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The Monge problem 1781

ENCEAN

m P, Q - probabilities on X = R9 = Y.

m c(x,y) - cost of transport. E.g., c(x,y) = ||x — y|| or
c(xy) = 3lIx=yI*

m Monge problem: minimize among T : R — R?, T4P = Q,

/ ¢ (x, T(x)) dP.



Kantorovich relaxation 1939

Figure: by M. Cuturi

m (P, Q) - couplings of (P, Q) (joint dist. with given marginals).
m (Monge-) Kantorovich relaxation: minimize among v € IN(P, Q)

inf dv| .
el [

m Linear optimization in v over convex (P, Q).



Example: quadratic Wasserstein

m Consider c(x,y) = L |x — y|.
m Assume P, Q has densities pg, p1.

VAP, Q) = Wilpo. 1) = _ i [/ Ix = I du].

M(po,p1)

Theorem (Y. Brenier '87)

There exists convex ¢ such that T(x) = Vé(x) solves both Monge and
Kantorovich OT problems for (po, p1) uniquely.



When are MK solutions Monge?

m When transporting densities, other cost functions give Monge
solutions.

m Twist condition: y — V,c(x,y) is 1-1.
m Example: c(x,y) = g(x — y), strictly convex.

W0, 1) = inf v (g(x ) = i, [ gl y)dv.

vell



Entropic regularization

Monge solutions are highly degenerate; supported on a graph.

Entropy as a measure of degeneracy:

Fnt (v J f(x)log f(x)dx, if v has a density f,
00, otherwise.

Example: Entropy of N(0,0?) is —log o+ constant.

Monge solutions have infinite entropy.

Follmer '88, Riischendorff-Thomsen '93, Cuturi '13, Gigli '19 ...
suggested penalizing OT with entropy.

Why? Fast algorithms. Statistical physics. Smooth approximations.



Entropic regularization

m MK OT problem with ¢(x,y) = g(x — y), g > 0 str. cx.

We(po, p1) = Veni(r;i pl)/g(x —y)dv.

m For h > 0,
K = inlf_I [v(g(x —y)) + hEnt(v)].
ve

m Naturally,
ng(povpl) ~ Wg(p07pl)7 as h— 0+.

m What is the rate of convergence?



Entropic cost

An equivalent form of entropic relaxation.
Define “transition kernel:

1 1
pr(x,y) = A exp <hg(x - y)) , Np = normalization.

and joint distribution px(x,y) = po(x)pn(x,y).

H(v | p) = /Iog (Z:) dv.

m Define entropic cost

m Relative entropy:

Kh = inf H (1/ | /,Lh).

couplings(po,p1)

K, = K,g/h — Ent(po) + |Og Ap.



Example: quadratic Wasserstein

Consider g(x —y) = 1 ||Ix — yl?.

pn(x,y) - transition of Brownian motion. h = temperature.

_ 1 -
prlxy) = @)y exp (o lx = yI7) . g = (2e) 92

Entropic cost, K = KT’: — Ent(po) + & log(2h).

In general, there need not be a stochastic process for pp(x,y).



Schrédinger’s problem

Brownian motion X - temperature h ~ 0
“Condition” Xg ~ po, X1 ~ p1. Exponentially rare.
On this rare event what do particles do?
Schrédinger '31, Follmer '88, Léonard '12.

Particle initially at x moves close to V¢(x) (Brenier map).

Recall: For any g(x — y):

lim hK, = lim K| = .
oo T R We(po, p1)

m Rate of convergence?



Pointwise convergence

Theorem (P. '19)

po, p1 compactly supported (+ technical conditions). Kantorovich
potential uniformly convex.

. 1 1
im- (Kh - Wi, p1>) — 2 (Ent(p) ~ Ent(so)).

m Complementary results known for gamma convergence. Pointwise
convergence left open.

m Adams, Dirr, Peletier, Zimmer '11 (1-d), Duong, Laschos, Renger
'13, Erbar, Maas, Renger '15 (multidimension, Fokker-Planck).



Divergence

m To state the result for a general g, need a new concept.

m For a convex function ¢, Bregman divergence:
Dly | z] = ¢(y) — é(2) = (y — 2) - V¢(z) = 0.
m If x* = V@(x) (Brenier solutions),

DIy | x] = 5 lly = x> = 6e(x) — 62()

where ¢, ¢% are c-concave functions:

bel) =5 IxIP = 00, 620) =5 Y1~ 6" ()

my x5, Dy | X & (y = x*)TAK)(y — x*), A(z) = V2™ (2).



Divergence

m Generalize to cost g. Monge solution given by (Gangbo - McCann)
X" =x—(Vg) oV,

for some c-concave function . Dual c-concave function *.

m Divergence

Dly | x*] = g(x —y) —¥(x) —¢*(y) > 0.

B y ~ x*, extract matrix A(x*) from the Taylor series.

m Divergence/ A(-) measures sensitivity of Monge map. Related to
cross-difference of Kim & McCann '10, McCann '12, Yang & Wong
'19.



Pointwise convergence

Theorem (P. '19)

po, p1 compactly supported (+ technical condition). A(-) “uniformly
elliptic”.

_ 1 1 1 ,
i (o= 3s(m.00)) = 3 [ 1(y) log cer(Aly )y log et 9 0).

m For g(x —y) =[x — y|I* /2, log det V2g(0) = 0, for ¢ (Brenier)

%/pl(y) log det(A(y))dy = %/m(y) log det(V>¢*(y))dy,

which is 1 (Ent(p1) — Ent(po)) by simple calculation par McCann.



Idea of the proof: approximate Schrodinger bridge



|dea of the proof: Brownian case

m Recall, want to condition Brownian motion to have marginals pg, p1.

m py(x,y) Brownian transition density at time h.

wn(x,¥) = po(x)pn(x,y), joint distribution.

m If | can "“guess’ this conditional distribution fzj, then

Kh = inf  H(v | pn) = H(n | pn)-

couplings(po,p1)

m Can approximately do so for small h by a Taylor expansion in h.



|dea of the proof: Brownian case

m It is known (Riischendorf) that /i, must be of the form

fin(x,y) = &) uy(x, y) oc exp (—zg(x —y)+a(x) + b()/)) :
m ¢ - convex function from Brenier map.
09 = 2 (5 509} +hu00. 500 = 2 (2~ 60 ) +hentr)
- h 2 h ) y)= h 2 y hY)s

Ch, &n are O(1).



|dea of the proof
m Thus, up to lower order terms,
_ 1 1 1,
Fn(x,y) oc po(x) exp { = g(x = y) + 4 dc(x) + 4 0c(v)
1 .
= po(x)exp | = Dly [x7] ).
m If y — x* is large, it gets penalized exponentially. Hence
2h

Fin(x. ) 5 po(x) exp (—l(y N x*))

m Gaussian transition kernel with mean x* and covariance

h (V26 (x*))



|dea of the proof

m For h =~ 0, the Schrédinger bridge is approximately Gaussian.
Sample X ~ pg, generate Y ~ N (X*, h (Vng*(x*))fl).

Lr(x,y) =~ po(x ! mh)~9/?
fin(x,y) ~ po(x) det(V2¢*(x*))(2 )=

b (=55 = X)TTR LNy 5 )

m Y is not exactly p;. Lower order corrections.

m Nevertheless,

H (n | pen) /det V2¢* (x*) po(x)dx = ! (Ent(pl) — Ent(po)) .



Divergence based methods

Divergence based method is distinct from usual dynamic techniques.

Usually: only quadratic cost, Benamou-Breiner, Otto calculus.

m See Conforti & Tamanini '19 for one more term for the quadratic
cost.

Higher order terms should be related to higher order derivatives of
divergence.



The Dirichlet transport



Dirichlet transport, P.-Wong '16

A, - unit simplex {(p1,...,pn) 1 pi >0,>; pi =1}
A, is an abelian group. e = (1/n,...,1/n)
If p,g € A, then

Piqi 1/pi

(P@CI)i:ni, P_l = =
> =1 Piq; ) >-11/p;

m K-L divergence or relative entropy as “distance’:

H(q | p) Z qilog(qi/pi)-

Take X =Y = A,,.

1<~ g; 1 :
C(P;Q)_H(6|P1®q)—|og<nzq‘>—nZIogq‘>0.

i—1 Pi i=1 pi



Exponentially concave functions

m oA, - RU{—o0} is exponentially concave if e¥ is concave.
m x — % log x is e-concave, but not x — 2log x.
m Examples: p,re A,, 0 <A< L

1
:f§| ..
w(p) P ogp

©o(p) = log (Z rfPi) . plp) = % log (Z pf\> .

m (Fernholz '02, P. and Wong '15). Analog of Brenier's Theorem: If
(p, g = F(p)) is the Monge solution, then

p~!=Ve(q), Kantorovich potential.

m Smooth, MTW Khan & Zhang '19.



Back to the Dirichlet transport

m What is the corresponding probabilistic picture for the cost function

c(p,gq)=H (e Ipto q) on the unit simplex A,?
m Symmetric Dirichlet distribution Dir(\):

n
density o H pjf\/"fl.
j=1

m Probability distribution on the unit simplex. If U ~ Dir(+),

E(U)=e, Var(U)=0 <i> .



Dirichlet transition

m Haar measure on (A,,®) is Dir (0), v(p) = [, p;
m Consider transition probability: p € A,, U ~ Dir(\), Q =p e U.

fr(p,q) = cv(q) exp (= Ac(p,q)), (P.-Wong '18).

1
m Temperature: h = 3. Let

pu(p; ) = fi/n(p, q)-

m As h — 0+, p» — 6p. As h — 0o, Q — Dir(0), Haar measure.



Multiplicative Schrédinger problem

Fix po, p1. Let un(p, q) = po(p)pn(p; q)-
Recall relative entropy: H(v | i) = [log(dv/dpu)dv.

Entropic cost

Kh = inf H(l/ | ,uh)

couplings(po,p1)

m For p density on A, let
Ento(p) = H (p | Dir(0).

Relative entropy w.r.t. Haar measure.



A tabular comparison

Group (R, +) (A,,©)
Id 0 e=(1/n,...,1/n)
Cost ly — x|* H(e|gop™)
Potential convex exp-concave
Monge solution y = Vo(x) q=Vo(p)
Displacement Y — X w(p) =qop L
Stochastic transition | Add Gaussian | Multiply Dirichlet
Haar measure Leb Dir(0)
Entropy Standard Entg




Pointwise convergence

Theorem (P. '19)

po, p1 are compactly supported + exponentially concave potential is
“uniformly convex”.

i (K6~ (5~ 3) Clmup)) = 5 (Butalpn) ~ Buto(so)).

h—0+

C (po, p1) is the optimal cost of transport with cost c.
Not a metric, but a divergence. Not symmetric in (po, p1).
AFAIK, the only such example known.

Related to Erbar '14 (jump processes), and Maas '11 (Markov
chains).



Connections to gradient flow of entropy



Gradient flow of entropy

Ambrosio-Gigli-Savaré; recent survey by Santambrogio.

Consider the Cauchy problem in R™:

x'(t) = =VF(x(t)), x(0)= xo.

Gradient flow with potential F.

m Euler discretization: fix small step parameter h > 0.

xf+1 = argmin, [H — Xk”

m FOC:

h h
Xper1 — Xk

p = —VF(x"), converges to gradient flow as h — 0+.



Heat equation as a gradient flow of entropy

m Start with p(0) = po density. Fix h > 0.

. 1
P = argmin, | W(p, o) + Bnt(p)

m Define interpolation

p'(t)=pR),  kh<t < (k+1)h

m Jordan-Kinderlehrer-Otto (JKO) '98: p"(t) “converges” to heat
equation.
op  %p B
Er p(0,x) = po.

m Gradient flow of entropy in Wasserstein metric space.



Entropic cost to gradient flow

How does entropic cost imply gradient flow for the heat equation?

Brownian motion starting from pg.

p(t) - density at time t. Obviously,

pn = argminKu(po, p),  P(ks1)n = argmin, Ku(pkn, p)-

Relative entropy is minimized by the exact transition density.
m But

1 1
In(po; p) = 5 W3(po, p) + 5 (Ent(p) — Ent(po))

m This "morally” implies gradient flow of entropy.



Gradient flow without a metric?

m Dirichlet transport has a similar structure.

n

Ka(p. o) ~ (,1, - 2) Clro.r) + 5 (Ento(p) — Ento(po)).

m Hence, successively multiplying ® by symmetric Dirichlet should be
a gradient flow of entropy.

BUT ... C(po, p) is not a metric. No such theory exists.
Is there even a stochastic process?
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