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Inverse Source Problem

utt − ∆u = F (x, t)

u(x, 0) = 0

ut(x, 0) = 0

We measure the field u far away from the source (in the far field).

The zero initial conditions guarantee that we are seeing only the

field radiated by F , not by some other source that was present in

the past.
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Time Harmonic Model

F (x, t) = eiωtF (x)

u(x, t) = eiωtu(x)

The wave equation becomes the Helmholtz equation (k = n0ω).(
∆ + k2

)
u = F (x)

and the zero initial conditions tell us that the relevant solution is

the outgoing solution. The outgoing far field is exactly the

restricted Fourier transform of the source.

û(ξ) =
F̂ (ξ)

−ξ2 + (k − i0)2

u ∼ α(Θ)
e−ikr

ikr
1

2

+ 0
eikr

ikr
1

2

= F̂ (kΘ)
e−ikr

ikr
1

2
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Why the source problem?

• This is the relevant model for passive remote sensing.

• The source problem is the Born or linear approximation to

many active remote sensing problems, including

back-scattering.

• The inverse source problem is linear, therefore simpler.

Why work with the far field?

• Its mathematically simpler. Admits some exact formulas.

• You can (really) compute the far field from the near field and

(theoretically) conversely.

• There’s more information in the near field, but you have to be

smarter to use it.
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Why work at a fixed frequency?

• Need to work at fixed k when the radiation pattern of the

source is time dependent or the medium is dispersive.

• A specific feature of a complicated medium may dominate the

scattering at a particular frequency.

• Active scanner may only generate narrow bandwith.

• MUSIC and some Time Reversal/Phase conjugation algorithms

utilize sensor arrays to locate point sources with this sort of

data.

• I can do it now.
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Non-uniqueness for the Inverse Problem

Gravitation

∆u = ρ(x)

Any two spherically symmetric planets with the same total mass

have the same gravitational far field.

Helmholtz
(
∆ + k2

)
u = F (x)

Any two radially symmetric sources radiate the same far field if∫
f(r)J0(kr)rdr is the same for both.
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Unique Properties to compute

To compute a property of the source, we must either:

• Know something special about F , i.e. constrain F ’s to obtain

uniqueness (see e.g. Isakov’s book, Inverse source Problems):

– F = χK — the indicator (Heavyside) function of a

convex set

– F =
∑

aiδpi
— a sum of point sources

– F = χSp
— Sp is star shaped about p

• Find something that all the F ’s have in common.
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The Support of the Source

(∆ + k2)u = F

u ∼ F̂ (kΘ) e−ikr

ikr
1

2

For any distribution Φ with compact support, F = (∆ + k2)Φ is a

non-radiating source because its far field is its restricted Fourier

transform, (|ξ|2 − k2)Φ̂(ξ), which vanishes when ξ = kΘ.

Because F and F + (∆ + k2)Φ have the same far field, we can

always make the (support of the) source bigger without changing

the far field.

We cannot find an upper bound on the support of F .
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Support of the Far Field

The support of the far field will be the smallest set in a class (e.g.

convex sets) that supports a source which radiates the far field. It

will satisfy:

• It must have been in there. Any source or scatterer which

radiates (has restricted Fourier transform equal to) the far field

must contain the scattering support of the data.

• It could have been the entire source. There is a source which

radiates the field, and is supported in (any neighborhood of) its

scattering support.
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Classes of scattering support

• convex sets

• unions of well-separated convex sets

B =
⋃

Bk diam(Bk) < dist
j 6=k

(Bk, Bj)

– This condition is independent of wavelength.

– Point sources are always UWSCS

• sets which are star shaped about p

• Why does it have to be so complicated ?

• Examples of sources which radiate the same far fields.
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Mathematical Tools

• Rellich’s Lemma – You can compute the outgoing wave far

away from the source using only the measured far field.

• Unique Continuation – You can

(in theory) compute the outgoing

wave using only the far field at

exactly those points which can be

connected to infinity (where you

measured the far field) by a path

which avoids the source.
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Single and Double Layers Sources for Helmholtz

Multi-layer source

γ = a piecewise smooth curve

δγ = monopole layer

δ
′

γ = dipole layer

Cγ = fδγ + gδ
′

γ

Free Multi-layer Source

Cv
γ = ∂v

∂ν
δγ + vδ

′

γ

(∆ + k2)v = 0

e.g.

v = J0(kr)

v = eikΘ·x

You can fatten up a multiple layer source without changing the far

field by convolution with a normalized radially symmetric function.
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Closed Curves support Non-radiating Layers

• If v is free and γ is closed

(i.e γ = ∂Ω) then Cv
γ is non-

radiating.

• Define w as in the picture,

and check the jump formulas

for single and double layers.

(∆ + k2)w = Cv
γ

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

w = v

w = 0

γ

Converse: All non-radiating layers are sums of free Cv
∂Ω’s

13



Arcs are Minimal

Hypothesis:

• Cγ = fδγ + gδ
′

γ

• No fake parts of γ — supp Cγ = γ

• γ contains no closed curve (no boundary) — R2 \ γ connected.

Conclusion:

• f and g are unique.

• γ is minimal – you can’t

shrink it.
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Minimal vs. Smallest

• Minimal sources can’t be made strictly smaller. You can’t

build a source on a subset that radiates the same far field.

• The smalllest source (the support of the far field) — you can’t

build any source which doesn’t contain this one, that radiates

its far field.

• If there’s a smallest source, its the only minimal source.
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Multiple Minimal Sources

• If γ1 and γ2 have the same end-

points, and v is free, then Cv
γ1

and

Cv
−γ2

radiate the same far field —

because their sum is a Cv
γ with γ

closed.

γ
1

γ
2

• Both Cv
γ1

and Cv
−γ2

are minimal, so there can be no smalllest

source.

• However, there is a smallest con-

vex source – the straight line con-

necting the endpoints.

γ
1

γ
2
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Unions of Disjoint Convex Sources

• If v is free, then Cv
γ1

and Cv
−γ2

radiate the

same far field.

• Both Cv
γ1

and Cv
−γ2

are minimal, so there

can be no smalllest

disjoint union of con-

vex sets that radi-

ates this far field.

• However, only γ1 is a

well-separated union

of convex sets.
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Intesection Lemma

1. supp F1 ⊂ Ω1

2. supp F2 ⊂ Ω2

3. F̂1(kΘ) = F̂2(kΘ)

4. Rn \ (Ω1

⋃
Ω2) con-

nected.

=⇒
• there exists F3

• suppF3 ⊂ Nε(Ω1 ∩ Ω2)

• F̂3(kΘ) = F̂1(kΘ)

4. and not

Class of scattering support must be closed under intersection and

have property 4.
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Proof of lemma

(∆ + k2)u1 = F1

(∆ + k2)u2 = F2

v =






φu1, x ∈ Rn\Ω1

φu2, x ∈ Rn\Ω2

0, x ∈ Ω1 ∩ Ω2

v = u1 v = 0 v = u2

v = u1 = u2

F3 = (∆ + k2)v

v is a well-defined function as long as u1 = u2 on Rn \ (Ω1

⋃
Ω2),

which follows from Rellich’s lemma and unique continuation.

19



Computing the Convex Support of a Far Field (k = 10)

• Expand the far field f(θ) in a Fourier

series

• Plot the modulus of the Fourier coef-

ficients.

• Find the value of n where they be-

come effectively zero.

• The convex support of the far field is

contained in the ball of radius R = n
k

centered at zero.
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• Replace f(θ) by eikΘ·cf = eik|c| cos(θ−φc)f(θ) and repeat.
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Three Part Algorithm

1. Test — find the radius of the smallest ball, centered at zero,

that can radiate the field.

2. Translation formula — The far field has no natural origin. In

the far field, you can translate with a formula.

Fc = F (x − c)

F̂c(kΘ) = eikΘ·cF̂ (kΘ)

3. Intersect — It would be difficult to draw conclusions from the

tests if we couldn’t intersect. That’s why the special classes.
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The Test

F̂ (kΘ) =
∑

fneinθ

There exists

F ∈ L2(BR)
⇐⇒





fn

(∫ R

0
J2

n(ks)sds
) 1

2





∈ l2

=⇒ fn =

∫
F (rΦ)Jn(kr)einφdV ≤ ||F ||L2 · ||Jn||L2(suppF )

⇐= Extend
∑

fneinθ to
∑

fneinθ Jn(Rρ)

Jn(Rk)

Jn(Rρ)einθ = ̂(einφδr=R)
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Rapid Transition to Evanescence

|fn| ≤ C
k2 σn(kR)

σn(R) := ||Jn||L2(BR)

• σn(R) uniformly big if n < R

• σn(R) uniformly small if n > R
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Locating the Scattering Support (k = 10)
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20% additive gaussian noise (k = 10)
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50% additive gaussian noise (k = 10)
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20 nodes (k = 1)
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A Pentagon and 100 circles
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Credits

Joint work with Steve Kusiak

Related work by and with Roland Potthast

Motivated by the Linear Sampling method of Colton Kirsch and

the the Factorization Method of Kirsch
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Future Directions

• Use Partial Bandwidth

• Partial Aperture

• Compute UWSCS when possible

• Estimate number of WSCS directly
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