L19CriticallyDamped

Critically
Damped

$$
\begin{align*}
& \ddot{x}+2 \dot{x}+x=0 \\
& x(0)=0 \quad \dot{x}(0)=10
\end{align*}
$$

(DE)
(1) Solve the IVP (2) Is the displacement ever = 0?
(3) What is the maximum displacement?

Seek $x(t)=e^{r t} \quad r^{2}+2 r+1=0$

$$
(r+1)^{2}=0 \quad \text { so } \quad r=-1
$$

When there is only one value of
$r$ that solves the indicial equation, the general solution is $c_{1} e^{r t}+c_{2} t e^{r t}$. explanation after we finish the problem.

General Solution $c_{1} e^{-t}+c_{2} t e^{t}$
Impose IC's

$$
\begin{aligned}
& 0=N(0)=c_{1}+0 c_{2} \text { so } c_{1}=0 \\
& 10=\dot{x}(0)=-C_{1}+c_{2} \text { so } c_{2}=10 \\
& (1) x(t)=0 e^{-t}+10 t \bar{e}^{t}=10 t e^{-t}
\end{aligned}
$$

$$
N(t)=10 t e^{-t}
$$

(2) Where is displacement $=0$

$$
0 \stackrel{?}{=} 10 t e^{-t}
$$

Only zero at $t=0$
(3) What is the max displacement? Mare displacement occurs when $\dot{x}=0$

$$
0=\dot{x}(t)=10\left(e^{-t}-t e^{-t}\right)=10 e^{-t}(1-t)
$$

i vanishes at $t=1 . m$ ax displacement $=10 e^{-1}$


Looks just like overdomped

Where did the "t" comefrom:
I'll show you two examples that illustrate how you can find these Solutions, without some one else telling you what they are. The technique involves:

Find solutions that you don't know by taking limits of solutions that you do know!!
It can be applied to $m$ any different problems in math and science.

The first example is the simplest

$$
\ddot{x}-\omega^{2} x=0 \quad x(0)=0 \quad \dot{x}(0)=1
$$

For w $w=$, we set $A=e^{r t}$ and find two roots $r= \pm \omega$.

$$
\ddot{x}-\omega^{2} x=0 \quad x(0)=0 \quad \dot{x}(0)=1
$$

For $\omega \neq 0$, we set $A=e^{r t}$. If $\omega \neq 0$, we find two roots $r= \pm \omega$. So

$$
N(t)=C_{1} e^{\omega t}+C_{2} e^{-\omega t}
$$

We use the initial conditions to find $C_{1}$ and $c_{2}$ It turns out that $C_{1}=-C_{2}=\frac{1}{2 \omega}$ so

$$
x(t)=\frac{e^{\omega t}-e^{-\omega t}}{2 \omega}
$$

If $\omega=0$, the $D E$ is

$$
\ddot{x}=0
$$

When we set $N(t)=e^{r t}$, the indicial equation is

$$
r^{2}=0
$$

and we find only one root $r=0$, so we have only one Solution $N(t)=e^{0 t}=1$

We can find the other solution by going back to the case $\omega \neq 0$ and taking the limit as $\omega \rightarrow 0$.

$$
\lim _{\omega \rightarrow 0} \frac{e^{\omega t}-e^{-\omega t}}{2 \omega}=\frac{e^{o t--0 t} l^{\prime \prime}}{2 \cdot 0}=\frac{0}{0}
$$

So we need to use L'Hôpitals rule

$$
\lim _{\omega \rightarrow 0} \frac{e^{\omega t}-e^{-\omega t}}{2 \omega}=\frac{e^{0 t--0 t} e^{\prime \prime}}{2 \cdot 0}=\frac{0}{0}
$$

So we need to use L'Hôpitals rule

$$
\begin{aligned}
\lim _{\omega \rightarrow 0} \frac{e^{\omega t}-e^{-\omega t}}{2 \omega} & =\lim _{\omega \rightarrow 0} \frac{\frac{d}{d \omega}\left(e^{\omega t}-e^{-\omega t}\right)}{\frac{d}{d \omega}(2 \omega)} \\
& =\lim _{\omega \rightarrow 0} \frac{t e^{\omega t}+t e^{-\omega t}}{2} \\
& =\lim _{\omega \rightarrow 0} \frac{t \cdot 1+t \cdot 1}{2}=t
\end{aligned}
$$

We have found a se cond solution $N(t)=t$ So the general solution is

$$
N(t)=C_{1}+C_{2} t
$$

This is the simplest example. You might have found this general solution on your own, by just integrating $i=0$ twice. The example on the next page is a little more complicated.

Example $2 \quad \ddot{x}+2 \ddot{x}+x=0$
This is the example from the first pase, we looked for $k=e^{r t}$ and only found one root, $r=-1$, so we had only one solution $\mu(t)=\bar{e}^{-t}$.

To find the second solution, we modify the $D E$ to

$$
\ddot{N}+2 \ddot{N}+\left(1-\omega^{2}\right) \mathbb{N}=0 \text { and, }
$$

keep the initial conditions, $N(0)=0$ and $\dot{X}(0)=10$ The indicial equation for $r$ be comes

$$
r^{2}+2 r+\left(1-\omega^{2}\right)=0
$$

and now there are two roots $r=-1 \pm \omega$. The general solution is

$$
N(t)=C_{1} e^{(-1+\omega) t}+C_{2} e^{(-1-\omega) t}
$$

and use the initial conditions $k(0)=0$ and $\dot{\mathcal{H}}(0)=10$

$$
N(t)=10\left(\frac{e^{(-1+\omega) t}-e^{(-1-\omega) t}}{2 \omega}\right)=10 e^{-t}\left(\frac{e^{\omega t}-e^{-\omega t}}{2 \omega}\right)
$$

$$
N(t)=e^{-t}\left(\frac{e^{\omega t}-e^{-\omega t}}{2 \omega}\right)
$$

Now, let $\omega \rightarrow 0$,

$$
\lim _{\omega \rightarrow 0} N(t)=e^{-t} \lim _{\omega \rightarrow 0}\left(\frac{e^{\omega t}-e^{-\omega t}}{2 \omega}\right)
$$

We again need to apply L'Hôpitals rule exactly as before and find

$$
N(t)=10 t e^{-t}
$$

We know have two independent Solutions to the $D E \quad \ddot{x}+2 \dot{\sim}+\boldsymbol{A}=0$

The general solution is

$$
N(t)=c_{1} e^{-t}+c_{2} t e^{-t}
$$

