Math 307, 2017 Complex numbers

The introduction of complex numbers in the 16th century was a natural step in a sequence of
extensions of the positive integers, starting with the introduction of negative numbers (to solve
equations of the form z + a = 0), the introduction of rational numbers (to solve equations like
qgr + p = 0, p, q integers) and the introduction of irrational numbers (to solve equations like
2?2 — 2 = 0). The introduction of i = v/—1 made it possible to solve the equation 22 + 1 = 0, and
in fact any quadratic equation. Pleasantly enough, one does not need any further extensions to
solve an arbitrary polynomial equation a,z™ + a,—12" "' + --- 4+ a1z + ag = 0; such an equation
always has n roots (possibly complex and possibly repeated). These notes! will present one way of
defining complex numbers and familiarize you with some of their properties.

1 The Complex Plane

A complex number z is given by a pair of real numbers x and y and is written in the form z = x+1y,
where i satisfies i2 = —1. The complex numbers may be represented as points in the plane, with
the real number 1 represented by the point (1,0), and the complex number i represented by the
point (0,1). The z-axis is called the “real axis,” and the y-axis is called the “imaginary axis.” For
example, the complex numbers 1, ¢, 3 + 47 and 3 — 4 are illustrated in F1G 1A.
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Complex numbers are added in a natural way: If zy = x1 + iy1 and zo = x9 + 1y2, then
21+ 22 = (21 + 22) +i(y1 + y2) (1)

It’s just vector addition. F1G 1B illustrates the addition (44 %)+ (24 37) = (6 +4¢). Multiplication
is given by

2122 = (172 — y1y2) + i(T1y2 + T201)
Note that the product behaves exactly like the product of any two algebraic expressions, keeping
in mind that 2 = —1. Thus,

(2+4) (=24 4i) = 2(—2) + 8 — 2i + 4i* = —8 + 6i

!Based on notes written by Bob Phelps, with modifications by Tom Duchamp and John Palmieri
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If z = = + iy, then we call x the real part of z and y the imaginary part, and we write x = Re z,
y =Imz. (Remember: Im z is a real number.) The term “imaginary” is a historical holdover; it
took mathematicians some time to accept the fact that i (for “imaginary,” naturally) was a perfectly
good mathematical object. Electrical engineers (who make heavy use of complex numbers) reserve
the letter i to denote electric current and they use j for v/—1.

There is only one way we can have z; = z9, namely, if 1 = x5 and y; = y2. An equivalent statement
is that z = 0 if and only if Rez = 0 and Im z = 0. If a is a real number and z = x + iy is complex,
then az = ax + tay (which is exactly what we would get from the multiplication rule above if z,
were of the form zy = a + i0). Division is more complicated (although we will show later that the
polar representation of complex numbers makes it easy). To find z1/z9 it suffices to find 1/z5 and
then multiply by z1. The rule for finding the reciprocal of z = x + iy is given by:

1 1 x—1y T —1y T — 1y

= = == 2
x+iy x+iy v—iy (z+iy)(r—1y) x4+ y>? )

The expression x — iy appears so often and is so useful that it is given a name: it is called the
complex conjugate of z = x + iy, and a shorthand notation for it is Z; that is, if z = z + iy,
then z = x — iy. For example, 3 + 4i = 3 — 41, as illustrated in F1G 1A . Note that Z = 2 and
21 + z9 = Z1 + Z2. Exercise (3b) is to show that zZ1z2 = Z1Z2.

Another important quantity associated with a complex number z is its modulus (also known as its
absolute value or magnitude):

2| = (22)/% = Va2 + 2 = ((Rez)2 + (11112)2)1/2

Note that |z| is a real number. For example, |3 4 4i] = /32 + 42 = /25 = 5. This leads to the
inequality

Rez < |[Rez| = v/(Re2)2 < \/(Re2)2 4 (Im2)2 = |2 (3)

Similarly, Im z < |Im z| < |z|. Another inequality concerning the modulus is the important triangle
inequality:
|21 + 22| < |z1] + |22 (4)

To prove this, it suffices to show that the square of the left side is less than the square of the right,
so we look at

|21 + 22‘2 = (21 + 22)(21 + 22) = (21 + 22)(Z1 + Z2) = 2171 + 2Rez1Z2 + 2073.

(The last equality uses Exercise 3 applied to z1Z3.) Using the fact (from (3)) that 2Rez;zz <
2|z17Z2| = 2|z1|| 22|, we get

|21+ 20 < |21 * + 2[z1[z2] + 2017 = (|21] + [22])%,
which is what we wanted. A useful consequence of the triangle inequality is the following:

l[21] — |z2]] < [z1 — 22| (5)
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Exercises 1.

1. Prove that the product of z = x + iy and the expression (2) above equals 1.

2. Verify each of the following:

¢ > :11 _Z'4:_
() (1-i)2-19)(B3—14) 2 (d) (1-1) 4

3. Prove the following:

a = 2Re z, and z is a real number if and only if Z = z. (Note also that z—%z = 2ilm z.)

b = Z1%29.

a

~— ~
l\l

Prove that |z122| = |21]|22| (Hint: Use (3b).)
) Prove the inequality in (5). (Hint: by (4), |z1] = [(21 — 22) + 22| < |21 — 22| + |22|.)

(
(
(
(b
5. Find all complex numbers z = = + iy such that 2% = 1 + 1.

2 1
Answer: z =4 —Jrf i_,
2 2

2 Polar Representation of Complex Numbers

Recall that the plane has polar coordinates as well as rectangular coordinates. The relation between
the rectangular coordinates (z,y) and the polar coordinates (r,0) is

x =rcosf and Yy =rsind,
r =22+ y>? and § = arctan 2.
x

(If (x,y) = (0,0), then » = 0 and @ can be anything.) This means that for the complex number
z = + iy, we can write
z =7(cos +isinf).

There is another way to rewrite this expression for z, and it is probably the most important equation
in mathematics?:

Euler’s formula: ¢ = cos® + isin6 ‘

2You can derive this if you are familiar with Taylor series. We know that for any real number z, e® can be

expressed as
2 3 n

x X
e—1+x+—+—+ + 5+
3! n!

3
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For example,
™2 =i e =—-1 and ¥ =1,

and if you want to combine the five fundamental constants in mathematics into one equation,
€™ +1=0.

Given z = x + iy, then z can be written in the form z = re®?, where

r=+vz24+92 =1z and 6 =tan"! Y, (6)

X

That is, r is the magnitude of z. We call re? the polar representation of the complex number z.
Note: In the polar representation of complex number, we always assume that r is non-negative.
The angle 6 is sometimes called the argument or phase of z.

For example, the complex number z = 8 + 6i may also be written as 10, where 6 = arctan(.75) ~
0.64 radians, as illustrated in F1G 2.

8 + 6i = 10e"-0%

0~ 0.64

Fic 2

If z = —4 4 44, then r = V42 +42 = 4y/2 and 0 = 371/4; therefore z = 4/2¢%™/*. Any angle
which differs from 37 /4 by an integer multiple of 27 will give us the same complex number. Thus
—4 + 44 can also be written as 4v/2¢X7/4 or as 44/2¢757/4 In general, if z = re'?, then we also

For any complex number z, we define e® by the power series

2 3 n

=1ttt b g

21 " 3l n!

In particular,

) - N\ 2 -1\ 3 -\
0 =14 ip 4 GO O @O

2! 3! n!

0% it et
=1+i0— ;- -+ +

= cosf + isinf.
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have z = re!@27k) | — (0 41,42, .... Moreover, there is ambiguity in equation (6) about the
inverse tangent which can (and must) be resolved by looking at the signs of x and y, respectively,
in order to determine the quadrant in which 8 lies. If x = 0, then the formula for # makes no sense,
but z = 0 simply means that z lies on the imaginary axis and so § must be 7 /2 or 37 /2 (depending
on whether y is positive or negative).

The conditions for equality of two complex numbers using polar coordinates are not quite as simple
as they were for rectangular coordinates. If z; = r1€1t and z9 = T26i92, then z; = 2o if and only if
ry =rg and 01 = 0y + 27k, k =0,£1,£2,.... Despite this, the polar representation is very useful
when it comes to multiplication:

01

if 21 = e and 2 =™, then 2129 = ryreelB1 %) (7)

That is, to obtain the product of two complex numbers, multiply their moduli and add their angles.
To see why this is true, write 2120 = e, so that © = |212s| = |21]|22| = r172 (by Exercise (4a)). It
remains to show that § = 6 + o, that is, that e?1¢%2 = ¢i(91162) (this is Exercise (7a) below). For
example, let

21 =2+1i=156e", 0, ~0.464, 2o = —2 4+ 4i = /202, 6y ~ 2.034.
If z3 = z129, then r3 = riry and 03 = 01 + O5; that is,
23 = —8 4+ 6i = V100e?, 63 ~ 2.498,
as shown in the picture.

23:10€i93

29=1/20¢%

z1=V/5e/

Fic 3
Applying (7) to 21 = 20 = =4+ 4i = 4y/2e1™ (our earlier example), we get
(4 + 4i)2 = (4v/2e1™)2 = 32¢2™ = —32i.
The formula in (7) can be used to prove that for any positive integer n,

If z =re?, then 2" = r"e™.



Math 307, 2017 Complex numbers

This makes it easy to solve equations like z* = —7. Indeed, writing the unknown number z as re®,

we have rte’? = —7 = 7e™ hence r* = 7 (so r = 7'/4, since r must be a non-negative real number)
and 40 = m + 2kmw, k = 0,+1,£2,.... It follows that = w/4 + 2kw/4, k = 0,£1,4+2,.... There
are only four distinct complex numbers of the form e(™/4Tk™/2)i namely /4, e37m/4 5Ti/4 and
eTmi/4, Figure 4 illustrates z = —7 and its four fourth roots z; = 71/ 4emi/d ql/Ag3mi/A q1/4c5mi/4
and 7'/4e™/4 all of which lie on the circle of radius 7'/* about the origin.
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Fic 4
From the fact that (e??)" = ¢ we obtain De Moivre’s formula:
(cosh +isinf)" = cosnb + isinnd

By expanding on the left and equating real and imaginary parts, you obtain trigonometric identities
which can be used to express cosnf and sinnf as a sum of terms of the form (cos @)’ (sin ).
For example, taking n = 2 and looking at the real part produces the familiar formula cos20 =
cos® @ — sin® . For n = 3 one gets cos 30 = cos® § — cos O sin® @ — 2sin? @ cos? 6.
Let’s also note the following formulas: if z = re?, then

z=re ¥ Rez=rcosf, Imz=rsinf.

Combined with the formulas from Exercise (3a), we get
Loio . —io
cosf = 3 (e +e ) ,

N o N S A T R
sm9—2i(e —e )— 2(6 e )

Exercises 2.

(6) Let 21 =3i and 20 =2 — 2:

(a) Plot the points z1 + 22, 21 — 22 and Z3.
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(b) Compute |21 + 22| and |21 — 22].

(c) Express z; and 2z in polar form.

(7) Prove the following:

(a) ei91 ei02 — ei(91+92)'
(Hint: this is the same as showing that (cos ) +isin6;)(cos 62 +isinfy) = cos(61 +62)+
isin(61 + 62).)

(b) Use (a) to show that (¢?)~! = e7% that is, e ¥e¥ = 1.

(8) Let 21 = 6e'™/3 and z9 = 2e7""/6. Plot 21, 2o, 2122 and z1/zo.

(9) Find all complex numbers z which satisfy 23 = —1.

wi/3 i
)

e 5mi/3 )

(Answer: there are three such numbers: e =—1,and e

(10) Find all complex numbers z such that 2z = v/2e™/4,

(Answer: z = 21/4¢™/8 21/497/8  This is the polar form of the Exercise 5.)

3 The complex exponential function

The complex exponential function is “just” an exponential function e’ where r is a complex number.
So it looks like
elptiwlt — optoiwt — opt cos(wt) + ie” sin(wt) .

If we let ¢t vary among the real numbers, going from —oo to oo, then the values of this function
trace a spiral in the complex plane: the quantity w is the angular velocity of the spiral (w > 0
corresponds to a counterclockwise spiral, w < 0 to a clockwise one). The quantity p measures the
rate at which the spiral expands outward (p > 0) or inward (p < 0).
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4 The function z(t) = e”*(C} cos(wt) + Cy sin(wt))

We want to write the function
z(t) = Cre? cos(wt) + Cyet sin(wt)

in the form
z(t) = Aef! cos(wt — ¢),

because then we know what the graph of x(t) looks like.
First notice that
Aef! cos(wt — ¢) = (A cos(p) cos(wt) + Asin(e) sin(wt)) e,

so let
Acos(¢) = Cy and Asin(¢) = Cs.

A=4/C?+ C2 and tan(¢) = %
1

Example 1. Consider the function

Then we get

x(t) = (5cos(2t) + 4sin(2t))e"/° .
The point (Cy,C2) = (5,4) is in the first quadrant so 0 < ¢ < 7/2. So
A =/52+42 = /41 and ¢ = tan"'(4/5).

Hence,
(5cos(2t) + 4sin(2t))e > = V41 e/ cos (2t — tan~'(4/5)) .

Here is a sketch of this curve, showing it oscillating between v/41le™ %/ and —v/41e~t/%:
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Note: There is an alternate description of z(t) that makes direct use of the polar form of complex
numbers. Since 5cos(2t)e /7 is the real part of 5el~1/5t2)t and since 4sin(2t)e~/? is the real part
of —4ie(=1/5+2)t lot C' =5 — 4i and p + iw = —1/5 + 2i. Then

z(t) = Re ((5 - 4i)e(—1/5+2i)t>

Of course the earlier expression, v/41e~%/5 cos (2t — tan~1(4/5)), is easier to graph.

Exercises 3.

(11) Sketch the graph of the curve

for 0 <t < 3. Sketch the graph of x = z(t) = Re(2(t)).
(12) Consider the function
z(t) = 3¢~ cos(4t) — 5e ! sin(4t) .

Write it in each of the forms
x(t) = Aeflcos(wt — )

and
z(t) = Re (Ce™)

where A, w and ¢ are real numbers and C' and r are complex numbers.



