Chapter 7, section 7.

1. (7.2) Let G be a finite group and let H be a subgroup of order p^m for a prime p and integer $m \geq 1$. Show that H is contained in a p-Sylow subgroup of G.

Solution. Let K be a p-Sylow subgroup of G. The number of left K cosets is not divisible by p since it equals $\circ(G)/\circ(K)$ where $\circ(K)$ is the highest power of p that divides $\circ(G)$. Let H transform the set of left K cosets by left composition. The orbits have sizes that divide the order of H, hence, the sizes are either 1 or a power of p. If each is a power of p, then p would divide the number of left K-cosets. Therefore, some orbit consists of a single left coset aK. Hence, $HaK = aK$, i.e., $a^{-1}HaK = K$, which means that $a^{-1}Ha \subseteq K$, i.e., $H \subseteq aKa^{-1}$. Thus, H is contained in the p-Sylow subgroup aKa^{-1}.

2. (7.5) Find the 2-Sylow subgroups in
(a). D_{10}.

Solution. A 2-Sylow subgroup is any subgroup with 4 elements. They are all conjugate, so we need only find one of them. The 180-degree rotation σ is in the center of D_{10}. Let τ be any reflection in D_{10}. Then $\{I, \sigma\}\{I, \tau\}$ is a subgroup with 4 elements. If we conjugate that 2-Sylow subgroup with an element of D_{10} we exchange τ for another reflection. Thus, as τ ranges over the set of reflections, $\{I, \sigma\}\{I, \tau\}$ ranges over the 2-Sylow subgroups.
(b). S_4.

Solution. The 2-Sylow subgroups are the subgroups with 8 elements. D_4 is a 2-Sylow subgroup. By Sylow theory, the number of 2-Sylow subgroups is congruent to 1 mod 2, and divides $24/8=3$. Thus, the number of 2-Sylow subgroups is 1 or 3. It is not 1 since conjugating D_4 by the permutation (12) gives a different 2-Sylow subgroup, as you can check. Thus, there are 3 2-Sylow subgroups in S_4.
(c). S_6.

Solution. The 2-Sylow subgroups have order $2^4 = 16$. To get one 2-Sylow subgroup, take $D_4\{I, (56)\}$, where D_4 permutes the numbers 1,2,3,4. Or we can pair any the three 2-Sylow subgroup in S_4 with $\{I, (56)\}$. To get the other 2-Sylow subgroups, instead of having D_4 permute 1,2,3,4, suppose that it permutes some other 4-element subset of $\{1,2,3,4,5,6\}$. There are 15 (6-choose-4) ways to choose 4-elements of 1,2,3,4,5,6, and each choice leads to three 2-Sylow subgroups. That gives $15(3) = 45$ 2-Sylow subgroups of S_6.
3. (7.6) Exhibit a subgroup of S_7 that has order 21.

Solution. In a group of order 21, a subgroup of order 7 is normal since its index 3 is the smallest prime dividing the order of the group. All subgroups of order 7 in S_7 are conjugate since they are the 7-Sylow subgroups. That means that we can begin the construction of a group of order 21 with any subgroup of order 7, say with $H = <(1234567)>$. We need to find a subgroup of order 3 that normalizes H; that suggests that we compute the normalizer of H. $\sigma \in S_7$ normalizes $H = <(1234567)>$ if and only if

$$\sigma(1234567)\sigma^{-1} = (1234567)^m,$$

for some exponent m. If we look at $m = 2$, we find that σ^3 will commute with (1234567). If $m = 2$, then

$$\sigma(1234567)\sigma^{-1} = (\sigma(1)\sigma(2)\sigma(3)\sigma(4)\sigma(5)\sigma(6)\sigma(7)) = (1234567)^2 = (1357246).$$

Matching up $(\sigma(1)\sigma(2)\sigma(3)\sigma(4)\sigma(5)\sigma(6)\sigma(7))$ with (1357246), and taking $\sigma(1) = 1$, we see that $\sigma(2) = 3, \sigma(3) = 5, \sigma(4) = 7, \sigma(5) = 2, \sigma(6) = 4,$ and $\sigma(7) = 6$. That is, $\sigma = (235)(476)$, an element of order 3. Thus, since $(235)(476)$ normalizes $<(1234567)>$,

$$<(235)(476)> <(1234567)>$$

is a subgroup, and it has order $(3)(7)=21.$
4. (7.10) Show that the only simple groups of order less than 60 has prime order.

Solution. Let G be a group of order is a nonprime number less than 60. We consider the nonprime numbers less than 60, listing those with the larger prime divisor first. The largest prime divisor of a nonprime number less than 60 is 29.

For 29, $\circ(G) = 29(2) = 58$. Since the index of the 29-Sylow subgroup is the smallest prime divisor of $\circ(G)$, the 29-Sylow subgroup is normal.

For 23, $\circ(G) = 23(2) = 46$. As for 29, the 23-Sylow subgroup is normal.

For 19, $\circ(G) = 19(2)$ or $\circ(G) = 19(3)$, and in both cases, the 19-Sylow subgroup is normal.

For 17, $\circ(G) = 17(2)$ or $\circ(G) = 17(3)$, and in both cases, the 17-Sylow subgroup is normal.

For 13, $\circ(G) = 13(2)$, $\circ(G) = 13(3)$, or $\circ(G) = 13(4)$. As above, for the first two cases, the 13-Sylow subgroup is normal. When $\circ(G) = 13(4)$, the number of 13-Sylow subgroups divides 4 and is congruent to 1 mod 13. Hence, there is only one 13-Sylow subgroup, and so, it is normal.

For 11, $\circ(G) = 11(2)$, $\circ(G) = 11(3)$, $\circ(G) = 11(4)$, or $\circ(G) = 11(5)$. The argument for 29 works for all the cases except for $\circ(G) = 11(4)$, which uses the argument for $\circ(G) = 13(4)$. In all cases, the 11-Sylow subgroup is normal.

For 7, $\circ(G) = 7(n)$, where $n = 2, ..., 7, 8$. If n is prime, the 7-Sylow subgroup is normal by the minimal prime argument. If $n \leq 6$ is not prime, then since the number of 7-Sylow subgroups is congruent to 1 mod 7 and divides $n \leq 6$, which imply that there is just 1 p-Sylow subgroup, i.e., the p-Sylow subgroup is normal.

Looking over the different cases above, we see a general argument: if $\circ(G)$ is a product pm, where $m < p$, then the p-Sylow subgroup is normal.

If $\circ(G) = 7^2$, then a subgroup of order 7 is normal since its index, which is 7, is the smallest prime divisor of $\circ(G)$.

More generally, if $\circ(G) = p^n$ for some $n \geq 2$, G is not simple: by Cauchy’s theorem, G has a subgroup H of order p^{n-1}, which is normal in G since its index p in G is the smallest prime divisor of G.

If \(\circ(G) = 7(8) = 56 \), then there is either 1 or 8 Sylow subgroups. If there is 1, it is normal. If there are 8, there are 6(8) = 48 elements of order 7, leaving only 56-48=8 elements to form a subgroup of order 8. Hence, those elements form a normal subgroup since the elements not of order 8 are transformed among themselves by conjugation, which preserves order. Hence, the 2-Sylow subgroup will be normal.

For 5, in the groups of order 5n, where \(n = 2, 3, 4, 8, 9 \), there is only 1 5-Sylow subgroup by the computation of Sylow theory, and so, it is normal.

If \(\circ(G) = 5(5) = 5^2 \), G is not simple by the general power of a prime argument above.

If \(\circ(G) = 5(6) = 30 \), G has 1 or 6 5-Sylow subgroups. If G has 6 5-Sylow subgroups, then it has 24 elements of order 5, leaving 6 elements that are permuted among themselves by conjugation. By Cauchy, there is a subgroup of order 3, which is normal since otherwise, there would be at least 4 3-Sylow subgroups by Sylow theory, which would give at least 8 elements of order 3, while only 6 elements are available. Pairing that normal subgroup with a subgroup of order 2, we find that the corresponding subgroup has order 6, and consists of the 6 elements not of order 5. Hence, that 6 element subgroup is normal since it is stable under conjugation.

If \(\circ(G) = 5(10) = 5^2(2) \), the 5-Sylow subgroup is normal since its index is 2.

For 3, \(\circ(G) = 3^n2^m \), with \(n \geq 1 \).

If \(m = 0 \) and \(n \geq 2 \), the group is not simple since the order is a power of a prime.

If \(m = 1 \), the 3-Sylow subgroup is normal, since its index is 2.

If \(m = 2 \) and \(n = 1 \), there are either 1 or 4 3-Sylow subgroups. If 1, the 3-Sylow is normal.

If 4, there are 8 elements of order 3, and the remaining 4 elements must form a subgroup of order 4, which is then unique.

If \(m = 2 \) and \(n = 2 \) (G has order \(3^22^2 = 36 \)), then there are either 1 or 4 3-Sylow subgroups. If there are 4 3-Sylow subgroups, then the stabilizer subgroup \(H \) of a 3-Sylow subgroup under conjugation has 36/4 = 9 elements. To find a normal subgroup, take the homomorphism \(\phi : G \rightarrow Perm(G/H) \). Since G has 36 elements and \(Perm(G/H) \) has 4! = 24 elements, the kernel of \(\phi \) has more than one element, and since the kernel is contained in the subgroup \(H \), it is not the whole group. Thus, the kernel is a normal subgroup of G that shows that G is not simple.

If \(m = 3 \) and \(n = 1 \) (G has order \(3(2^3) = 24 \)), then there are either 1 or 4 3-Sylow subgroups. If G has 4 3-Sylow subgroups, then the stabilizer \(H \) of a 3-Sylow subgroup under conjugation
has $24/4 = 6$ elements. Take the homomorphism $\phi : G \to \text{Perm}(G/H)$ from one 24-element group to another 24-element group. If the mapping is bijective, then G is S_4, which is not simple since it contains the normal subgroup A_4. If it is not bijective, then the kernel of the homomorphism shows that G is not simple.

If $m = 4$ and $n = 1$ (G has order $3(2^4) = 48$, then there are either 1, 4, or 16 3-Sylow subgroups. If there are 16, then G has $16(2) = 32$-elements of order 3, leaving only 16 elements to form a 2-Sylow subgroup. Hence, there is room for only one 2-Sylow subgroup, which is then normal.

If there are 4 3-Sylow subgroups, then the stabilizer subgroup H has 12 elements and G/H has 4 elements. Just as for groups of order 36, that leads to a normal subgroup of G.

For 2, $\sigma(G) = 2^n$ for $n \geq 2$. Those groups are not simple since their order is a power of a prime.