
LOS Population Models

Note Title 7/29/2020

Unlimited Resources (Exponential Growth)

G. stearothermophilus has a shorter doubling time (t_d) than E. coli and N. meningitidis

By Clevercapybara - Own work, CC BY-SA 4.0,

https://commons.wikimedia.org/w/index.php?curid=42596607

= growth rate = birth rate - death rate

$$\frac{dP}{dt} = rP$$

Initial Value Problem

Question Suppose the doubling time

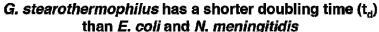
cs 30 minutes. Find r.

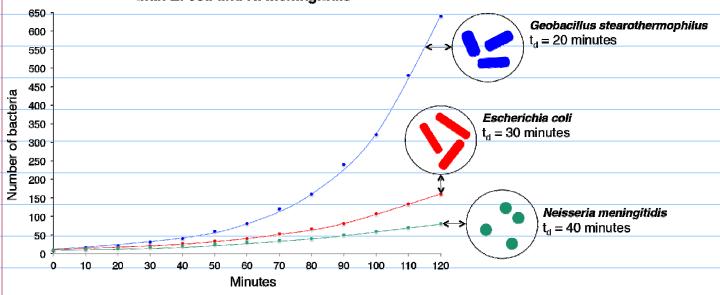
r is sometimes called the "proportionality constant

Question Suppose the doubling time is 30 minutes. Find r

$$\frac{dP}{dP} = rdt$$

$$|n|P| = r + rt$$

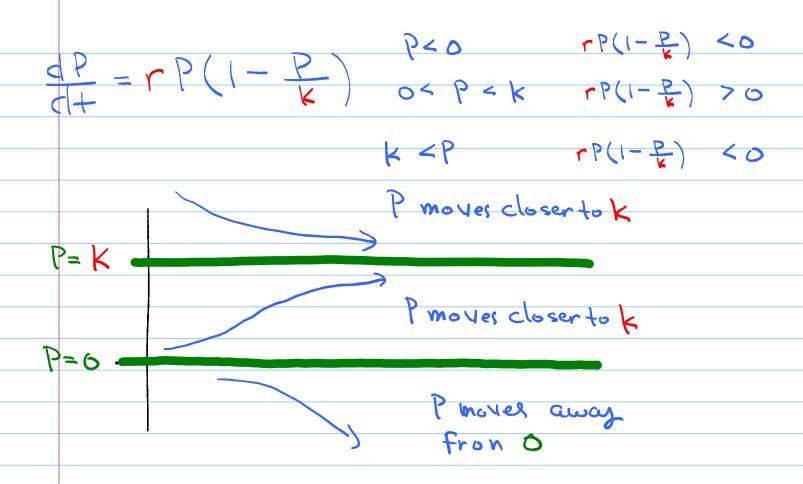

$$P = ke^{rt}$$


$$P = ke^{rt}$$

$$P(t) = Pere$$

Calculate r P(30) equals twice P(0) P(30) = Po 2301 2 P(0) 2 P = P(30) = 7 L

Note: The value of Po didn't matter for this problem.



Remark - Ils important to work with "letters" (r, Ps) rather than just numbers.

In real applications, we almost never measure parameters like r directly.

Warning: You will see many word problems in text books or online where its not clear if they are telling you for some duta from which you should determine r.

Li	miteo	l Resources (Logistic Growth Model)
	$\frac{dt}{dt}$	$= rP(1-\frac{P}{K})$ (DIZ)
(= 9	routh rate
		rrying capacity
<	- ma - ava (car	kimum population that ilable resources (e.g. food supply) is sustain
	Ques	or the DTZ, label
	equi	librium solutions and classify
	as	stable or unstable.
	P	
		
\ <u></u>	shat	are the two equilibrium solutions

Recall - Theorem says IVP has a unique (exactly one) solution, so curves cannot cross.

P= K is a stable equilibrium

P=0 is an unstable equilibrium