
justification of the well known physical principle that classical scatterers that
are small compared to the wavelength of an incident wave scatter weakly. We
gave unitless criteria for the convergence of the Born series, the absence of
transmission eigenvalues, and established a Hardy space property of the re-
solvent.

Our main point, however, is simply to introduce a different estimate for
the constant coefficient Laplacian on Rn, the most central operator in mathe-
matical physics. This estimate improves on the weighted estimates of Agmon
and Agmon-Hormander, primarily because the norms have units (scale homo-
geneously) and commute with translation. The dependence on wavenumber

26



(they scale differently) shows that these estimates are different than known
Lp estimates. We note with regret that our norms are not invariant under
rotation; they rely on a choice of orthogonal frame, and a different choice of
frame gives a possibly inequivalent norm.

Our proof relies primarily on the simplicity of the characteristic variety
of the associated multiplier (|ξ|2−k2), making it likely that similar estimates
hold for other operators with simply characteristic varieties.

Finally, we remark that related estimates, in bounded domains with dif-
ferent norms, but with a similar dependence on wavenumber, play a role in
the finite element analysis of scattering (see [4] and [7]).
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