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Abstract

We show how to locate all the transmission eigenvalues for a one
dimensional constant index of refraction on an interval.

1 Introduction

The scattering operator for the time harmonic Helmholtz equation with com-
pactly supported index of refraction n(x) maps the asymptotics of incident
waves (Herglotz wave functions) v0 to the asymptotics of (outgoing) scattered
waves u+ . Both u+ and v0 are defined in Rn and satisfy

(∆ + k2n2)u+ = (1− n2)k2v0

(∆ + k2) v0 = 0

in all of Rn.
If the scattering operator has a zero eigenvalue, we say that k2 is a trans-

mission eigenvalue [6], [4]. It follows from Rellich’s theorem and unique
continuation that the scattered wave u+ is identically zero outside any do-
main D that contains the support of n, and therefore that u = u+ and v = v0

are a pair of nontrivial functions satisfying

(∆ + k2n2)u = (1− n2)k2v in D (1.1)

(∆ + k2) v = 0 in D (1.2)

u
∣

∣

∣

∂D
= 0 ∂u

∂ν

∣

∣

∣

∂D
= 0 (1.3)
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Whenever such a nontrivial pair exists, we say that k2 is an interior
transmission eigenvalue for the pair (D, n).∗

Remark 1. If we scale v by introducing w = k2v , then the k2 on the right
hand side of equation (1.1) disappears, and we see that the interior transmis-
sion eigenvalue problem is a true generalized eigenvalue problem which can
be written as

∆u− (1− n2)w = −k2n2u

∆w = −k2w

with the same boundary conditions as in (1.3) [9].

The analogous interior problem for obstacle scattering is the Dirichlet
problem,

(∆ + k2) v = 0 in D

v
∣

∣

∣

∂D
= 0

and the Dirichlet eigenvalues are fairly well understood. In particular, the
Dirichlet eigenvalues of a one dimensional interval of length L are exactly
n2π2

L2 . The one dimensional interior transmission eigenvalue problem, even
for a constant index of refraction, is not as simple. In one dimension,
with the index of refraction n(x) equal to the positive constant σ, equations
(1.1) (1.2) (1.3) become

u′′ + k2σ2u = k2(1− σ2)v (1.4)

v′′ + k2v = 0 (1.5)

u(±L
2
) = 0 u′(±L

2
) = 0 (1.6)

so that k2 is an interior transmission eigenvalue if and only there exist a
nontrivial pair of eigenfunctions (u, v) satisfying (1.4)(1.5)(1.6).

We will show in proposition 4 that k2 is an interior transmission eigenvalue
if and only if k is a root of the equation

(σ − 1)2 sin2((σ + 1)
kl

2
)− (σ + 1)2 sin2((σ − 1)

kl

2
) = 0 (1.7)

∗See section 8 of [3], as well as [8], for more details about the connection between
transmission eigenvalues and interior transmission eigenvalues
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and the two theorems below describe the roots of (1.7), which we will call the
interior transmission wavenumbers (positive square roots of interior transmis-
sion eigenvalues).

Theorem 2. The interior transmission wavenumbers satisfy

|Im(k)| ≤
2

L
log

3σ + 1

|σ − 1|

In theorem 3 below, the notation ⌊ j

m
⌋ denotes the floor, the greatest in-

teger less than or equal to j

m
. The condition ⌊ j

m
⌋ = ⌊ j+1

m
⌋ means that there

is no integer between j

m
and j+1

m
, and Z denotes the integers.

Theorem 3. Let m = σ+1
σ−1

, and let j ∈ Z

1. If j

m
6∈ Z and j+1

m
6∈ Z, there are exactly two simple interior transmis-

sion wavenumbers in the strip

2jπ

(σ + 1)L
< Re(k) <

2(j + 1)π

(σ + 1)L

(a) If ⌊ j

m
⌋ 6= ⌊ j+1

m
⌋, both are real

(b) If ⌊ j

m
⌋ = ⌊ j+1

m
⌋ they are complex conjugates with nonzero imagi-

nary parts

2. If j

m
∈ Z, there is a quadruple interior transmission wavenumber at

k = j

m
and no others in the strip

2(j − 1)π

(σ + 1)L
< Re(k) <

2(j + 1)π

(σ + 1)L

The transmission wavenumbers for two σ’s, with L = 2, are plotted below.
The vertical blue lines indicate the sets Re(k) = 2jπ

(σ+1)L
. The roots that fall

on these lines are quadruple.

0 5 10
−2

0

2
TEs for σ = 1.25

0 1 2 3
−2

0

2
TEs for σ = 5

As these σ’s are rational, the transmission eigenvalues are periodic. Re-
mark 5 below explains how we did the computation.
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2 Lemmas and Proofs

Because we are dealing with constant coefficients, the transmission wavenum-
bers k are the zeros of the analytic function on the left hand side of equation
(1.7). This analytic function has two factors, and our proofs simplify if we
treat each factor separately.

Proposition 4. k is a transmission wavenumber if, and only if, k satisfies

(σ − 1) sin((σ + 1)
kl

2
) = (σ + 1) sin((σ − 1)

kl

2
) (2.1)

or

(σ − 1) sin((σ + 1)
kl

2
) = −(σ + 1) sin((σ − 1)

kl

2
) (2.2)

The wavenumber k satisfies (2.1) if there exists an eigenfunction pair (u, v)
of odd functions of x, and k satisfies (2.2) if there exists an eigenfunction
pair (u, v) of even functions.

Proof. If a pair u, v satisfies (1.4-1.6), then so do their odd and even parts,
and the calculation is a little simpler for each of these parts. The odd parts
satisfy (1.4-1.5) with (1.6) replaced by

u(0) = v(0) = 0 u(L
2
) = u′(L

2
) = 0

and the even parts satisfy (1.4-1.5) with (1.6) replaced by

u′(0) = v′(0) = 0 u(L
2
) = u′(L

2
) = 0

In the odd case, the boundary conditions at zero imply that

v = sin(kx)

and
u = − sin(kx) + A sin(kσx) (2.3)

for some constant A. The boundary conditions at x = L
2
imply that

sin(σk
L

2
) cos(k

L

2
) = σ sin(k

L

2
) cos(σk

L

2
) (2.4)
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Noting that the left and right hand sides are the beats representation of the
combination of the frequencies (σ+1)L

2
and (σ−1))L

2
suggests that we rewrite

(2.4) as

(σ − 1) sin((σ + 1))
L

2
k) = (σ + 1) sin((σ − 1)

L

2
k)

which is (2.1). A similar calculation shows the existence of even transmission
eigenfunction pairs if and only if k satisfies (2.2).

If we introduce the new variables

m =
σ + 1

σ − 1
(2.5)

and

z = (σ − 1)k
L

2π

then equations (2.1) and (2.2) become equations for z which depend on the
single real parameter m. They become

pom(z) := sin(mπz)−m sin(πz) = 0 (2.6)

pem(z) := sin(mπz) +m sin(πz) = 0 (2.7)

where the superscripts refer to even and odd, respectively. Because σ > 0,
|m| > 1. Because equations (2.6) and (2.7) remain the same if we change the
sign of m, we may also assume that m > 1, and will do so throughout†.

Remark 5. If m = p

q
is rational and we set w = e

iπz
q , then (2.6) becomes a

polynomial equation in w.

w2p − 1 =
p

q

(

wp+q − wp−q
)

(2.8)

We can use a polynomial root finding algorithm to find the solutions and then
take logarithms and rescale to find the interior transmission wavenumbers k.
This is how we produced figure 1.

With the notation introduced in (2.5), theorem 2 becomes

†Alternatively, we could start with the assumption that σ > 1, and then use the
relationship between the transmission wavenumbers of σ and those of 1

σ
, kj(

1

σ
) = σkj(σ)

to show that our formulas and estimates apply to σ < 1 as well.
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Theorem 6. If z satisfies (2.6) or (2.7), then

|Im(z)| ≤
log(2m+ 1)

π(m− 1)
(2.9)

Proof. If z = x+ iy satisfies (2.6)

emπ|y| − e−mπ|y| ≤ 2| sinmπz| = 2m| sinπz| ≤ meπ|y| +me−π|y|

so that
emπ|y| ≤ e−mπ|y| +meπ|y| +me−π|y|

Dividing both sides by eπ|y| gives

e(m−1)π|y| ≤ e−(m+1)π|y| +m+me−2π|y| ≤ 2m+ 1

Now taking the logarithm of both sides yields (2.9)

Locating the real parts of the roots of pm(z) = pom(z)p
e
m(z) will take more

work. We will show (roughly) that there are always two roots in certain
strips of the complex plane. We define

I j

m

=

{

x

∣

∣

∣

j

m
< x <

j + 1

m

}

S j

m

=

{

z
∣

∣

∣

j

m
< Re(z) <

j + 1

m

}

A restatement of theorem 3, using the notation of equation (2.5), is the-
orem 7 below.

Theorem 7. Let m > 1.

1. If neither j

m
nor j+1

m
are integers, then pm has two simple roots in the

strip S j

m

.

(a) If the interval I j

m

contains an integer k, both roots are real, and

one is bigger and the other smaller than k.

(b) If the interval I j

m

does not contain an integer, the roots are com-

plex conjugates (with nonzero imaginary parts).

2. If j

m
is an integer, j

m
is a quadruple root of pm , and pm has no other

roots in S j

m

or S j−1

m

.
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Theorem 7 is an immediate consequence of the analogous theorems for pom
and pem . These theorems are a little more complicated to state, but easier
to prove.

Theorem 8. Let m > 1.

1. Suppose that neither j

m
nor j+1

m
are integers.

(a) If the interval I j

m

contains an integer k and j + ⌊ j

m
⌋is even, then

pom has a real root in the interval ( j

m
, k) and no other roots in S j

m

and pem a root in (k, j+1
m

) and no other roots in S j

m

. If the interval

I j

m

contains an integer k and j + ⌊ j

m
⌋is odd, then pom has a real

root in the interval (k, j+1
m

) and no other roots in S j

m

and pem a

root in ( j

m
, k) and no other roots in S j

m

.

(b) If the interval I j

m

does not contain an integer and j + ⌊ j

m
⌋is odd,

pom has 2 simple complex conjugate roots in S j

m

and pem has none.

If j + ⌊ j

m
⌋is even, pem has 2 simple complex conjugate roots in

S j

m

and pom has none.

2. If j

m
is an integer, neither pom nor pem have any roots in S j

m

or S j−1

m

. If

j + ⌊ j

m
⌋ is even, j

m
is a triple root of pomand a simple root of pem. If

j + ⌊ j

m
⌋ is odd, j

m
is a triple root of pemand a simple root of pom.

We will prove theorem 8 (we will only prove the results for pom) by studying
a one parameter family of equations with m fixed and parameter β.

pβ(z) = sin(mπz)− β sin(πz) (2.10)

We will use the fact that that the roots of the entire function pβ(z) de-
pend continuously on the parameter β‡. We will also use the fact that, as
β → ∞, the roots of pβ must approach those of sin(πz). This last fact
follows from the first by multiplying (2.10) by α = 1

β
, and the fact that the

roots of α sin(mπz)−sin(πz) depend continuously on α as α approaches zero.

‡The continuity of the roots of analytic functions follows from the fact that roots are
isolated, together with the argument principle.
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Before giving the rigorous details, we give a rough outline of the proof of
Theorem 8. To simplify this outline we ignore the case where j

m
is an integer.

Theorem 8 makes two assertions

1. It tells us the number of roots pom in each strip S j

m

. This number is the

same for pβ for all β > 0.

2. It tells us the number of real roots in each strip when β = m. The
number of real roots of pβ changes as β increases from zero to m, but
is the same for all β ≥ m .

We establish the number of roots in each strip by observing that:

1. at β = 0 all roots are real and on the boundary of the strips S j

m

, and

the derivatives are nonzero and pointing in the direction of the correct
strip (lemma 9), so that, for small positive β, the correct number of
roots have entered each strip(corollary 10).

2. Lemma 11 tells us that no roots can cross the boundary of S j

m

, so the

correct number of roots remain in each strip for all β (corollary 12).

We calculate the number of roots which are real at β = m by observing that:

1. As β approaches infinity, a single root must approach each integer (the
roots of sin πz) , and the other roots must leave every compact subset
of C.

2. A calculation(lemma 13) shows that for β ≥ m, all roots are simple.

3. This means that any real roots of pβ in S j

m

at β = m must remain real

for β ≥ m and remain in S j

m

, so they remain in the interval I j

m

. But,

as β approaches infinity, the roots of pβ must either approach the roots
of sin πz or leave every compact subset of C. The roots in the S j

m

’s

that don’t contain an integer must leave every compact set, so they
cannot remain in the interval I j

m

, so they cannot have been real when

β = m.

4. The S j

m

’s that contain an integer contain only one root for all β, so the

root remains simple and therefore real at β = m. That root approaches
the integer as β approaches infinity.
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The detailed proof follows:

Lemma 9. The roots of p0 = sin(mπz) are j

m
. Each of these roots is simple,

and thus continues to a unique root zj(β) of pβ for small β. Moreover,

dzj

dβ

∣

∣

∣

β=0
= (−1)j+⌊ j

m
⌋| sin(

jπ

m
)| (2.11)

Proof. At β = 0, the roots of sinmπz are located at j

m
and are all simple.

The implicit function theorem implies that, for small β, they remain simple
and depend analytically on β, so we can define zj(β) to be the continuation
of that root. Differentiating (2.10) yields

dzj
dβ

(mπ cos(mπzj) + βπ cos(πzj)) = sin(πzj)

so that
dzj
dβ

∣

∣

∣

β=0
=

sin πj

m

cos πj
= (−1)j sin jπ

m
= (−1)j+⌊ j

m
⌋| sin( jπ

m
)|

Knowledge of the derivatives tells us that the roots are in the correct
strips for small β.

Corollary 10. For β > 0 and sufficiently small, all roots of pβ are real and:

1. Suppose that neither j

m
nor j+1

m
are integers.

(a) If the interval I j

m

contains an integer k, then pβ has a real root in

the interval ( j

m
, k) and no other roots in S j

m

if j+ ⌊ j

m
⌋is even. pβ

has a root in (k, j+1
m

) and no other roots in S j

m

if j + ⌊ j

m
⌋is odd.

(b) If the interval I j

m

does not contain an integer and j + ⌊ j

m
⌋is odd,

pβ has no roots in S j

m

. If j+ ⌊ j

m
⌋is even, pβ has two roots in S j

m

.

2. If j

m
is an integer, j

m
is a simple root of pβ. If j + ⌊ j

m
⌋ is even, there is

a simple root in each of I j

m

and I j−1

m

. If j + ⌊ j

m
⌋ is odd, there are no

roots in I j

m

or I j−1

m

.
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Proof. Because sin z = sin z, the roots of (2.6) must occur in conjugate pairs,
and simple roots must remain real for small β. Lemma 9 tells us that, zj
starts at j

m
and moves to the right if j

m
is not an integer and j + ⌊ j

m
⌋ is

even, or to the left if j

m
is not an integer and j + ⌊ j

m
⌋ is odd. If I j

m

does not

contain an integer, then j+1
m

+ ⌊ j+1
m

⌋ is odd whenever j + ⌊ j

m
⌋ is even, and

even whenever j + ⌊ j

m
⌋ is odd, so that both zj and zj+1 move into I j

m

when

j + ⌊ j

m
⌋ is even, and away from I j

m

when j + ⌊ j

m
⌋is odd, which establishes

item 1b.

If I j

m

contains an integer k, then zj moves into I j

m

and zj+1 moves away

from I j

m

when j + ⌊ j

m
⌋ is even, and zj+1 moves into I j

m

and zj moves away

when j+ ⌊ j

m
⌋ is odd. The root which moves into I j

m

remains in either ( j

m
, k)

or (k, j+1
m

) for small β, which establishes item 1a.

Finally, if j

m
is an integer, both terms in (2.10) vanish, so that j

m
remains

a root for all β, and remains simple at least for β small. If j

m
is an integer,

j−1
m

+ ⌊ j−1
m

⌋ = j + ⌊ j

m
⌋ − 2 and j+1

m
+ ⌊ j+1

m
⌋ = j + ⌊ j

m
⌋ + 1, so zj−1 moves

into I j−1

m

and zj+1 moves into I j+1

m

if j + ⌊ j

m
⌋ is even, and both move away

from those intervals if j + ⌊ j

m
⌋is odd. This establishes item 2 and finishes

the proof.

At a root of pβ(z), the real parts of the sinmπz must equal the real part
of β sin πz. The lemma below identifies the sets on which the real parts of
these terms vanish.

Lemma 11. Re(sin(z)) = 0 iff sin(Re(z)) = 0

Proof.

sin(x+ iy) = sin x cosh y + i cosx sinh y

and cosh y never vanishes.

A consequence of lemma 11 is that pβ has no roots on Re(z) = j

m
or on

Re(z) = k, when j or k are integers, unless j

m
equals an integer. This is

enough to show that the roots which entered each strip for small β, must
remain there.
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Corollary 12. For all 0 < β < ∞

1. The conclusions in items 1a and 1b of corollary 10, remain true.

2. If j

m
is an integer and j + ⌊ j

m
⌋ is odd, j

m
is a simple root of pβ and pβ

has no other roots in S j

m

or S j+1

m

. If j

m
is an integer and j + ⌊ j

m
⌋ is

even, pβ has three roots in S j−1

m

∪ S j

m

, one of which is j

m
.

Proof. The hypothesis of item 1, that j

m
and j+1

m
are not integers, combine

with lemma 11 to guarantee that pβ can have no roots on the boundary of
S j

m

. As the roots of the entire analytic function pβ depend continuously on

β, this implies that no root can enter or leave S j

m

. Thus, if S j

m

contained no

roots for small β, it contains no roots for all β. If S j

m

contained two roots

for some β, it contains two roots for all β. This establishes item 1b for all β.
To establish item 1a, note that lemma 11 forces the simple root to remain in
k < Re(z) < j+1

m
or j

m
< Re(z) < k. As the simple real root remains simple,

it must also remain real.

The two statements in item 2 follow similarly from the fact that no root
can cross j+1

m
or j−1

m
, as these cannot be integers if j

m
is an integer because

m > 1.

Lemma 13. For β > m, all roots of pβ are simple. For β = m, all roots are
simple except z = j

m
in the case that j+ j

m
is an even integer. In this case, j

m

is a triple root of pβ.

Proof. All roots of pβ that aren’t real are simple, because there are no more
than three in any strip, and they must occur in conjugate pairs. Suppose we
have a double real root, then

sinmπz = β sin πz (2.12)

and
m cosmπz = β cosπz (2.13)

Squaring both (2.12) and (2.13), and adding the results gives

sin2mπz + cos2mπz + (m2 − 1) cosmπz = β2

or
cos2mπz = β2−1

m2−1
(2.14)
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which is impossible for β > m because the right hand side is bigger than one.
If β = m, then (2.14) and (2.13) are possible, but only if

cosπz = cosmπz = ±1

which implies that z and mz are either both even or both odd integers. This
is equivalent to the statement that z = j

m
and j + ⌊ j

m
⌋ is an even integer.

One can check directly that the root is indeed triple in this case.

Proof of Theorem 8. We only prove the theorem for pom, as the proof for pem
is analogous. Item 1a follows immediately from item 1 of corollary 12. Item
1 of corollary 12 also implies all of item 1b, except the fact that the two
roots are not real. To see this, note that, as β → ∞, the roots of pβ must ei-
ther approach the roots of sin πz, which are integers, or leave every compact
subset of the complex plane. Since I j

m

contains no integers, the two roots in

S j

m

must leave every compact subset of C. As Re(z) must remain between
j

m
and j+1

m
, the imaginary parts of these two roots must grow unbounded

as β → ∞. If they were real at β = m, lemma 13 would imply that they
were simple and remained simple and real for all β, contradicting the fact
that their imaginary parts grow unbounded as β → ∞. Hence they must not
have been real at β = m.

Item 2 follows for a similar reason. We can check directly that j

m
is either

a simple or a triple root, depending on the parity of j + ⌊ j

m
⌋. Item 2 of

corollary 12 tells us that these are all of the roots in the closure of S j−1

m

∪S j

m

,

so there are no other roots of pomin these strips.

3 Some Limiting Cases and Conclusions

We have shown that there are two transmission wavenumbers in each closed
strip 2jπ

(σ+1)L
≤ Re(k) ≤ 2(j+1)π

(σ+1)L
of width 2π

(σ+1)L
, and two real transmission

wavenumbers in each of those strips which contains an integer. We show
below that, in the limiting cases of a weak scatterer (σ → 1), there are
no longer any real transmission wavenumbers, and in the limiting case of a
strong scatterer (σ → ∞), all the transmission wavenumbers become real.

The Born, or linear approximation, is the limit as σ → 1. We return to
equation (1.7), set πz = kL, and let σ → 1 to obtain
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πz = ± sin πz (3.1)

Introducing the parameter β in front of the πz on the right hand side,
and repeating the steps we used to prove theorem 7, gives:

Theorem 14. For every integer j except j = −1 and j = 0, equations (3.1)
have exactly two non-real complex conjugate roots in the strip j ≤ Re(j) ≤
j+1, and they lie in the interior of the strip. The only root in −1 ≤ Re(z) ≤ 1
is the triple root at z = 0.

The imaginary parts of these roots grow logarithmically. The precise
asymptotics, which can be verified by substituting (3.2) into (3.1), are

z±j = (j + 1
2
)± i log(2|j + 1

2
|) +O

(

log(2|j+ 1

2
|)

(j+ 1

2
)

)

(3.2)

so that kj =
πzj
L

satisfy

k±
j ∼ π

L

(

(j + 1
2
)± i log(2|j + 1

2
|)
)

where, for the odd integers j, zj solve equation (3.1) with the plus sign, and,
for even integers j, the zj solve (3.1) with the minus sign.

The limit as σ → ∞ is a little more work to calculate. This is the limit
as m → 1, so that equation (2.7) becomes

sin πz = − sin πz

or
sin πz = 0 (3.3)

with roots at the integers. Thus, as σ → ∞, the even transmission wavenum-
bers

kj ∼
2πj

σL

have the same asymptotics as the square roots of the eigenvalues of the
Dirichlet problem

u′′ + k2σ2u = 0

u(±L
2
) = 0 (3.4)
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with odd (u(x) = −u(−x)) eigenfunctions.

The solutions of (2.6), which describe the transmission wavenumbers with
odd eigenfunctions, have a different asymptotic behavior, that will match the
asymptotics of a different self-adjoint boundary value problem. To see the
limiting equation, we subtract sin πz from both sides of (2.6)

sin(mπz)− sin πz = m sin πz − sin πz

and divide by m− 1

sin(mπz)− sin πz

m− 1
= m sin πz

which becomes, as m → 1
πz cosπz = sin πz

or
πz = tanπz

The transmission wavenumbers satisfy

k(σ − 1)
L

2
= tan k(σ − 1)

L

2
(3.5)

and thus have the same asymptotics, as σ → ∞, as the square roots of the
eigenvalues of the self-adjoint boundary value problem.

v′′ + k2σ2v = 0 (3.6)

±L
2
v′(±L

2
) = v(±L

2
)

with odd eigenfunctions§.

Because these limiting wavenumbers are the square roots of the eigen-
values of a self-adjoint problem, we see that, as σ → ∞, all transmission
wavenumbers become real.

In our discussion of the one dimensional transmission eigenvalue prob-
lem, we have observed certain relationships between transmission eigenvalues,

§The wavenumbers of (3.6) with even eigenfunctions satisfy equation (3.5) with tangent
replaced by cotangent
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Dirichlet eigenvalues, and the eigenvalues of another self-adjoint boundary
value problem. We expect (optimistically) that some of these relationships
will persist in higher dimensions. We know that, in the Born approximation,
there are no real transmission eigenvalues [8], that a generic radially sym-
metric index of refraction has complex transmission eigenvalues [7], and that
there are infinitely many transmission eigenvalues [8] [1]. All of these results
are consistent with our one dimensional conclusions.

A consequence of theorem 3 is that the counting function for the number
of interior transmission wavenumbers in a strip of width W is

NC(W ; σ, L) =
(σ + 1)LW

π
± 2

which has the same asymptotics as the counting function for Dirichlet wavenum-
bers for an interval of the same length with index of refraction n = σ + 1.

The counting function for real interior transmission wavenumbers in an
interval of width W is

NR(W ; σ, L) =
(σ − 1)LW

π
± 2

which matches the asymptotics of the counting function for Dirichlet wavenum-
bers for an interval of the same length with index of refraction n = σ − 1.¶

It seems reasonable to conjecture that the relationship between the counting
functions for the Dirichlet wavenumbers and the transmission wavenumbers
remains true for non-constant σ, and in higher dimensions as well.
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