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1 Introduction

This survey deals with classes of algebras, finite or infinite dimensional over a base field k, arising
in the representation theory of finite dimensional algebras:

1. finite dimensional tame hereditary [14, 51] resp. canonical algebras [51, 21, 52, 40] more
generally algebras with a separating tubular family [39, 41],

2. preprojective algebras of the path algebra of an extended Dynkin quiver [23], more generally
preprojective algebras of a (tame) hereditary algebra [16, 8, 53],

3. surface singularities [12, 22],

4. algebras of automorphic forms [44, 47, 34],

5. two-dimensional factorial algebras [45, 32], see also [46, 56, 42].

We show that a common focus for these classes of rings is provided by the concept of an
exceptional curve, which generalizes the notion of a weighted projective line from [21], and which
for algebraically closed base fields agrees with the latter notion. Roughly speaking, an exceptional
curve is a noncommutative curve which is smooth, projective and allows an exceptional sequence of
coherent sheaves. Such curves are quite rare since among the nonsingular projective (commutative)
curves over an algebraically closed field only the projective line is exceptional. We need to pass
to not algebraically closed base fields or to a noncommutative geometric setting in order to get
a richer supply of exceptional curves. Note that our choice of terminology is influenced from
representation theory, the reader should therefore not confuse exceptional curves as they occur in
this survey with those which traditionally have the same name in algebraic geometry, see [28].

The structure of the paper is as follows. In Section 2 we define the notion of an exceptional curve
by specifying — as it is common for noncommutative algebraic geometry [54] — the properties
of its abelian category of coherent sheaves, thought to arise from a finite number of module
categories (of finitely genereated modules) over typically noncommutative noetherian rings by a
gluing process. Noncommutativity allows that more than one simple sheaf may be concentrated in
a single point; in case this will not happen we call the curve homogeneous, again following usage of
the term in representation theory. The geometry of a homogeneous exceptional curve is shown in
Section 3.3 to be controlled completely by the representation theory of a finite dimensional tame
bimodule algebra, an important special case of a finite dimensional tame hereditary algebra (cf.
[14, 51]).

In Sections 4 and 5 we show how to pass, in particular, from the homogeneous to the general case
by a process called insertion of weights. As we are going to show, this process equips a nonsingular
curve with a (quasi)-parabolic structure (cf. [58]), but in contrast to the usual treatment of
a parabolic structure, which restricts to vector bundles, we extend this concept to all coherent
sheaves. Section 7 forms the heart of this report and shows the wide range of applications of the
concept of an exceptional curve.

Let k be a field. A k-algebra in this survey will always be associative with a unit element.
Modules are usually right modules. We denote by mod(A) the category of finitely presented and
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by Mod(A) the category of all right A-modules. If A is moreover graded by an abelian group H,
then modH(A) resp. ModH(A) denote the corresponding categories of H-graded modules with
degree zero morphisms.

By a k-category C we mean an additive category where the morphism spaces are k-spaces and
composition is k-bilinear. We call C small if the isomorphism classes of objects from C form a
set. The small categories arising in this article will further be assumed to be locally finite over
k, meaning that all morphism spaces — and in case of an abelian category also all extension
spaces — do have finite k-dimension. Our main examples in that respect are the category mod(A)
for a finite dimensional k-algebra A, the category coh(X) of coherent sheaves over a non-singular
projective variety or occasionally a full subcategory of one of those. An abelian k-category C is
called connected if it is not possible to represent C as a (co)product of non-zero k-categories.

If C has finite global dimension, the Grothendieck group K0(C), formed with respect to short
exact sequences, is equipped with a homological bilinear form, called Euler form, given on classes
of objects by the expression

�[X], [Y ]� =
∞�

i=0

(−1)idimkExti(X, Y ),

where bracket notation [X] refers to the class in the Grothendieck group. An automorphism Φ of
K0(C), satisfying �y, x� = −�x, Φy� for all x, y is called Coxeter transformation for C or K0(C).
Such an automorphism always exists if the Euler form is non-degenerate and in this case is further
uniquely determined.

For the basic notions of the representation theory of finite dimensional algebras we refer to
[5, 20] and [51]. We mention explicitly that the notion of an almost-split sequence 0 → A →

B → C → 0 makes sense in any small abelian k-category C. It just means that the sequence
has indecomposable end terms and does not split, and further that for any indecomposable object
X in C each non-isomorphism f : X → C lifts to B, equivalently that each non-isomorphism
f : A → Y into an indecomposable object Y extends to B. If almost-split sequences exist, the
assignments C �→ A and A �→ C are called Auslander-Reiten translations and denoted τ resp. τ

−.
For a module category mod(Λ) over a finite dimensional algebra, almost-split sequences always
exist, moreover the Auslander-Reiten formula states

DExt1(X, Y ) = Hom(Y, τX) = Hom(τ−Y, X)

where Hom (resp. Hom) refers to morphisms in the stable category modulo projectives (resp.
injectives). Note that the formula resembles Serre duality for curves.

A morphism f : X → Y is called irreducible in C if for any factorization f = β ◦ α in C

the morphism α is a split monomorphism or β is a split epimorphism. Assuming that almost-
split sequences exist for C, the Auslander-Reiten quiver ΓC of C has the isomorphism classes of
indecomposable objects as vertices, while the arrows are determined by the existence of irreducible
maps. The term component, in this context, refers to a connected component of ΓC .

For a hereditary abelian category H, hereditary means that Ext2H (−,−) = 0, its (bounded)
derived category Db(H) can be obtained as follows: For each integer n we take a copy H[n] of H
with objects denoted X[n], X ∈ H, then form the union of all H[n], which is a k-linear category
with morphisms given by Hom(X[n], Y [m]) = Extm−n

H
(X, Y ), and finally close under finite direct

sums. Note that we will use the bracket notation A[n] also for full subcategories. Most derived
categories occurring in this paper are equivalent to derived categories of a hereditary category; for
general information on derived categories we refer to [24, 25].

2 Exceptional curves

This section is addressed to people not specialized in algebraic geometry, and intends to cover in
a quick hence fragmentary way those aspects which are important to link these concepts with the
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range of representation theoretic topics mentioned in the introduction. For a proper treatment of
the concepts involved we refer the reader for instance to [54, 2].

The main purpose of this section is to introduce the notion of an exceptional curve X and to
put this notion into proper context. Roughly speaking we will call a possibly noncommutative
curve X exceptional if it is noetherian, smooth, projective, and admits an exceptional sequence of
coherent sheaves. We start to explain these notions, and the concept of an exceptional curve, in
more detail.

2.1 Noncommutative spaces

We define a (possibly) noncommutative space X through an abelian category C which we are going
to interpret as a category of coherent sheaves on X. We are only interested in the situation where
the category C is noetherian, meaning that each object in C satisfies the ascending chain condition
for subobjects. Slightly deviating from standard terminology, we will in this case say that X is a
noetherian space.

Calling C a category of coherent sheaves is, for the moment, mainly a façon de parler. It is
however possible, following the dictionary provided by ([18], chap. VI, see also [54]) for the case of
a commutative noetherian (pre)scheme X, to recover the underlying space and its Zariski topology
from the category C = coh(X) of coherent sheaves on X. For the case of a curve, the case we are
mainly interested in, we will specify its underlying set of points in the proper context of Section 2.5.
The categories of coherent sheaves C arising in this article will (with a single exception discussed
in Section 7.8) arise by a gluing process from module categories mod(A) over noetherian rings.

A basic gluing ([18], chap. VI) amounts to form the pull-back C of two abelian categories C1

and C2

C −→ C1

↓ ↓ ρ1

C2
ρ2
−→ C12

along two exact functors ρ1 : C1 → C12, ρ2 : C2 → C12 to a third abelian category C12, where
additionally each ρi is assumed to induce an equivalence C/ker(ρi) ∼= C12, so that C12 becomes a
quotient category of both C1 and C2. The pull-back C is again an abelian category:

The objects of C are triples (C1, C2,α), where Ci is an object of Ci and α is an isomorphism
from ρ1C1 to ρ2C2. A morphism from (C1, C2,α) to (C �1, C �2,α�) is a pair (u1, u2) of morphisms
u1 : C1 → C

�
1, u2 : C2 → C

�
2 such that (ρ2u2) ◦ α = α

� ◦ (ρ1u1). Composition of morphisms is
componentwise.

In intuitive interpretation, a basic gluing corresponds to an open covering X = X1 ∪ X2 with
C = coh(X), C1 = coh(X1), C2 = coh(X2) and C12 = coh(X1 ∩ X2). Starting with the module
categories mod(A) for noetherian rings A, all categories obtained from those by a finite number
of basic gluings are considered to qualify as categories of coherent sheaves (cf. [18], chap. VI for
the commutative setting). Even not having specified what X is, we will write C = coh(X) for such
a category in order to stay close to geometric intuition.

We illustrate the construction by an example: the k-algebra homomorphisms r1 : k[X1] →
k[X, X

−1], r2 : k[X2] → k[X, X
−1] with r1(X1) = X, r2(X2) = X

−1 induce by extension of
scalars exact functors ρi : mod(k[Xi]) → mod(k[X, X

−1]). The category C obtained by gluing
mod(k[X1]) and mod(k[X2]) along ρ1, ρ2 is equivalent to the category of coherent sheaves on the
projective line P1(k), and the gluing data correspond to a an open covering of P1(k) by two affine
lines.

A space X as above is called commutative if coh(X) can be obtained by a gluing process starting
with categories mod(Ai) over rings which are commutative, otherwise X is called noncommutative.
If C has two non-isomorphic simple objects S1, S2 with Ext1(S1, S2) �= 0, then X is forced to
be noncommutative and, in fact, that such situations happen is to a large extent typical for a
noncommutative setting.

From the technical point of view it is often more convenient to glue full module categories
Mod(Ai), resulting in what then is called a category of quasi-coherent sheaves. Also for a proper
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treatment of homological questions we will need the category �C of quasi-coherent sheaves corre-
sponding to C. In the noetherian situation, which we assume, this category can be recovered as
the category of all contravariant left exact additive functors from C to abelian groups [18]. The
category �C is a Grothendieck category which is locally noetherian, in particular is locally finitely
presented. Therefore C can be identified with the full subcategory of finitely presented objects of
�C, and each object of �C is a filtered direct limit of objects from C. As a Grothendieck category
�C has sufficiently many injective objects, whereas C may not have any non-zero projectives or
injectives.

Notice that the above scheme allows for different scales of non-commutativity of a space X:
the rings involved in the gluing process can be requested to be commutative, or to be finitely
generated as modules over their center, or to satisfy a polynomial identity, or ... In fact, our
examples, except the one in Section 7.8, will all belong to the second class, hence stay quite close
to commutativity.

2.2 Nonsingular spaces

Let X be a noncommutative noetherian space and C = coh(X) its noetherian category of coherent
sheaves. We define Extn(C,−) as the n-th right derived functor of Hom(C,−) by means of injective
resolutions in �C. Within C the resulting values of Extn(X, Y ) can alternatively be calculated by
means of n-fold Yoneda extensions.

Definition 2.1 A noetherian space X is called smooth of dimension d if C = coh(X) has finite
global dimension d, i.e. Extd

C(−,−) �= 0 for C but Extd+1
C

(−,−) = 0.

For a smooth curve (d = 1) the category C = coh(X) is thus hereditary and noetherian.
For a commutative space X with a noetherian category of coherent sheaves the above concept

of smooth spaces and their dimension yields the usual geometric concept. For the noncommutative
spaces, close to commuativity we are going to discuss, the concept also reflects the geometrical
meaning quite well. In general situations, further apart from commutativity, a more restrictive
concept of smoothness is needed, cf. [2].

2.3 Projective spaces

Projectivity (relative to a base field k) is an important finiteness condition on a space X or its
category C of coherent sheaves. It implies, in particular, that C has morphism and extension spaces
which are finite dimensional over k. The definition however is technical, and less obvious than
the requirements discussed up to now. The definition to follow is basically modelled after Serre’s
treatment of projective spaces in [57]. We restrict to the case where X is smooth.

Let k be a field and let H be a finitely generated abelian group of rank one which may have
torsion. We further assume that H is equipped with a (partial) order, compatible with the group
structure. We reserve the term H-graded k-algebra for the following setting:

R is a k-algebra equipped with a decomposition R =
�

h∈H
Rl such that each Rh is a finite

dimensional k-space, further Rh · Rl ⊆ Rl+h holds for all h, l and finally Rh �= 0 implies h > 0 in
the given ordering of H. We do not request that R0 = k or that R is generated — as a k-algebra
— by elements of degree one.

Definition 2.2 A smooth space X is called projective over k if there exists a finitely generated
noetherian k-algebra R =

�
h∈H

Rh, graded by an ordered abelian group H of rank one, such
that coh(X) is isomorphic to the quotient category modH(R)/modH

0 (R).

Here, modH(R) denotes the category of finitely generated H-graded right R-modules. There-
fore each M ∈ modH(R) is equipped with a decomposition M =

�
h∈H

Mh into k-subspaces
such that Mh · Rl ⊆ Mh+l holds for all h, l in H. Our request on R forces the Mh to be finite
dimensional over k. The subindex zero in the expression modH

0 (R) refers to the full subcategory
of modules of finite length (here the same as finite k-dimension). This subcategory is closed under
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subobjects, quotients and extensions, hence is a Serre subcategory of modH(R). The resulting
quotient category is formed in the sense of Serre-Grothendieck-Gabriel, see [18] or [49]. It is not
difficult to verify the next assertion.

Proposition 2.3 Assume that R is a finite module over its center C and C = k[x1, . . . , xn], where

the xi are assumed to be homogeneous of degree > 0, then the quotient category modH(R)/modH

0 (R)
arises from a finite number of module categories mod(Ri) by gluing, where each Ri is obtained

from R by central localization.

2.4 Exceptional spaces

An object E in a small abelian k-category is called exceptional if the endomorphism algebra of
E is a skew field and moreover E has no self-extensions, i.e. Extn(E,E) = 0 for all n > 0. This
notion extends to objects of the bounded derived category, where the Ext-condition needs to be
replaced by the request Hom(E,E[n]) = 0 for all n �= 0.

Definition 2.4 A smooth projective space X is called exceptional if the bounded derived category
of coh(X) admits a complete exceptional sequence E1, . . . , En. We thus request that

1. Each Ei is exceptional;

2. Extl(Ek, Ei) = 0 for i < k and for all l;

3. The objects E1, . . . , En generate the bounded derived category of coh(X) as a triangulated
category.

A complete exceptional sequence can be viewed as a system of building blocks for the derived
category or for coh(X) if the Ei lie in coh(X). In particular, the classes [E1], . . . , [En] form a
Z-basis of the Grothendieck group K0(coh(X)). Exceptional spaces accordingly are quite rare
especially in the range of commutative spaces. For instance, the only commutative exceptional
curve over an algebraically closed field is the projective line P1(k). By contrast, and this is in the
focus of this survey, there is a rich supply of noncommutative exceptional curves.

Further examples of commutative exceptional spaces are provided by the projective n-space
[9], the quadrics [30] and Grassmannians [29]. For additional information in this direction we refer
to [55], further to [7] for examples of noncommutative exceptional spaces of dimension ≥ 2.

Closely related to the notion of an exceptional sequence is the notion of a tilting object
�

n

i=1 Ei,
where conditions 1. and 2. of Definition 2.4 are replaced by the request Extl(Ei, Ej) = 0 for all i,
j and all l �= 0. For the situations, studied in this paper, the indecomposable summands Ei of a
tilting object can be rearranged to form an exceptional sequence (cf. [27], Lemma 4.1).

2.5 Exceptional curves

Let k be an arbitrary field. In accordance with the preceding discussion we now fix the notion of
an exceptional curve X over k by the following requests on its associated category H = coh(X) of
coherent sheaves:

1. H is a connected small abelian k-category with morphism spaces that are finite dimensional
over k.

2. H is hereditary and noetherian, and there exists an equivalence τ : H → H such that Serre
duality DExt1(X, Y ) = Hom(Y, τX) holds.

3. H admits a complete exceptional sequence.
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It is possible to skip the request on Serre duality by replacing condition 3. through the related
condition “H has no non-zero projectives and admits a tilting object” (compare [36]).

Let H0 denote the full subcategory of H consisting of all objects of finite length, and let H+

consist of all objects from H with zero socle. We term the members from H0 torsion sheaves and
those of H+ vector bundles.

Combining the techniques of [36], dealing with the case of an algebraically closed base field,
and of [41], which treats the related question of a finite dimensional algebra with a separating
tubular family over an arbitrary field, we get the following information on H.

1. Each object in H decomposes into a finite number of indecomposable objects with local
endomorphism rings. Moreover each indecomposable object is either a bundle or a torsion
sheaf.

2. The category H0 of torsion sheaves decomposes into a coproduct
�

x∈X
Ux of connected

uniserial categories Ux, each having a finite number p(x) of simple objects (compare [19]).
The latter means that each object of Ux has a unique composition series in Ux, hence is
determined up to isomorphism by its simple Ux-socle and its length in the category Ux.
Moreover, finite generation of K0(H) implies that p(x) = 1 for almost all x ∈ X.

3. We interpret the index set X as the point set of the curve X associated with H. The members
of Ux are said to be concentrated in x. By definition, the Zariski topology has X and its
finite subsets as the closed sets.

4. Defining wx as the sum of all classes of simple objects from Ux in the Grothendieck group
K0(H), all classes wx = [Sx] are proportional, hence all are in the same rank one direct
factor Z.w of the Grothendieck group K0(H) ([36] Lemma 6).

5. Defining the normalized rank function on K0(H) as 1
κ
�−, w�, where Z.κ = �K0(H), w�, there

exists a line bundle L, i.e. an indecomposable object from H of rank one ([36] lemma 6).

6. Each vector bundle E has a filtration E0 ⊂ E1 ⊂ · · · ⊂ Er = E whose factors Ei/Ei−1 are
line bundles and r equals the rank of E.

7. Because of Serre duality DExt1(X, Y ) = Hom(Y, τX) the category H has almost-split se-
quences where the equivalence τ serves as the Auslander-Reiten translation.

8. H admits a tilting bundle T whose endomorphism algebra Λ is a canonical algebra in the
sense of [52].

Conversely, [41] describes how to associate to each canonical algebra Λ a category H(Λ) of
coherent sheaves on an exceptional curve X which parametrizes the “central” separating tubular
family for Λ.

The Grothendieck group K0(H) equipped with the Euler form is determined, via a process

described in [35], by an invariant of X, called the symbol σX =




p1,...,pt

d1,...,dt

f1,...,ft

������
�



 of X. The symbol

collects the following data:

1. The weights pi = p(xi) of the finite collection x1, . . . , xt of exceptional points x of X with
p(x) > 1.

2. H has a line bundle L, called special, such that for each i = 1, . . . , t, there is up to isomor-
phism exactly one simple sheaf Si concentrated at xi with the property Hom(L, Si) �= 0.
Moreover, if S is the direct sum of a τ -orbit of simple sheaves, the middle term of the
couniversal extension with L

0 → L
d
→ E → S → 0, d = dimEnd(L)Ext1(S, L)
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has the form E = L̄
r, where L̄ is an indecomposable bundle, whose isomorphism class does

not depend on the choice of S. We put � =
�
dimEnd(L)Hom(L, L̄)

�1/2 where � > 0. It follows
that � equals 1 or 2, see [35].

3. We put fi = dimEnd(L)Hom(L, Si), ei = dimEnd(Si)Hom(L, Si) and di = ei fi.

From the symbol data one derives a Riemann-Roch formula [35] which determines the genus

of X as

gX = 1 +
� p

2

�
t�

i=1

di

�
1−

1
pi

�
−

2
�

�
.

Here p denotes the least common multiple of the weights p1, . . . , pt. The genus decides on the
representation type:

1. If gX < 1, then H has a tilting bundle T whose endomorphism algebra is a tame hereditary
algebra Σ. See Sections 3.1 and 7.1.

2. If gX = 1, then H has a tilting bundle T whose endomorphism algebra is a tubular canonical
algebra Λ. If k is algebraically closed, the indecomposable objects in H (resp. mod(Λ)) are
completely classified in [38] (resp. [51]). Moreover, both cases are related since the bounded
derived categories of H and mod(Λ) are equivalent. See also Section 7.6.

3. If gX > 1, then the classification problem for H is wild. We refer to [40] and Section 7.2 for
further information.

3 The homogeneous case

The sheaf theory of an exceptional curves which is homogeneous is strongly related to, and in
fact completely controlled by the representation theory of a tame hereditary algebra of bimodule
type whose category of regular modules has the same property of homogenuity. We thus start to
discuss the representation theory of tame hereditary (bimodule) algebras.

3.1 Tame hereditary algebras

Let Λ = F M

0 G
be the finite dimensional hereditary k-algebra of a tame bimodule F MG,

i.e. we request that F , G are finite dimensional skew field extensions of k, and that F MG is
a bimodule such that k acts centrally on F , G, M and dimF M · dimGM = 4 [14]. The pair
(dimF M,dimMG) is called the dimension type of M ; tameness therefore is characterized by the
dimension types (2, 2), (1, 4) or (4, 1).

If the base field k is algebraically closed, the only choice for M is the bimodule M =kk ⊕ kk,
and Λ is then called Kronecker algebra. The classification of indecomposable modules over this
algebra amounts to the classification of pairs of linear maps, a problem solved by Kronecker in
1890. For the base field of real numbers the dimension types (1,4) and (4,1) can also be realized, for
instance by the bimodules of real quaternions HHR and RHH. The classification of indecomposable
modules in these two cases basically amounts to classify real subspaces of a quaternion vector
space [15].

The tame bimodule algebras are special cases of connected finite dimensional tame hereditary
k-algebras. In this paper we use tame in the sense “tame and representation-infinite”, where
tameness refers to the possibility to classify all indecomposable modules in any given dimension
by a finite number of one-parameter families. For a finite dimensional hereditary algebra Λ it
is equivalent that the quadratic form q(x) = �x, x� associated with the Euler form is positive
semi-definite. An indecomposable Λ-module is called preprojective (resp. preinjective) if for some
n ≥ 0 it has the form τ

−n
P (resp. τ

n
Q) for an indecomposable projective module P (resp. an

indecomposable injective module Q). The remaining indecomposable modules are called regular.
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Theorem 3.1 ( Dlab-Ringel [14]) Let Λ be a tame bimodule algebra, more generally a con-

nected tame hereditary algebra. The indecomposable Λ-modules fall into the three classes of pre-

projective, regular, resp. preinjective modules P, R, resp. I, where R decomposes into a coproduct�
x∈X

Ux of connected uniserial categories. Moreover, mod(Λ) = P ∨ R ∨ I. �

Here and later we use the notation ∨ to denote the closure of the union of P, R, I with respect
to finite direct sums, but also to indicate that in the sequence P, R, I non-zero morphisms only
exist from left to right. Hence there are no non-zero morphisms from objects from R to P, from
I to P or from I to R.

Intuitively speaking, P, I are discrete families, while R is a continuous family, thought to be
parametrized by the index set of the decomposition

�
x∈X

Ux. A major aim, in this context, is
to understand the geometric structure of the parametrizing space X. This amounts to specify a
natural geometric structure on the space of regular Auslander-Reiten components for Λ.

3.2 The preprojective algebra

Let Λ be a connected hereditary algebra. We are interested in the preprojective algebras because
— at least in the tame case — they yield projectivity of the parameter space X for the “continuous
family” of regular components, conforming to the conventions of Section 2.3. If Λ is tame, the
elements x with �x,−� = 0 form a rank one direct factor Z.w, the radical of K0(Λ). Suitably
normalized by a rational factor, the linear form �−, w� yields a surjective mapping rk : K0(Λ) → Z

called rank, which is strictly positive on indecomposable projectives. Moreover, there exists at
least one indecomposable projective module of rank one.

The preprojective algebras are a special case of the general construction of the positively Z-
graded orbit algebra A(F ;A) =

�∞

n=0 Hom(A,F
n
A) associated with a pair consisting of a k-linear

endofunctor F : A→ A of a small k-category A and an object A from A [8, 34]. The product of
two homogeneous elements u : A → F

n
A of degree n and v : A → F

m
A of degree m in the orbit

algebra is given by the composition vu = [A u
−→ F

n
A

F
m

v
−→ F

n+m
A].

Definition 3.2 Let Λ be a connected hereditary algebra and let P denote either the Λ-module Λ
or alternatively a projective Λ-module of rank 1 (the latter case requests that Λ is tame). Then
the positively Z-graded algebra associated with the Auslander-Reiten translation τ

−

Π(Λ, P ) =
�

n∈Z

Hom(P, τ
−n

P )

is called a preprojective algebra for Λ. We write Π(Λ) for Π(Λ,Λ).

The preprojective algebra Π(Λ) was introduced by Gelfand and Panomarev [23] for quivers
using a combinatorial definition. Dlab and Ringel [16] extended the notion to the hereditary
algebras given as tensor algebras of a species. Our definition as a graded algebra associated with
the Auslander-Reiten translation τ

− is taken from [8] and the relationship between the various
definitions is studied in [53]. Invoking [11] the following result follows from [8].

Theorem 3.3 Let Λ be a connected tame hereditary algebra, and P be either Λ or an indecom-

posable projective Λ-module of rank one. Then the following assertions hold:

1. The preprojective algebra Π = Π(Λ, P ) is two-sided noetherian and has Krull dimension two,

and for P = Λ also global dimension two. Moreover, Π(Λ) is module-finite over its center

which is an affine k-algebra.

2. The quotient category modZ(Π)/modZ

0 (Π) is, in each of the two cases, equivalent to the

category H(Λ) = I[−1] ∨ P ∨R, where P, R, I are the categories of preprojective, regular

and preinjective Λ-modules, respectively.

3. H(Λ) is a connected abelian k-category which is hereditary noetherian with Serre duality

DExt1(X, Y ) = Hom(Y, τX). H(Λ) has a tilting object T with Λ ∼= End(T ). �
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As the notation indicates, H(Λ) is formed in the derived category of mod(Λ). The theorem
implies that H has the interpretation of a category coh(X) of coherent sheaves on an exceptional
curve X. If Λ is the Kronecker algebra over k, then X equals the projective line P1(k), so is a
commutative curve.

We illustrate the two kinds of preprojective algebras for the case where Λ is the Kronecker
algebra. The preprojective component has the shape

P1 P3 P5 · · ·
�� �� �� �� �� �� ��

P0 P2 P4 P6

where τ
−

Pn = Pn+2 and, denoting the arrows from Pn to Pn+1 consistently by X and Y , the
category of indecomposable preprojective Λ-modules is generated by X and Y with relations
XY = Y X, whenever this composition makes sense. Hence Hom(P0, Pn) equals Rn the (n + 1)-
dimensional space of homogeneous polynomials in X, Y of total degree n, and therefore we get
isomorphisms

Π(Λ) ∼=
∞�

n=0

�
R2n R2n−1

R2n+1 R2n

�
and Π(Λ, P ) ∼=

∞�

n=0

R2n = k[X2
, XY, Y

2]

as Z-graded algebras.

Remark 3.4 We assume that k is algebraically closed. Then the isomorphism class of Π(Λ, P )
does not depend on the choice of the projective rank one module P . This follows from the fact
that the associated curve in this case is a weighted projective line, and therefore the automorphism
group of H acts transitively on the isomorphism classes of line bundles [21].

Moreover, the small preprojective algebra Π� = Π(Λ, P ), where P is of rank one, in this case
is a commutative algebra which is affine over k (see subsection 7.1) and is always of infinite global
dimension, in contrast to the fact that the full preprojective algebra Π = Π(Λ,Λ) always has global
dimension two. The equivalences

coh(X) ∼=
modZ(Π)
modZ

0 (Π)
∼=

modZ(Π�)
modZ

0 (Π�)

can be interpreted in geometric terms: alternatively X can be obtained from a singular commutative

surface F
� with coh(F�) = mod(Π�) or from a nonsingular noncommutative surface F with coh(F) =

mod(Π) as the quotient of a k
∗-action.

3.3 Homogeneous exceptional curves

Let X be any noncommutative curve which is exceptional (in particular projective over k and
smooth). Accordingly H = coh(X) is a connected small abelian category with Serre duality which
is noetherian, hereditary and has an exceptional sequence. Let H0 denote the full subcategory of
H consisting of the objects of finite length. Following the terminology from representation theory
we say that X is homogeneous if, in the decomposition of H0 =

�
x∈X

Ux into connected uniserial
subcategories, each Ux has only one simple object. It is equivalent to say that Ext1(S1, S2) = 0
for each pair of nonisomorphic simple objects. The following result characterizes the exceptional
homogeneous curves.

Theorem 3.5 Let H = coh(X) for an exceptional curve X and assume that Ext1(S1, S2) = 0 for

each pair of nonisomorphic simple objects. Then there exists a tame bimodule algebra Λ such that

H ∼= H(Λ) in the notations of Theorem 3.3.

Proof. By assumption H0 decomposes as a coproduct
�

x∈X
Ux of connected uniserial cate-

gories, where each Ux has exactly one simple object Sx. The proof involves several steps, where
we use the notations of Section 2.5.

9



1. Since X is homogeneous, the class of each simple is a multiple of w, hence K0(H) = Z.[L]⊕
Z.w.

2. X has a rational point x, i.e. [Sx] = w. Moreover, the couniversal extension 0 → L
� → L̄ →

Sx → 0, � = dimEnd(L)Ext1(Sx, L), of Sx by L has an indecomposable middle term L̄, the
companion bundle of L.

3. T = L ⊕ L̄ is a tilting object in H, F = End(L), G = End(L̄) are division rings and the
(F,G)-bimodule M = Hom(L, L̄) satisfies dimF M · dimMG = 4:
With respect to the Z-basis p1 = [L], p2 = [L̄] of K0(H), the Euler form is given by the

matrix C =
�

�p1, p1� �p1, p2�

0 �p2, p2�

�
. Correspondingly, the Coxeter transformation is given

by the matrix Φ = −C
−1

C
tr which has w as a fixed point, hence admits 1 as an eigenvalue.

This in turn implies that 4�p1, p1��p2, p2� = �p1, p2�
2, and therefore dimF1M · dimMF2 = 4.

4. Since further Hom(L̄, L) = 0, the endomorphism algebra of T is isomorphic to a tame
hereditary bimodule algebra Λ. Since Λ equals the endomorphism ring of a tilting object in
H and in H(Λ), we get an equivalence of derived categories Db(H) → Db(H(Λ)), preserving
the rank, accordingly an equivalence H ∼= H(Λ), cf. [36] for details. �

We refer to [13] for the investigation of related commutative curves.

4 Modification of the weight type

Let X be a smooth noncommutative projective curve, in particular H = coh(X) is a hereditary
noetherian category with Serre duality. We have already seen, that the genus and thus the com-
plexity of the classification problem for the coherent sheaves on X largely depends on the weight
function of X attaching to each point of X the number p(x) of simple sheaves concentrated in x. It
is therefore important to dispose of tools changing the weight type of a given X. Reduction of the

weight type is easily achieved through perpendicular calculus [22]: Let S be a simple sheaf which is
concentrated in a point x of weight p(x) > 1, then Ext1 (S, S) = 0, hence S is exceptional, and the
full subcategory S

⊥ of H consisting of all objects of X satisfying Hom (S, X) = 0 = Ext1 (S, X)
is again a category of coherent sheaves over an exceptional curve X

� having the same underlying
point set as X but reduced weight. In more detail x has weight p(x) − 1 for X

� while the weight
of a point y �= x remains unchanged under the operation. The process can be iterated as long
as there still exist exceptional sheaves in the same point x or in a different point, until finally a
homogeneous exceptional curve is obtained, where the process of reduction of weights will stop.

For the converse construction which we call insertion of weights we need some preparation.
First we encode the notion of a point x ∈ X in terms of a natural transformation of functors.

Recall that H0 =
�

x∈X
Ux. Each point x ∈ X determines, by means of a mutation with respect

to the simple objects from Ux, a shift functor σx : H → H, E �→ E(x), together with a natural
transformation x : Id → σx, also denoted by the symbol x (see [41, 38, 43]). For each bundle E,
more generally for each sheaf E with Hom(Ux, E) = 0, these data are given by the Sx-universal
extension

0 → E
xE
→ E(x) → Ex → 0,

where Sx is the semisimple category consisting of all finite direct sums of simple sheaves concen-
trated in x and Ex belongs to Sx. If E is an indecomposable torsion object, σx acts as follows: If
E is concentrated in a point y different from x then we have the Sx-universal extension as above,
hence E(x) = E and xE = 1E . If y equals x, then E(x) = τ

−
E, and the kernel of xE equals the

simple socle of E.
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4.1 The category of p-cycles

Let H be a category of coherent sheaves on a (noncommutative) exceptional curve as before.
Fixing a point x of X and an integer p ≥ 1 we are going to form the category H̄ of p-cycles in x

which may be viewed as a category of coherent sheaves on a curve X̄, having the same underlying
point set as X, where the weights for points y �= x remains unchanged and the weight of x in X̄

equals p times the weight of x in X. Intuitively speaking the effect of the following construction
is to form a p-th root of the natural transformation xE : E → E(x) corresponding to the point x,
and thus relates algebraically to the construction of the Riemann surface of the p-th root function.

Definition 4.1 A p-cycle E concentrated in x is a diagram

· · ·→ En

xn
−→ En+1

xn+1
−→ En+2

xn+2
−→ · · · −→ En+p

xn+p
−→ · · ·

which is p-periodic in the sense that En+p = En(x), xn+p = xn(x) and moreover xn+p−1◦· · ·◦xn =
xEn holds for each integer n.

A morphism u : E → F of p-cycles concentrated in the same point x is a sequence of morphisms
un : En → Fn which is p-periodic, i.e. un+p = un for each n, and such that each diagram

En

xn
−→ En+1

un ↓ ↓ un+1

Fn

xn
−→ Fn+1

commutes. We denote p-cycles in the form E0
x0
−→ E1

x1
−→ · · ·→ Ep−1

xp−1
−→ E0(x) and the category

of all p-cycles concentrated in x by H = H
p

x
.

Obviously H is an abelian category, where exactness and formation of kernels and cokernels
has a pointwise interpretation. Moreover we have a full exact embedding

j : H �→ H, E �→ Ē = E = · · · = E
xE
−→ E(x).

We will therefore identify H with the resulting exact subcategory of H. We note that inclusion
j : H → H has a left adjoint � and a right adjoint r which are both exact functors and are given
by

�

�
E0

x0
→ E1

x1
→ · · ·→ Ep−1

xp−1
→ E0(x)

�
= Ep−1

and

r

�
E0

x0
→ E1

x1
→ · · ·→ Ep−1

xp−1
→ E0(x)

�
= E0.

Lemma 4.2 The category H is connected, abelian and noetherian. The simple objects of H occur

in two types:

1. the simple objects of H which are concentrated in a point y different from x.

2. for each simple object S from H, concentrated in x, the p simples

S1 : 0 → 0 → · · ·→ 0 → S → 0
S2 : 0 → 0 → · · ·→ S → 0 → 0
· · · · · ·

Sp−1 : 0 → S → · · ·→ 0 → 0 → 0
Sp : S → 0 → · · ·→ 0 → 0 → S(x).

11



Each Si is exceptional and End(Si) ∼= End(S) ∼= Ext1(Si, Si+1) where the indices are taken

modulo p.

If S = {S1, . . . , Sp−1|S simple in H and concentrated in x}, then the extension closure �S� of

S is localizing in H. Moreover

a. the quotient category H/�S� ∼= H is isomorphic to H, the isomorphism induced by r : H→ H.

b. the right perpendicular category S⊥ formed in H is equivalent to H.

Proof. Abelianness and noetherianness are obvious by pointwise consideration. It is straight-
forward from the construction and from the properties of H that the category S⊥ right perpen-
dicular to S consists of exactly those p-cycles E0

x0
→ E1

x1
→ · · · → Ep−1

xp−1
→ E0(x) such that

x0, . . . , xp−2 are isomorphisms, hence — up to isomorphism — agree with the objects from H.
The remaining properties are straightforward to check. �

We note that H is again equipped with a natural shift automorphism σx : H → H, sending a
p-cycle E0

x0
→ E1

x1
→ · · · → Ep−1

xp−1
→ E0(x) to E1

x1
→ E2

x2
→ · · · → Ep

xp
→ E0(x) x0

→ E1(x). Note
that σx(Si) = Si+1, where the index i is taken modulo p. It is moreover straightforward to define
a natural transformation Id → σ in terms of the “cycle morphisms” x0, . . . , xp−1.

Theorem 4.3 The category H shares with H the properties to be equivalent to a category of

coherent sheaves on a smooth projective curve. Moreover, if H has a tilting object the same holds

for H.

Proof. We have already seen that H is an abelian category which is noetherian; it is less
obvious that H is also hereditary:

Pass from H to the Grothendieck category �H of left exact functors from Hop to abelian groups,
such that H becomes the full subcategory of finitely presented objects of �H. In a straightforward
way extend σx and the corresponding notion of p-cycles in x from H to �H. Invoking Zorn’s lemma
it is easily checked that a p-cycle E is an injective object if and only if all the Ei are injective
objects in �H and moreover all the xi : Ei → E are epimorphisms. This property is obviously
preserved when passing to quotients. Hence the category of p-cycles in �H, and therefore also H is
hereditary.

Note that inclusion H �→ H has a left adjoint � : H → H, given with the previous notations
by �(E) = E. If E is projective in H then �(E) is projective in H, so is zero, hence E belongs to
�S�. This implies E = 0, and so H has no non-zero projective objects.

Finally, the assumptions imply by a variation of the arguments from [36, 41] the existence
of a tilting bundle T for H. For each simple sheaf in H concentrated in x we form a filtration
0 = F0(S) ⊂ F1(S) ⊂ · · · ⊂ Fp(S) = S such that Fp(S)/Fp−1(S) ∼= Si. Let T (S) = F1(S) ⊕
· · ·⊕Fp−1(S), then the direct sum of T and all T (S), with S simple concentrated at x, is a tilting
object in H. �

Note that the formation of categories of p-cycles may be iterated and thus the process of
insertion of weights may involve any finite set of points of the original curve. We illustrate what
is going to happen by an example:

Assuming that k is algebraically closed, the preceding theorem together with the characteri-
zation of categories of weighted projective lines from [36] implies the following result. Let X be
the usual projective line over k, and let λ1, . . . ,λt be a family of pairwise distinct points from
X and p1, . . . , pt be a sequence of integers ≥ 1. Let X0 = X and let inductively denote Xi be
the exceptional curve obtained from Xi−1 by inserting weight pi in λi, i.e. forming the category
of pi-cycles in coh (Xi−1) which are concentrated in λi. Then Xt is isomorphic to the weighted
projective line corresponding to the above weight data p1, . . . , pt and parameter data λ1, . . . ,λt.

12



4.2 Parabolic structure

The base field may again be arbitrary. As in the preceding subsection, we start with a category
H of coherent sheaves on an exceptional curve X. In the notation of the previous section a torsion
sheaf in H is exactly a p-cycle Ē = E0

x0
−→ E1 → · · · → Ep−1

xp−1
−→ E0(x) where each Ei is a

torsion sheaf. Moreover Ē is a bundle in H̄ if and only if each Ei is a bundle in H, and then each
xi is a monomorphism since each xEi : Ei → Ei(x) is a monomorphism. We denote by Sx the
semi-simple category consisting of all finite direct sums of simple sheaves in H concentrated at x.

In the bundle case we may hence interpret the p-cycle Ē as a filtration

E0 ⊆ E1 · · · ⊆ Ep−1 ⊆ E0(x),

equivalently as a filtration

0 = E0/E0 ⊆ E1/E0 ⊆ · · · ⊆ Ep−1/E0 ⊆ E0(x)/E0

of the fibre Ex = E0(x)/E0 of E at x given by the Sx-universal extension

0 → E0
xE0
−→ E0(x) → Ex → 0.

The fibre Ex is a member of the semisimple category Sx so may be viewed as an r-tuple of
finite dimensional vector spaces over a finite skew field extension D of k. Here, D is isomorphic
to the endomorphism algebra of any simple sheaf from H concentrated in x and r denotes the
number of such sheaves.

Theorem 4.4 For any exceptional curve X and any point x of X the two concepts of p-cycles

of vector bundles, where the p-cycle is concentrated in x, and of a quasi-parabolic structure of

filtration length p at x (see [58] for the definition) agree.

Proof. Straightforward from the above discussion. �

In comparison, the concept of p-cycles seems to be advantageous because it applies to torsion
sheaves as well, and thus always yields an abelian category.

5 Characterization of exceptional curves

In [41] we have associated with each canonical algebra Λ (in the sense of [52]) a connected abelian k-
category H(Λ) defining an exceptional curve X that parametrizes the “central” separating tubular
family of mod(Λ).

Theorem 5.1 Let k be a field. For an abelian k-category H the following assertions are equivalent:

a. H is equivalent to a category of coherent sheaves on an exceptional curve.

b. H has the form H(Λ) for a canonical algebra Λ.

c. H is equivalent to the category of coherent sheaves on a curve X, arising from a homogeneous

exceptional curve Y by insertion of weights.

Proof. “c ⇒ a” see Theorem 4.3. “a ⇒ b” see Section 2.5. “b ⇒ c” Let S be a system of
exceptional sheaves collecting for each x ∈ X all simple sheaves concentrated in x except one. The
right perpendicular category H� = S⊥ then is easily seen to be equivalent to a category of coherent
sheaves on a homogeneous curve Y. We fix a tilting bundle for Y, and extend it by the argument
from the proof of Theorem 4.3 to a tilting object T on H and by the same argument realize T

as a tilting sheaf on the curve Y arising from Y by a suitable insertion of weights. There results
a rank preserving equivalence of the derived categories Db(coh(X)) and Db(coh(Y)) inducing an
equivalence between coh(X) and coh(Y). �
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6 Graded factorial domains of dimension two

Let k be an algebraically closed field. For any sequence p = (p1, . . . , pt) we consider the rank one
abelian group L(p) on generators �x1, . . . , �xt with relations p1�x1 = · · · = pt�xt. For each sequence
λ = (λ3, . . . ,λt) of pairwise distinct non-zero elements of k the algebra

S(p, λ) = k[X1, . . . , Xt]/I,

where the ideal I is generated by the regular sequence

X
pi
i
− (Xp2

2 − λiX
p1
1 ), i = 3, . . . , t,

is L(p)-graded by giving the class xi of Xi degree �xi. It is easily checked that this algebra is graded
factorial [21].

Theorem 6.1 (Kussin [32], Mori [45]) Let k be an algebraically closed field. An affine k-

algebra S of Krull dimension two, positively graded by an ordered rank one abelian group H

is graded-factorial if and only if, as a graded algebra, it is isomorphic to the L(p)-graded alge-

bra S(p, λ) for some choice of positive integers p1, . . . , pt and pairwise distinct non-zero scalars

λ3, . . . ,λt from k. �
The result, in its full generality, is due to Kussin [32], who treated the group-graded case. The

particular case of a positive Z-grading is known for some time and due to Mori [45]. Note for this
that L(p) is torsion-free, i.e. L(p) ∼= Z, if and only if p1, . . . , pt are pairwise coprime.

Combined with the characterization of the exceptional curves over an algebraically closed field
as the weighted projective lines [36] this yields:

Proposition 6.2 ([36]) Let k be an algebraically closed field. For a small abelian connected k-

category H the following assertions are equivalent:

a. H is equivalent to the category of coherent sheaves on an exceptional curve.

b. H has the form modH(S)/modH

0 (S) for a graded factorial affine k-algebra S of dimension

two, graded by a rank one abelian group H.

Proof. In view of [36] a category of type a is equivalent to a category of coherent sheaves on
a weighted projective line. In view of the preceding theorem these are exactly those of type b. �

In geometric terms, graded factoriality of S is (under mild restrictions for S) equivalent to the
fact that all line bundles on the associated projective space arise from the structure sheaf by a
grading shift.

7 Examples and Applications

It has some tradition to invoke linear algebra methods in the classification of vector bundles for
suitable projective varieties. A beautiful result due to Beilinson [9] states that the derived cate-
gories of coherent sheaves on the projective n-space and of finite dimensional representations of a
certain finite dimensional algebra are equivalent as triangulated categories. This method underlies
most applications in this section, even where derived categories are not explicitly mentioned.

7.1 Rational surface singularities

Example 7.1 ([22]) Let k be an algebraically closed field, and let X be a weighted projective line

of weight type (2, 3, 5). Then there exists a tilting sheaf T on X such that Λ = End(T ) is the path

algebra over k of the extended Dynkin quiver of type �E8

◦

↓

◦ → ◦ → • ← ◦ ← ◦ ← ◦ ← ◦ ← ◦
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Moreover, if L is a line bundle on X (resp. a projective Λ-module of rank one) and τ denotes

the Auslander-Reiten translation for coh(X) (resp. for mod(Λ)), then there is an isomorphism of

graded algebras �

n≥0

Hom(L, τ
−n

L) ∼= k[X, Y, Z]/(X2 + Y
3 + Z

5)

where the grading of the algebra on the right is given by deg(x, y, z) = (15, 10, 6).

For the base field of complex numbers the equation X
2 +Y

3 +Z
5 describes the rational surface

singularity of Dynkin type E8.
The correspondence between rational surface singularities and the associated small preprojec-

tive algebra, illustrated by the preceding example, is valid in general. The attached table is taken
from [22].

Theorem 7.2 ([22]) For any Dynkin diagram ∆ = (p1, p2, p3) let Λ be the path algebra of a

quiver of extended Dynkin type �∆, P a projective Λ-module of rank one, and Π∆ the preprojective

algebra Π(Λ, P ). Then Π∆ has the form k[x, y, z] = k[X, Y, Z]/(f∆), where the degrees of the

generators x, y, z, their degrees, and the relation f∆ can be seen from the following table:

Dynkin type ∆ generators (x, y, z) Z-degrees relations f∆

(p, q) (x0 x1, x
p+q
1 , xp+q

0 ) (1, p, q) Xp+q − Y Z
(2, 2, 2l) (x2

2, x
2
0, x0 x1 x2) (2, l, l + 1) Z2 + X(Y 2 + Y Xl)

(2, 2, 2l + 1) (x2
2, x0 x1, x

2
0 x2) (2, 2l + 1, 2l + 2) Z2 + X(Y 2 + Z Xl)

(2, 3, 3) (x0, x1 x2, x
3
1) (3, 4, 6) Z2 + Y 3 + X2 Z

(2, 3, 4) (x1, x
2
2, x0 x2) (4, 6, 9) Z2 + Y 3 + X3 Y

(2, 3, 5) (x2, x1, x0) (6, 10, 15) X2 + Y 3 + X5

�
Lists for characteristic zero, usually give the cases (2, 3, 3) and (2, 2, n) in a different form

X
4 + Y

3 + Z
2 resp. X(Y 2 −X

n) + Z
2, then equivalent to the one given here.

7.2 Algebras of automorphic forms

Example 7.3 ([34]) Let X be the weighted projective line over k of weight type (2, 3, 7). There

exists a tilting sheaf T on X such that Λ = End(T ) is the canonical algebra of type (2, 3, 7) given

by the quiver

◦
x1

✘✘✘✘✿ x1③

•
x2 ✲ ◦

x2✲ ◦
x2 ✲ •

x3� �x3

◦
x3
−→ ◦

x3
−→ ◦

x3
−→ ◦

x3
−→ ◦

x3
−→ ◦

with relations x
2
1 + x

3
2 + x

7
3 = 0.

If L is a line bundle on X (resp. an indecomposable rank one module over Λ not lying in the

preprojective component), and τ denotes the Auslander-Reiten translation for coh(X) (resp. for

mod(Λ)), then we get an isomorphism

�

n≥0

Hom(L, τ
n
L) ∼= k[X1, X2, X3]/(X1

2 + X2
3 + X3

7)

of Z-graded algebras, where the generators x1 = [X1], x2 = [X2], x3 = [X3] for the algebra on the

right hand side are homogeneous of degree 21, 14, 6, respectively.
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For the base field of complex numbers, this algebra is isomorphic to the algebra of entire
automorphic forms with respect to an action of the triangle group G = �σ1,σ2,σ3|σ

2
1 = σ

3
2 = σ

7
3�

on the upper complex half plane H+. In fact, this is a special case of a more general setting,
treated in [34] in more detail:

It is classical that a Fuchsian group of the first kind, G = �σ1, . . . ,σt|σ
p1
1 = · · · = σ

pt
t

= 1 =
σ1 · · ·σt�, satisfying the extra condition (t− 2)−

�
t

i=1
1
p i

> 0, can be realized as a discrete group
G of automorphisms acting discontinuously on H+ such that

1. the quotient H+/G is isomorphic to the Riemann sphere P1(C),

2. only for finitely many orbits λ1, . . . ,λt ∈ P1(C) the corresponding stabilizer groups are
non-trivial and then cyclic of finite order p1, . . . , pt, respectively.

The above data p = (p1, . . . , pt) and λ = (λ1, . . . ,λt) define a weighted projective line X =
X(p,λ) and an L(p)-graded factorial algebra S(p,λ) as in Section 6. It is easily seen that the
character group G

∗ of G is finite, and moreover that L(p) can be identified with a subgroup
H of Q × G

∗. Then for each pair (a,χ) the C-space Aa,χ of χ-automorphic forms of degree
a is finite-dimensional and multiplication of automorphic forms then defines a graded algebra
A =

�
(a,χ)∈Q×G∗ Aa,χ (see [44, 47] for further details).

Theorem 7.4 ([44, 47, 34]) The algebra A of automorphic forms on H+ with respect to G is

naturally H-graded, and is isomorphic to the L(p)-graded algebra S(p, λ).
Restricting the grading to the subgroup Z×{0} yields the algebra R of entire automorphic forms,

which is isomorphic to the algebra A(τ ;L) =
�

n≥0 Hom(L, τ
n
L) associated with the Auslander-

Reiten translation. Here, L may be chosen as a line bundle on the weighted projective line X

associated with S(p,λ) or as a rank one non-preprojective module over the canonical algebra Λ
associated with X. �

Note that the algebra R = A(τ ;L) can be formed over any algebraically closed field k; it is
always commutative, affine over k and Cohen-Macaulay of Krull dimension two. Exactly for the
minimal wild canonical algebras (2, 3, 7), (2, 4, 5), (3, 3, 4) and their close “neighbours” given in
the table below, the algebra R can be generated by three homogeneous elements. In this case R

has the form
R = k[x, y, z] = k[X, Y, Z]/(F ),

where the relation F , the degree-triple deg (x, y, z), and deg F are displayed in the table below
which is taken from [34].

deg (x, y, z) relation F deg F

(2, 3, 7) (6, 14, 21) Z
2 + Y

3 + X
7 42

(2, 3, 8) (6, 8, 15) Z
2 + X

5 + XY
3 30

(2, 3, 9) (6, 8, 9) Y
3 + XZ

2 + X
4 24

(2, 4, 5) (4, 10, 15) Z
2 + Y

3 + X
5
Y 30

(2, 4, 6) (4, 6, 11) Z
2 + X

4
Y + XY

3 22
(2, 4, 7) (4, 6, 7) Y

3 + X
3
Y + XZ

2 18
(2, 5, 5) (4, 5, 10) Z

2 + Y
2
Z + X

5 20 •

(2, 5, 6) (4, 5, 6) XZ
2 + Y

2
Z + X

4 16
(3, 3, 4) (3, 8, 12) Z

2 + Y
3 + X

4
Z 24 •

(3, 3, 5) (3, 5, 9) Z
2 + XY

3 + X
3
Z 18 •

(3, 3, 6) (3, 5, 6) Y
3 + X

3
Z + XZ

2 15 •

(3, 4, 4) (3, 4, 8) Z
2 − Y

2
Z + X

4
Y 16 •

(3, 4, 5) (3, 4, 5) X
3
Y + XZ

2 + Y
2
Z 13

(4, 4, 4) (3, 4, 4) X
4 − Y Z

2 + Y
2
Z 12 •

For the base field of complex numbers the 14 equations are equivalent to Arnold’s 14 excep-
tional unimodal singularities in the theory of singularities of differentiable maps [1]. In the theory

16



of automorphic forms they occur as the relations of exactly those algebras of entire automorphic
forms having three generators [60]. In the rows marked by • the two references quote a different
expression for the singularity F , which — for the base field of complex numbers — is equivalent
to the above.

7.3 A real exceptional curve

Proposition 7.5 The Z-graded R-algebra R[X1, X2, X3]/(X2
1 + X

2
2 + X

2
3 ), where the generators

xi get degree one, is graded-factorial and defines an exceptional curve X, which is commutative

and homogeneous and has a tilting bundle whose endomorphism ring is the tame bimodule algebra

Λ =
�

R H

0 H

�
.

Moreover, each simple sheaf has endomorphism ring C.

Proof. We fix a line bundle L on X. By graded factoriality any line bundle has the form L(n)
for some integer n, moreover the Auslander-Reiten translation is given by the grading shift F �→

F (−1). This implies that the middle term of the almost-split sequence 0 → L → A → L(1) → 0
is indecomposable. It follows that L⊕A is a tilting bundle with the required properties. �

The following relates the study of coh(X) to the classification of real subspaces of a quaternion
vector space (see [15]).

Corollary 7.6 The category coh(X) is equivalent to H(Λ), and R as a graded algebra is isomor-

phic to the preprojective algebra Π(Λ, P ), where P is a projective Λ-module of rank one. �

7.4 Factoriality derived from representation theory

It is remarkable that classification results from the representation theory of finite dimensional
algebras allow to decide on the factoriality of certain complete local rings. We start with a regular
local ring R. An R-algebra S, accordingly an S-module M , is called Cohen-Macaulay (CM for
short) if it is finitely generated free as a module over R. We denote by CM(S) the category of
Cohen-Macaulay modules. If R is additionally complete, a theorem of Auslander [3] states that S

is an isolated singularity if and only if CM(S) has almost-split sequences. Here, being an isolated
singularity means that each localization of S with respect to any non-maximal prime ideal yields
a regular local ring. It is straightforward to define graded analogues of these notions.

Starting with a Z-graded CM-algebra S such that completion Ŝ is an isolated singularity,
Auslander and Reiten have shown [4] that under mild restrictions on S the completion functor
CMZ(S) → CM(Ŝ), M �→ M̂ , preserves indecomposability and almost-split sequences. Moreover,
two indecomposable graded CM-modules X, Y do have isomorphic completions if and only if X

and Y agree up to a degree-shift, i.e. Y = X(n) for some integer n. Further, the completion Ŝ is
CM-finite, i.e. CM(Ŝ) has only finitely many isomorphism classes of indecomposable objects, if and
only if S is graded CM-finite, i.e. CMZ(S) has only finitely many shift-classes of indecomposable
objects. Moreover, in this case the completion functor is dense, i.e. surjective on isomorphism
classes.

Theorem 7.7 Each of the isolated surface singularities

1. k[[X, Y, Z]]/(X2 + Y
3 + Z

5), where k is a field,

2. R[[X, Y, Z]]/(X2 + Y
2 + Z

2)

is a factorial domain.
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Proof. Assertion 1 is, for the base field of complex numbers, due to Mumford [46] and to
Scheja [56] for the case of an algebraically closed base field of any characteristic. A representation
theoretic proof is given below. The line of the argument is the same in both cases.

The path algebra (over k) of the extended Dynkin quiver E8 has only finitely many preprojective
Auslander-Reiten orbits. By means of ([22], Theorem 8.6), see also Example 7.1, this implies that
the Z-graded algebra R = k[X, Y, Z]/(X2 +Y

3 +Z
5), with the grading specified by deg (x, y, z) =

(15, 10, 6) has up to grading shift only a finite number of graded Cohen Macaulay modules, i.e. is
graded CM-finite. Since, R is graded factorial, each graded Cohen-Macaulay module over R has
the form R(n) for some integer n.

By Auslander and Reiten’s completion theorem the completion functor is dense; in particular
each rank one CM-module L over R̂ is of the form M̂ , where M is a graded CM-module over R

of rank one. By graded factoriality of R, the module M has the form M = R(n) for some integer
n, therefore L ∼= R̂. By a standard argument, this implies that R̂ is factorial. The argument is
similar with respect to the second algebra. �

7.5 Completion of Cohen-Macaulay modules

Quite some time ago Auslander has raised the question, whether the completion functor is always
dense. The answer is no:

Theorem 7.8 For the algebra S = C[X, Y, Z]/(X2 +Y
3 +Z

7), graded by deg (x, y, z) = (21, 14, 6)
the following holds:

1. The surface singularity Ŝ = C[[X, Y, Z]]/(X2 + Y
3 + Z

7) is not factorial.

2. The completion functor CMZ(S) → CM(Ŝ), M �→ M̂ is not dense.

Proof. S as a graded algebra equals the coordinate algebra of the weighted projective line X

over C of weight type (2, 3, 7). The curve X has a wild classification problem for its category vec(X)
of vector bundles [40]. Since the category CMZ(S) of graded CM-modules and the category vec(X)
of vector bundles over X are equivalent, with the shift X �→ X(1) for CMZ(S) corresponding to
the Auslander-Reiten translation for vec(X) [22], it follows from the properties of the completion
functor that Ŝ has infinite CM-type and hence, in view of Theorem 7.7, is not isomorphic to the
algebra R = C[[X, Y, Z]]/(X2 + Y

3 + Z
5). A result of Brieskorn [12] (see [42] for an extension

to algebraically closed base fields of characteristic different from 2, 3 or 5) states that R is the
only complete local two-dimensional factorial algebra with residue class field C, and thus Ŝ is not
factorial. Hence there exists a rank one CM-module M over Ŝ which is not isomorphic to Ŝ. But
for the weight type (2, 3, 7) all line bundles over X lie in the same Auslander-Reiten orbit [40],
hence under completion are all mapped to Ŝ. Therefore, M is not in the image of the completion
functor. �

We refer to [59] for a different relationship between CM-modules and representation theory.

7.6 Nonisomorphic derived-equivalent curves

We now discuss an interesting weighted variant of the real exceptional curve treated in Section
7.3. Let H be the rank-one abelian group on generators �x1, �x2, �x3 with relations 2�x1 = 2�x2 = �x3.

Example 7.9 (Kussin, 1996) The R-algebra R[X1, X2, X3]/(X4
1+X

4
2+X

2
3 ), H-graded by deg(xi) =

�xi, defines an exceptional non-commutative curve X of genus one having a tilting bundle, such that

the following holds.

1. There exist tilting bundles T1, T2 whose endomorphism algebras Λ1, Λ2 are canonical algebras

in the sense of [52] with underlying bimodules of type (1, 4) and (2, 2) respectively.
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2. There exists a second non-commutative exceptional curve Y of genus one such that coh(X)
and coh(Y) are not equivalent but such their derived categories are.

Moreover, each simple sheaf on X has endomorphism ring C whereas Y has simple sheaves with

endomorphism rings R, C and H, respectively.

It is therefore not always possible to reconstruct the points of an exceptional curve X from its
derived category Db(coh(X)). By contrast, if X is an exceptional curve of genus different from one,
it is easy to recover coh(X) from Db(coh(X)). The example sheds some light on recent work of A.
Bondal and D. Orlov [10], who reconstruct the the variety X from its derived category of coherent
sheaves for certain classes of (commutative) spaces.

The species of Λ1, Λ2, in particular the underlying bimodules RHH and CC⊕ CC where the bar
indicates a right C-action by conjugation, are depicted below. We do not give the relations.

Λ1 : C Λ2 :
C

�
H

�

R
H
−→ H resp.

C

�
H

�

C

R

C

�
C

�

C
C⊕C̄
−→ C

H

�
H

�

H

7.7 Infinite dimensional modules

We will be very brief here. Let H be the category of coherent sheaves over an exceptional curve X,
and let T be any tilting sheaf and Λ = End(T ). By tilting theory, the functor Hom(T,−) yields in
particular a full embedding from the full subcategory of injective sheaves in �H into Mod(Λ). The
indecomposable injective (quasi-coherent) sheaves fall in two classes

1. the torsion sheaves, coinciding with the injective envelopes of simple sheaves;

2. a single torsion-free sheaf isomorphic to the injective envelope of any line bundle.

For the special situation where Λ is tame hereditary, the quasicoherent sheaves of type 1 (resp.
type 2) yield by application of Hom(T ,−) the Prüfer modules (resp. the indecomposable torsion-
free divisible or generic Λ-module) from [50]. For the case of a tubular algebra, corresponding to
genus one, we refer to [37].

7.8 Curve attached to a wild hereditary algebra

Assume that Λ is a wild hereditary algebra, for instance the path algebra of the wild quiver (t ≥ 5)

�∆ :
◦ · · · ◦

x2

�

xt−1

�

◦
x1
−→ •

xt
←− ◦

whose classification problem for indecomposable representations is equivalent to classify the po-
sition of t subspaces in a vectorspace. The preprojective component of Λ in terms of generators
and relations looks as follows

◦ ◦ ◦
x1

�

y1

�
x1

�

y1

�
x1

�

y1

� · · ·

•
x2
−→ ◦

y2
−→ •

x2
−→ ◦

y2
−→ •

x2
−→ ◦

y2
−→ • · · ·

xt

�
...

yt

�
xt

�
...

yt

�
xt

�
...

yt

� · · ·

◦ ◦ ◦
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where
�

t

i=1 yixi = 0 and xiyi = 0 for i = 1, . . . , t.
The characteristic polynomial of the Coxeter transformation Φ is (T +1)t−1

·(T 2−(t−2)T +1),
so for t ≥ 5 the spectral radius ρ of Φ is > 1. Note that x1, . . . , xt are elements of the path algebra
Λ = k[�∆] which forms the zero component of the preprojective algebra Π = Π(Λ) given as
Π = Λ�y1, . . . , yt�, where

�
t

i=1 yixi = 0, xiyi = 0 for i = 1, . . . , t and deg(yi) = 1. In particular Π
is a finitely presented k-algebra.

In accordance with [17, 48] we get for the preprojective algebra Π of any connected wild
hereditary algebra

lim
n→∞

dimkΠn

ρn
> 0,

hence Π has infinite Gelfand-Kirillov dimension. In particular Π does not satisfy a polynomial
identity, and also is not noetherian [6]. It is further shown in [61] that the minimal spectral radius
(=growth number) of any wild hereditary algebra is given by the largest real root of T

10 + T
9 −

T
7 − T

6 − T
5 − T

4 − T
3 + T + 1 which is about 1.176.

It follows from [33] that the quotient category

H =
modZ(Π)
modZ

0 (Π)

satisfies all requirements for an exceptional curve from Section 2.5, except noetherianness. More-
over H has a tilting object with endomorphism algebra Λ, which implies that

H ∼= H(Λ) = I(Λ)[−1] ∨ P(Λ) ∨R(Λ),

where P(Λ), R(Λ), I(Λ) denotes the subcategory of preprojective, regular and injective Λ-modules,
respectively. Further H has no simple and therefore no non-zero noetherian or artinian object.
We note that abelianness of H(Λ) can alternatively be derived from [26]. Note that it is open
whether H or �H can be obtained by gluing from module categories.

It is tempting to view H as a candidate for a category of “coherent sheaves on a non-noetherian
exceptional curve” X. One could think of its geometric meaning to parametrize the regular com-
ponents of mod(Λ) which would relate to work of Kerner [31] on the regular components of wild
hereditary algebras. But this topic needs further investigation.
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