L26SecondOrderSummary
Summary -
Second Order Constant Coefficient ODE Harmonic Motion
Unforced Motion Undamped
Undamped $\omega_{0}=12$

$\ddot{y}+\frac{k}{m} y=0$ mass-spring

$$
\begin{aligned}
& \ddot{y}+\omega_{0}^{2} y= \text { harmonic } \\
& \omega_{0}=\operatorname{natural} c_{i l} \text { frequency } \\
& y=c_{1} \cos \omega_{0} t+c_{2} \sin \omega_{0} t \\
&=A \cos \left(\omega_{0} t-Q\right)
\end{aligned}
$$

Damped
$+\omega_{0}^{2} y=0$ harmodiciscillator

$$
\ddot{y}+\frac{\gamma}{m} \dot{y}+\frac{k}{m} y=0 \text { mass-spring }
$$

over damped

$$
\left.\begin{array}{l}
y=c_{1} e^{-r_{1} t}+c_{2} e^{-r_{2} t} \\
r^{2}+\frac{r}{m} r+\frac{k}{m}=0 \\
\text { has } 2 \text { real roots } \\
{[\text { This is equivalent to }} \\
\rho>1
\end{array}\right] .
$$

$$
\begin{aligned}
& y=c_{1} e^{-\frac{r}{2 m} t} \cos \omega_{d} t+c_{2} l^{-\frac{r}{2 m} t} \sin \omega_{d} t \\
& y= \\
& A e^{-\frac{r}{2 m} t} \cos \left(\omega_{d} t-Q\right) \\
& r^{2}+\frac{r}{m} r+\frac{k}{m}=0
\end{aligned}
$$

has complex roots

$$
[\rho<1]
$$

Critically Damped $r^{2}+\frac{r}{m} r+\frac{k}{m}=0$
Graph looks like

$$
y=c_{1} l^{-r t}+c_{2} t e^{-r t}
$$

$\left[\begin{array}{c}\text { This is equivalent to } \\ \rho=1\end{array}\right]$ overdamped

Forced Motion
Undamped Beats $\ddot{y}+\omega_{0}^{2} y=\cos \omega t$

$$
y(0)=0 \quad \dot{y}(0)=0
$$

average freq.
half difference $y=\frac{2 \sin \left(\frac{\omega-\omega_{0}}{2} t\right) \sin \left(\frac{\omega+\omega_{0}}{2} t\right)}{\omega^{2}-\omega_{0}^{2}}$

Resonance $\ddot{y}+\omega_{0}^{2} y=\cos \omega_{0}$ t $\quad y(0)=0 \quad \dot{y}(0)=0$

$$
y=\frac{t \sin \omega_{0} t}{2 \omega_{0}}
$$

Damped Forced $\ddot{y}+\frac{\gamma}{m} \dot{y}+\frac{k}{m} y=\cos \omega t$

$$
\begin{aligned}
& \quad\left[\text { or } \ddot{y}+2 \rho \omega_{0} \dot{y}+\omega_{0}^{2} y=\cos \omega t\right] \\
& y_{s s}=A \cos (\omega t-Q)
\end{aligned}
$$

we can calculate A and Q in terms
of $\varphi, \omega_{0}, \omega$

$$
A=\frac{1}{\sqrt{\left(\omega^{2}-\omega_{0}^{2}\right)^{2}+4 \rho^{2} \omega_{0}^{2} \omega^{2}}}
$$

zeta $=0.4$ tau $=3 \quad \mathrm{IC}=1 \quad 0 \mathrm{wo}=1$

I don't expect you to memorize any of these formulas. I expect you to be able to work them out in specific cares.

Mathematical Methods for second Order Constant Coefficient ODE
(1) Find homogeneous solutions as I inear combinations of functuns $e^{r t}$ or $t e^{r t}$.
(2) Particular Solutions are linear combinations of forcing functions and their de rivatives.

If forcing terms sat is fy homogeneous equation, particular solution must be multiplied by t. Repeat until noterm satsis fies homogeneous equation.

