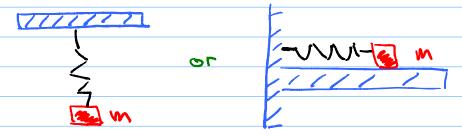
Note Title 2/1/2020

c	0 1	0-1-	D'EG as tis	Far a tions
7	econd	Order	Differential	Lyww Clory

Force = Mass · Acceleration

Primary Example Mass and Spring

a.k.a Simple Harmonic Oscillator



mass

at

rest

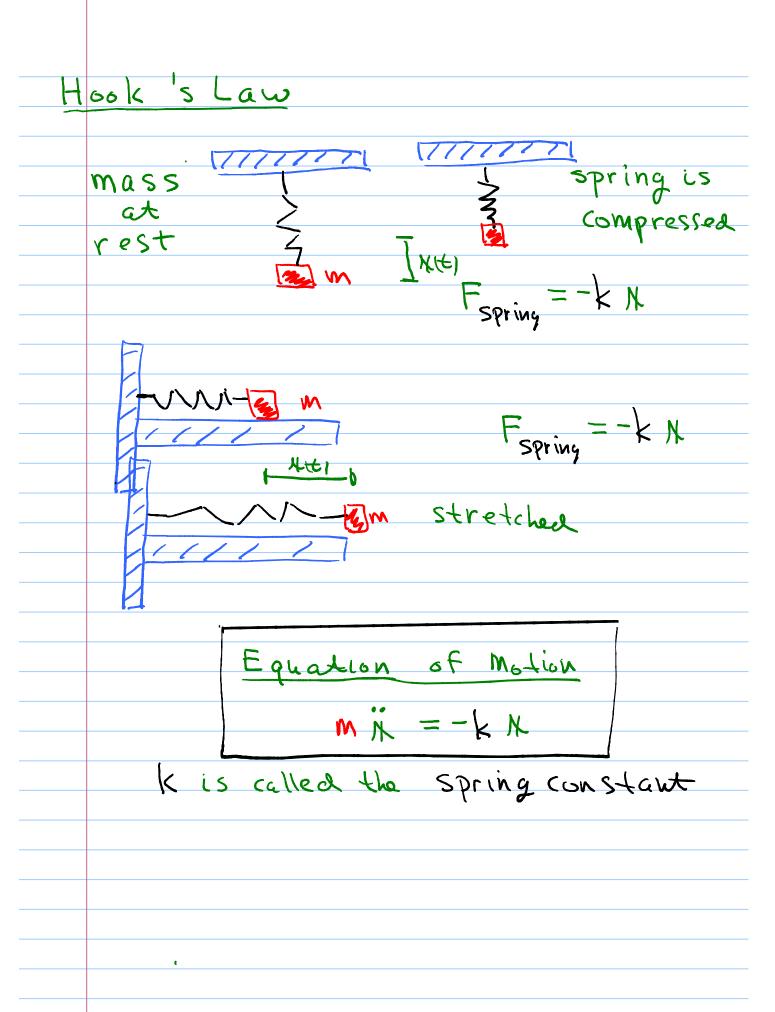
Nest

N=-2

Hook s Law

Fspring - KA Spring force opposes displacement.

You may choose up for down to be the positive direction.



	Damped Harmonic Oscillator
	Dampen Dampen
	Resists motion with a force
	with a force
	to velocity and
	in the opposite direction to the relocity - damping
	to the relocity
	T = damping we fficient
	do maina isnit
	piston moving through dry friction
	examples of damping
	Fdamping = - Y N shock absorber
-	SNOCK CHOSOLDEN
E	quations of Motion For Damped Harmonic Oscillator
	MX = -Y K - K K
	Usually written
	MN+YN+kN=0

suppose a zkg mass is attached to a spring with spring constant 24 kg/sec2 and a damping coefficient of 16 kg/sec. The mass is set in motion from its equilibrium position with an initial Nelocity of IM/sec. Formulate and Solve the Initial Value Problem. y = displacement from equilibrium 2 / = - 16 / - 24 / starts from equilibrium 4(0)=0 initial velocity ij@1=1 24 + 164 + 244 = = (IVP) 70=0 j(0)=1

$$0 = 4(0) = C_1 + C_2$$

$$1 = 4(0) = -6C_1 - 2C_2$$

$$-2C_1 + 2C_2$$

$$-3C_1 - 3C_2$$

	undamped Harmonic Oscillator
· ·	
	Equilibrium NEI
Su	uppose the spring constant is 50 kg sec2
ŧ	lo damping M = 2 kg
	Initial displacement = 5 meters
	Initial velocity = 20 meters/sec
Ø	Write the I nitral Value Problem
	Find a formula for 1965
4	nswer mass acceleration = & Forces
	0 9
	MK = -kK
	2 K = - 50A
	· · · · · · · · · · · · · · · · · · ·
	or $V + 52V = 0$
	or $1 + 25 = 0$ 1 + 25 = 0

N +25 N =0 $\mu(0) = 5$ $\mu(0) = 20$ Seek Mt = l $H = r^2 Q_{rt}$ $+ 25 N = 25 Q_{rt}$ $\frac{1}{1} + 52N = (\frac{1}{5} + 52) = 0$ or r= ±50 Two solutions: 4,(t) = 2 = 2 -5ti Because this is a Linear DE K(t) = C, 25ti + Cz 25ti is a solution for any constants C, and C, But we seek real solutions, so we use Eulen's formula, and write our general solution as: NE) = D1 cosst + D2 sinst and solve for D, and Dz.

DIF you find 2 different solutions

y, only, then every solution is

a linear combination of y, and y,

2) All solutions are sums of exponentials.

4(4) = C, 4, CH + C, 4,5)

* This is a little bit of a lie. I'll explain more as we go on.

Exam les of Damped Harmonic Oscillators I wouttest you on this.

A single story shear building consists of a rigid girder with mass m, which is supported by columns with combined stiffness k. The columns are assumed to be weightless, inextensible in the axial (vertical) direction, and they can only take shear forces but not bending moments. In the horizontal direction, the columns act as a spring of stiffness k. As a result, the girder can only move in the horizontal direction, and its motion can be described by a single variable x(t); hence the system is called a single degree-of-freedom (DOF) system. The number of degrees-of-freedom is the total number of variables required to describe the motion of a system.

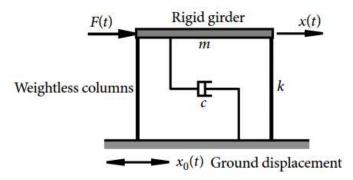


Figure 5.1 A single-story shear building.

The combined stiffness k of the columns can be determined as follows. Apply a horizontal static force P on the girder. If the displacement of the girder is Δ as shown in Figure 5.2, then the combined stiffness of the columns is $k = P/\Delta$.

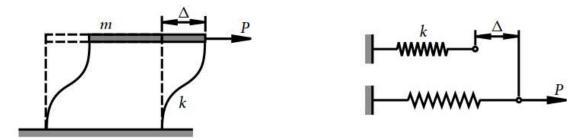
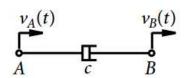


Figure 5.2 Determination of column stiffness.

The internal friction between the girder and the columns is described by a viscous dashpot damper with damping coefficient c. A dashpot damper is shown schematically in Figure 5.3 and provides a damping force $-c(v_B-v_A)$, where v_A and v_B are the velocities of points A and B, respectively, and (v_B-v_A) is the relative velocity between points B and A. The damping force is opposite to the direction of the relative velocity.



188

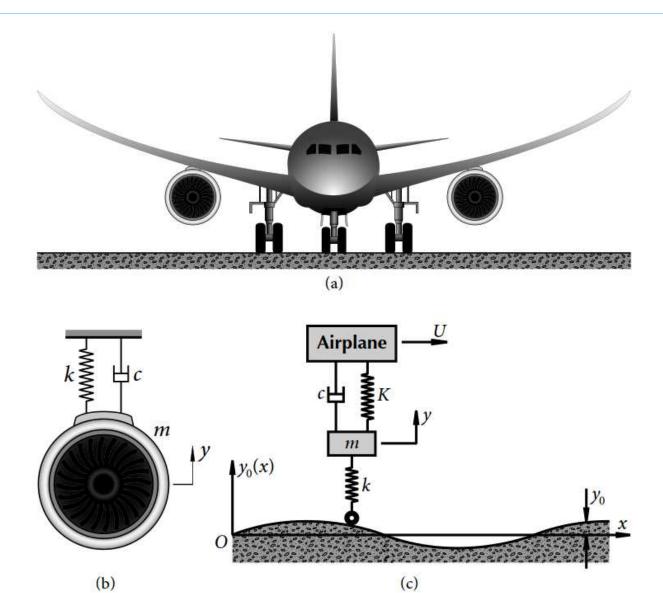


Figure 5.8 Mathematical modeling of jet engine and landing gear.