
Math 307, 2017 Complex numbers

The introduction of complex numbers in the 16th century was a natural step in a sequence of
extensions of the positive integers, starting with the introduction of negative numbers (to solve
equations of the form x + a = 0), the introduction of rational numbers (to solve equations like
qx + p = 0, p, q integers) and the introduction of irrational numbers (to solve equations like
x2 − 2 = 0). The introduction of i =

√
−1 made it possible to solve the equation x2 + 1 = 0, and

in fact any quadratic equation. Pleasantly enough, one does not need any further extensions to
solve an arbitrary polynomial equation anx

n + an−1x
n−1 + · · · + a1x + a0 = 0; such an equation

always has n roots (possibly complex and possibly repeated). These notes1 will present one way of
defining complex numbers and familiarize you with some of their properties.

1 The Complex Plane

A complex number z is given by a pair of real numbers x and y and is written in the form z = x+iy,
where i satisfies i2 = −1. The complex numbers may be represented as points in the plane, with
the real number 1 represented by the point (1, 0), and the complex number i represented by the
point (0, 1). The x-axis is called the “real axis,” and the y-axis is called the “imaginary axis.” For
example, the complex numbers 1, i, 3 + 4i and 3− 4i are illustrated in Fig 1a.
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Complex numbers are added in a natural way: If z1 = x1 + iy1 and z2 = x2 + iy2, then

z1 + z2 = (x1 + x2) + i(y1 + y2) (1)

It’s just vector addition. Fig 1b illustrates the addition (4 + i) + (2 + 3i) = (6 + 4i). Multiplication
is given by

z1z2 = (x1x2 − y1y2) + i(x1y2 + x2y1)

Note that the product behaves exactly like the product of any two algebraic expressions, keeping
in mind that i2 = −1. Thus,

(2 + i)(−2 + 4i) = 2(−2) + 8i− 2i+ 4i2 = −8 + 6i

1Based on notes written by Bob Phelps, with modifications by Tom Duchamp and John Palmieri

1



Math 307, 2017 Complex numbers

If z = x + iy, then we call x the real part of z and y the imaginary part, and we write x = Re z,
y = Im z. (Remember: Im z is a real number.) The term “imaginary” is a historical holdover; it
took mathematicians some time to accept the fact that i (for “imaginary,” naturally) was a perfectly
good mathematical object. Electrical engineers (who make heavy use of complex numbers) reserve
the letter i to denote electric current and they use j for

√
−1.

There is only one way we can have z1 = z2, namely, if x1 = x2 and y1 = y2. An equivalent statement
is that z = 0 if and only if Re z = 0 and Im z = 0. If a is a real number and z = x+ iy is complex,
then az = ax + iay (which is exactly what we would get from the multiplication rule above if z2
were of the form z2 = a+ i0). Division is more complicated (although we will show later that the
polar representation of complex numbers makes it easy). To find z1/z2 it suffices to find 1/z2 and
then multiply by z1. The rule for finding the reciprocal of z = x+ iy is given by:

1

x+ iy
=

1

x+ iy
· x− iy
x− iy

=
x− iy

(x+ iy)(x− iy)
=

x− iy
x2 + y2

(2)

The expression x − iy appears so often and is so useful that it is given a name: it is called the
complex conjugate of z = x + iy, and a shorthand notation for it is z; that is, if z = x + iy,
then z = x − iy. For example, 3 + 4i = 3 − 4i, as illustrated in Fig 1a . Note that z = z and
z1 + z2 = z1 + z2. Exercise (3b) is to show that z1z2 = z1z2.

Another important quantity associated with a complex number z is its modulus (also known as its
absolute value or magnitude):

|z| = (zz)1/2 =
√
x2 + y2 =

(
(Re z)2 + (Im z)2

)1/2
Note that |z| is a real number. For example, |3 + 4i| =

√
32 + 42 =

√
25 = 5. This leads to the

inequality
Re z ≤ |Re z| =

√
(Re z)2 ≤

√
(Re z)2 + (Im z)2 = |z| (3)

Similarly, Im z ≤ |Im z| ≤ |z|. Another inequality concerning the modulus is the important triangle
inequality :

|z1 + z2| ≤ |z1|+ |z2| (4)

To prove this, it suffices to show that the square of the left side is less than the square of the right,
so we look at

|z1 + z2|2 = (z1 + z2)(z1 + z2) = (z1 + z2)(z1 + z2) = z1z1 + 2Rez1z2 + z2z2.

(The last equality uses Exercise 3 applied to z1z2.) Using the fact (from (3)) that 2Rez1z2 ≤
2|z1z2| = 2|z1||z2|, we get

|z1 + z2|2 ≤ |z1|2 + 2|z1||z2|+ |z2|2 = (|z1|+ |z2|)2,

which is what we wanted. A useful consequence of the triangle inequality is the following:

||z1| − |z2|| ≤ |z1 − z2| (5)
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Exercises 1.

1. Prove that the product of z = x+ iy and the expression (2) above equals 1.

2. Verify each of the following:

(a) (
√

2− i)− i(1−
√

2i) = −2i (b)
1 + 2i

3− 4i
+

2− i
5i

= −2

5

(c)
5

(1− i)(2− i)(3− i)
=

1

2
i (d) (1− i)4 = −4

3. Prove the following:

(a) z+z = 2Re z, and z is a real number if and only if z = z. (Note also that z−z = 2iIm z.)

(b) z1z2 = z1z2.

4. (a) Prove that |z1z2| = |z1||z2| (Hint: Use (3b).)

(b) Prove the inequality in (5). (Hint: by (4), |z1| = |(z1 − z2) + z2| ≤ |z1 − z2|+ |z2|.)

5. Find all complex numbers z = x+ iy such that z2 = 1 + i.

Answer: z = ±

√√2

2
+

1

2
+ i

√√
2

2
− 1

2

 .

2 Polar Representation of Complex Numbers

Recall that the plane has polar coordinates as well as rectangular coordinates. The relation between
the rectangular coordinates (x, y) and the polar coordinates (r, θ) is

x = r cos θ and y = r sin θ,

r =
√
x2 + y2 and θ = arctan

y

x
.

(If (x, y) = (0, 0), then r = 0 and θ can be anything.) This means that for the complex number
z = x+ iy, we can write

z = r(cos θ + i sin θ).

There is another way to rewrite this expression for z, and it is probably the most important equation
in mathematics2:

Euler’s formula: eiθ = cos θ + i sin θ .

2You can derive this if you are familiar with Taylor series. We know that for any real number x, ex can be
expressed as

ex = 1 + x+
x2

2!
+
x3

3!
+ · · · +

xn

n!
+ · · · .

3



Math 307, 2017 Complex numbers

For example,
eiπ/2 = i, eπi = −1 and e2πi = 1,

and if you want to combine the five fundamental constants in mathematics into one equation,

eiπ + 1 = 0.

Given z = x+ iy, then z can be written in the form z = reiθ, where

r =
√
x2 + y2 = |z| and θ = tan−1 y

x
. (6)

That is, r is the magnitude of z. We call reiθ the polar representation of the complex number z.
Note: In the polar representation of complex number, we always assume that r is non-negative.
The angle θ is sometimes called the argument or phase of z.

For example, the complex number z = 8+6i may also be written as 10eiθ, where θ = arctan(.75) ≈
0.64 radians, as illustrated in Fig 2.

r = 10

θ ≈ 0.64

8 + 6i = 10e0.64i

Fig 2

If z = −4 + 4i, then r =
√

42 + 42 = 4
√

2 and θ = 3π/4; therefore z = 4
√

2e3πi/4. Any angle
which differs from 3π/4 by an integer multiple of 2π will give us the same complex number. Thus
−4 + 4i can also be written as 4

√
2e11πi/4 or as 4

√
2e−5πi/4. In general, if z = reiθ, then we also

For any complex number z, we define ez by the power series

ez = 1 + z +
z2

2!
+
z3

3!
+ · · · +

zn

n!
+ · · · .

In particular,

eiθ = 1 + iθ +
(iθ)2

2!
+

(iθ)3

3!
+ · · · +

(iθ)n

n!
+ · · ·

= 1 + iθ − θ2

2!
− iθ3

3!
+
θ4

4!
+ · · ·

=

(
1 − θ2

2!
+
θ4

4!
+ · · ·

)
+ i

(
θ − θ3

3!
+
θ5

5!
− · · ·

)
= cos θ + i sin θ.
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have z = rei(θ+2πk), k = 0,±1,±2, . . . . Moreover, there is ambiguity in equation (6) about the
inverse tangent which can (and must) be resolved by looking at the signs of x and y, respectively,
in order to determine the quadrant in which θ lies. If x = 0, then the formula for θ makes no sense,
but x = 0 simply means that z lies on the imaginary axis and so θ must be π/2 or 3π/2 (depending
on whether y is positive or negative).

The conditions for equality of two complex numbers using polar coordinates are not quite as simple
as they were for rectangular coordinates. If z1 = r1e

iθ1 and z2 = r2e
iθ2 , then z1 = z2 if and only if

r1 = r2 and θ1 = θ2 + 2πk, k = 0,±1,±2, . . . . Despite this, the polar representation is very useful
when it comes to multiplication:

if z1 = r1e
iθ1 and z2 = r2e

iθ2 , then z1z2 = r1r2e
i(θ1+θ2) (7)

That is, to obtain the product of two complex numbers, multiply their moduli and add their angles.
To see why this is true, write z1z2 = reiθ, so that r = |z1z2| = |z1||z2| = r1r2 (by Exercise (4a)). It
remains to show that θ = θ1 + θ2, that is, that eiθ1eiθ2 = ei(θ1+θ2) (this is Exercise (7a) below). For
example, let

z1 = 2 + i =
√

5eiθ1 , θ1 ≈ 0.464, z2 = −2 + 4i =
√

20eiθ2 , θ2 ≈ 2.034.

If z3 = z1z2, then r3 = r1r2 and θ3 = θ1 + θ2; that is,

z3 = −8 + 6i =
√

100eiθ3 , θ3 ≈ 2.498,

as shown in the picture.

z1=
√

5eiθ1

z2=
√

20eiθ2

z3=10eiθ3

Fig 3

Applying (7) to z1 = z2 = −4 + 4i = 4
√

2e
3
4
πi (our earlier example), we get

(4 + 4i)2 = (4
√

2e
3
4
πi)2 = 32e

3
2
πi = −32i.

The formula in (7) can be used to prove that for any positive integer n,

If z = reiθ, then zn = rneinθ.
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This makes it easy to solve equations like z4 = −7. Indeed, writing the unknown number z as reiθ,
we have r4ei4θ = −7 ≡ 7eπi, hence r4 = 7 (so r = 71/4, since r must be a non-negative real number)
and 4θ = π + 2kπ, k = 0,±1,±2, . . . . It follows that θ = π/4 + 2kπ/4, k = 0,±1,±2, . . . . There
are only four distinct complex numbers of the form e(π/4+kπ/2)i, namely eπi/4, e3πi/4, e5πi/4 and
e7πi/4. Figure 4 illustrates z = −7 and its four fourth roots z1 = 71/4eπi/4, 71/4e3πi/4, 71/4e5πi/4

and 71/4e7πi/4, all of which lie on the circle of radius 71/4 about the origin.

71/4eπi/471/4e3πi/4

71/4e5πi/4 71/4e7πi/4

−7

Fig 4

From the fact that (eiθ)n = einθ we obtain De Moivre’s formula:

(cosθ + i sin θ)n = cosnθ + i sinnθ

By expanding on the left and equating real and imaginary parts, you obtain trigonometric identities
which can be used to express cosnθ and sinnθ as a sum of terms of the form (cos θ)j(sin θ)k.
For example, taking n = 2 and looking at the real part produces the familiar formula cos 2θ =
cos2 θ − sin2 θ. For n = 3 one gets cos 3θ = cos3 θ − cos θ sin2 θ − 2 sin2 θ cos2 θ.

Let’s also note the following formulas: if z = reiθ, then

z = re−iθ, Re z = r cos θ, Im z = r sin θ.

Combined with the formulas from Exercise (3a), we get

cos θ =
1

2

(
eiθ + e−iθ

)
,

sin θ =
1

2i

(
eiθ − e−iθ

)
= − i

2

(
eiθ − e−iθ

)
.

Exercises 2.

(6) Let z1 = 3i and z2 = 2− 2i

(a) Plot the points z1 + z2, z1 − z2 and z2.
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(b) Compute |z1 + z2| and |z1 − z2|.
(c) Express z1 and z2 in polar form.

(7) Prove the following:

(a) eiθ1eiθ2 = ei(θ1+θ2).

(Hint: this is the same as showing that (cos θ1+ i sin θ1)(cos θ2+ i sin θ2) = cos(θ1+θ2)+
i sin(θ1 + θ2).)

(b) Use (a) to show that (eiθ)−1 = e−iθ, that is, e−iθeiθ = 1.

(8) Let z1 = 6eiπ/3 and z2 = 2e−iπ/6. Plot z1, z2, z1z2 and z1/z2.

(9) Find all complex numbers z which satisfy z3 = −1.

(Answer: there are three such numbers: eπi/3, eiπ = −1, and e5πi/3.)

(10) Find all complex numbers z such that z2 =
√

2eiπ/4.

(Answer: z = 21/4eπi/8, 21/4e9πi/8. This is the polar form of the Exercise 5.)

3 The complex exponential function

The complex exponential function is “just” an exponential function ert where r is a complex number.
So it looks like

e(ρ+iω)t = eρteiωt = eρt cos(ωt) + ieρt sin(ωt) .

If we let t vary among the real numbers, going from −∞ to ∞, then the values of this function
trace a spiral in the complex plane: the quantity ω is the angular velocity of the spiral (ω > 0
corresponds to a counterclockwise spiral, ω < 0 to a clockwise one). The quantity ρ measures the
rate at which the spiral expands outward (ρ > 0) or inward (ρ < 0).
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4 The function x(t) = eρt(C1 cos(ωt) + C2 sin(ωt))

We want to write the function

x(t) = C1e
ρt cos(ωt) + C2e

ρt sin(ωt)

in the form
x(t) = Aeρt cos(ωt− φ),

because then we know what the graph of x(t) looks like.

First notice that

Aeρt cos(ωt− φ) = (A cos(φ) cos(ωt) +A sin(φ) sin(ωt)) eρt,

so let
A cos(φ) = C1 and A sin(φ) = C2.

Then we get

A =
√
C2
1 + C2

2 and tan(φ) =
C2

C1
.

Example 1. Consider the function

x(t) = (5 cos(2t) + 4 sin(2t))e−t/5 .

The point (C1, C2) = (5, 4) is in the first quadrant so 0 < φ < π/2. So

A =
√

52 + 42 =
√

41 and φ = tan−1(4/5) .

Hence,
(5 cos(2t) + 4 sin(2t))e−t/5 =

√
41 e−t/5 cos

(
2t− tan−1(4/5)

)
.

Here is a sketch of this curve, showing it oscillating between
√

41e−t/5 and −
√

41e−t/5:

5 10 15 20

−5

5
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Note: There is an alternate description of x(t) that makes direct use of the polar form of complex
numbers. Since 5 cos(2t)e−t/5 is the real part of 5e(−1/5+2i)t and since 4 sin(2t)e−t/5 is the real part
of −4ie(−1/5+2i)t, let C = 5− 4i and ρ+ iω = −1/5 + 2i. Then

x(t) = Re
(

(5− 4i)e(−1/5+2i)t
)

Of course the earlier expression,
√

41 e−t/5 cos
(
2t− tan−1(4/5)

)
, is easier to graph.

Exercises 3.

(11) Sketch the graph of the curve

z(t) = (2 + 2i)e(
1
2
+π i)t

for 0 ≤ t ≤ 3. Sketch the graph of x = x(t) = Re(z(t)).

(12) Consider the function
x(t) = 3e−2t cos(4t)− 5e−2t sin(4t) .

Write it in each of the forms
x(t) = Aeρ t cos(ω t− φ)

and
x(t) = Re

(
Cert

)
where A, ω and φ are real numbers and C and r are complex numbers.

9


