Always k will denote a field. I will frequently write x_0, \ldots, x_n for a system of homogeneous coordinates on \mathbb{P}^n and write $S = k[x_0, \ldots, x_n]$ for the associated polynomial ring.

(1) Let $R = k[x_1, \ldots, x_n]$ be the polynomial ring. If I is an ideal in R show that R/I has finite length if and only if it has finite dimension.

(2) Let S and T be multiplicatively closed sets in the rings A and R respectively, and let $\theta : A \to R$ be a ring homomorphism such that $\theta(S) \subset T$. Show that θ extends to a homomorphism $A[S^{-1}] \to R[T^{-1}]$.

(3) Let S be a multiplicatively closed set in R and T its image in R/I where $I = \{ a \in R \mid as = 0 \text{ for some } s \in S \}$. Show that the natural map $R[S^{-1}] \to (R/I)[T^{-1}]$ is an isomorphism.

(4) Let S be a multiplicatively closed set in R and suppose that every element of S is a unit in R. Show that the map $R \to R[S^{-1}]$ is an isomorphism.

(5) Suppose I and J are ideals in a ring R. Give an example to show that $I \cap J = 0 \neq \sqrt{I} \cap \sqrt{J} = 0$. Show that if $I + J = R$ and $I \cap J = 0$ then $\sqrt{I} \cap \sqrt{J} = 0$. Hence show that if $R = I \oplus J$, then $R = \sqrt{I} \oplus \sqrt{J}$.

(6) Let C and D be degree two curves in \mathbb{P}^2. Show that their scheme theoretic image can not be contained in line.

(7) Let \mathbb{Z}_2 act on $\mathbb{C}^2 \times \mathbb{C}^2$ by having the non-identity element σ act by $\sigma(p, q) = (q, p)$. Thus \mathbb{Z}_2 acts on $R = \mathcal{O}(\mathbb{C}^2 \times \mathbb{C}^2)$ by automorphisms. Determine the ring of invariants $R^\mathbb{Z}_2 := \{ f \in R \mid f^\sigma = f \}$. You might try to do this by placing a grading on R such that each homogenous component R_n is finite dimensional and stable under \mathbb{Z}_2. If you make the right choice it should not be hard to compute $R^\mathbb{Z}_2$. Now write $R = S/I$ where I is an ideal in a polynomial ring S and find a set of generators for I.

How will you show that I is the whole kernel of the map $S \to R$? One way to do this is to use Hilbert series. If V is a graded vector space such that $\dim V_n < \infty$ for all n and $V_n = 0$ for $n \ll 0$ its Hilbert series is the formal Laurent series

$$H_V(t) := \sum (\dim V_n) t^n.$$

If $0 \to U \to V \to W \to 0$ is an exact sequence of graded vector spaces in which the arrows preserve degree then

$$H_V(t) = H_U(t) + H_W(t)$$

so, in particular, if S is a graded k-algebra and $f \in S_n$ is a regular element then $H_{S/fS}(t) = (1 - t^n)H_S(t)$. Also, a surjective degree-preserving map $V \to W$ is an isomorphism if and only if $H_V(t) = H_W(t)$.

Finally, show that $\text{Spec} \ R$ is singular (using the Jacobian criterion perhaps). What is the singular locus of $(\mathbb{C}^2 \times \mathbb{C}^2)/\mathbb{Z}_2$?

(8) Show that the localization $A[S^{-1}] = 0$ if and only if $0 \in S$.

2 HOMEWORK

(9) Let $A = k[x_1, \ldots, x_n]$ and $S = k[x_0, \ldots, x_n]$. Give S its standard grading, $\deg x_i = 1$ for all i. View S as the homogeneous coordinate ring of \mathbb{P}^n and A as the coordinate ring of the copy of \mathbb{A}^n that consists of the points $(1, a_1, \ldots, a_n) \in \mathbb{P}^n$. Give both \mathbb{A}^n and \mathbb{P}^n their Zariski topologies. Show that the Zariski topology on \mathbb{A}^n is the restriction of the Zariski topology on \mathbb{P}^n. If J is a graded ideal in S and $V(J)$ its zero locus in \mathbb{P}^n, what is “the” ideal I in A for which $V(I) = V(J) \cap \mathbb{A}^n$?

Consider the homogenization map

$$A \to S_{\text{homog}}, \quad f \mapsto f^* := x_0^{\deg f} f(x_1/x_0, \ldots, x_n/x_0).$$

If I is an ideal in A, define $I^* := \{ f^* \mid f \in I \}$. Show that

(a) I^* is a graded ideal in S by proving the more general result that an ideal generated by homogeneous elements is graded;

(b) $V(I^*)$ is the closure in \mathbb{P}^n of $V(I)$, the zero locus of I in \mathbb{A}^n.

(10) Give either a proof or a counterexample to the following statement: if I is a homogeneous ideal in S and $X \subset \mathbb{P}^n$ its zero locus, then the minimal primes over I are homogeneous and their zero loci are the irreducible components of X.

(11) Let X and Y be subvarieties of \mathbb{P}^n cut out by the homogeneous ideals I and J respectively. Suppose that $X \cap Y$ does not meet the hyperplane at infinity, $x_0 = 0$. So we can think of X and Y as subvarieties of $\mathbb{A}^n = \mathbb{P}^n - \{ x_0 = 0 \}$. Determine their scheme-theoretic intersection in terms of I and J. Does this result suggest a definition of a projective scheme? Does it suggest a way to define the scheme-theoretic intersection of two projective varieties that do not involve using the affine definition?

(12) Suppose that I and J are homogeneous ideals in S. Find an algebraic condition on I and J that is equivalent to the condition that the projective varieties $V(I)$ and $V(J)$ are equal. Hint: Look first at when $V(I) = \emptyset$ and also do the case $I \subset J$ first. Is there a largest ideal J such that $V(I) = V(J)$? If so, what is J in terms of I?

(13) Let k be an algebraically closed field and R a finitely generated commutative k-algebra. Show there is no k-algebra homomorphism $\theta : k[x, y] \to R$ such that the induced map $\text{Max } R \to \text{Max } k[x, y]$ between the sets of maximal ideals sends $\text{Max } R$ homeomorphically onto $\text{Max } (k[x, y]) - \{ (x, y) \}$. This shows that $\mathbb{A}^2 - \{ 0 \}$ is not an affine scheme.

(14) Let $S = k[x_0, \ldots, x_n]$ be the homogeneous coordinate ring of \mathbb{P}^n. Suppose that $I \subset J$ are homogeneous ideals in S. Find an algebraic condition on I and J that is equivalent to the condition that the natural morphism $\text{Proj } (S/J) \to \text{Proj } (S/I)$ is an isomorphism. In other words, find conditions that are equivalent to the condition that the maps

$$S/I[x_i^{-1}]_0 \to S/J[x_i^{-1}]_0$$

are isomorphisms for $i = 0, \ldots, x_n$.

(15) Let I and J be graded ideals in a graded ring S. Assume $S_0 = k$ and S is generated by S_1 as a k-algebra. Let $z \in S_1$ and define $R = S[z^{-1}]_0$. Define $I_z := I[z^{-1}]_0$ and J_z similarly. Either give proofs or counter-examples to the following statements: $I_z + J_z = (I+J)_z$, $I_z J_z = (IJ)_z$, $I_z \cap J_z = (I \cap J)_z$.

(16) Now let \(z, S, \) and \(R \) be as in the previous question and define \(R_{\leq n} := S_nz^{-n} \).

If \(f \in R_{\leq n} - R_{\leq n-1} \) let \(f^* \in S_n \) be the unique element such that \(f = f^*z^{-n} \).

Let \(I \) and \(J \) be ideals in \(R \) and define \(I^* \) to be the ideal generated by \(\{ f^* \mid f \in I \} \). Either give proofs of, or counter-examples to, the following statements: \(I^* + J^* = (I + J)^*, I^*J^* = (IJ)^*, I^* \cap J^* = (I \cap J)^* \).

(17) Let \(k \) be an algebraically closed field and \(k[x, y] \) the polynomial ring in 2 variables. Let \(f \) be an irreducible polynomial, \(C \) the curve in \(\mathbb{A}^2 \) it cuts out, \(p \in C \), and \(\mathfrak{m}_p \) the maximal ideal in \(\mathcal{O}(C) \) vanishing at \(p \).

Terminology. We call \(p \) a simple point of \(C \) if either

\[
\frac{\partial f}{\partial x}(p) \neq 0 \quad \text{or} \quad \frac{\partial f}{\partial y}(p) \neq 0.
\]

If \(p \) is not a simple point it is called a multiple point and its multiplicity is defined as the minimal \(n \) such that \(f \in \mathfrak{m}_p^n \). We write \(m_p(C) \) for the multiplicity of \(p \in C \).

Thus \(p \) is a singular point of \(C \) if and only if \(m_p(C) \geq 2 \).

(a) Show that \(p \) is a simple point if and only if \(\dim_k(\mathfrak{m}_p/\mathfrak{m}_p^2) = 1 \). Hint: expand \(f \) in a Taylor series around \(p \). It might make the notation simpler to assume that \(p \) is chosen so that \(p = (0, 0) \).

(b) How can the Taylor series expansion of \(f \) at \(p \) be used to compute \(m_p(C) \)? Is there a more algebraic way of saying this if we choose coordinates such that \(p = (0, 0) \)?

(18) (Continuation of the previous exercise.) Let \(L \) be a line in \(\mathbb{A}^2 \) passing through \(p \). Suppose that \(p = (\alpha, \beta) \) is a simple point of \(C \). Show that \(\text{I}(L, C, p) > 1 \) if and only if \(L \) is the line given by

\[
\frac{\partial f}{\partial x}(p)(x - \alpha) + \frac{\partial f}{\partial y}(p)(y - \beta) = 0.
\]

In other words, the tangent line to \(C \) at \(p \) is given by this equation.

(19) (Continuation of the previous exercises.) Show for every line \(L \) through \(p \) that \(\text{I}(C, L, p) \geq m_p(C) \).

(20) (Continuation of the previous exercises.) Show for every other curve \(D \) through \(p \) that \(\text{I}(C, D, p) \geq m_p(C)m_p(D) \).

(21) Let \(C \subset \mathbb{P}^2 \) be the zero locus of a positive degree irreducible homogeneous polynomial \(F \in k[X, Y, Z] \). Show that \(p \) is a simple point of \(C \) if and only if at least one of the partial derivatives of \(F \) does not vanish at \(p \), and in that case the line

\[
\frac{\partial F}{\partial X}(p)X + \frac{\partial F}{\partial Y}(p)Y + \frac{\partial F}{\partial Z}(p)Z = 0
\]

is the tangent line to \(C \) at \(p \).

(22) (\(\text{char} \ k = 0 \)) This is a rather open-ended question. Let \(f \in k[t] \). There is a simple criterion for whether or not \(f \) has a multiple zero: it has no multiple zeroes if and only if \(\gcd\{f, f'\} = 1 \). Is there a similar simple criterion for whether or not a form \(F \in k[x, y] \) has a multiple zero on \(\mathbb{P}^1 \). You might need to think about (i) the relation between \(\gcd\{F, G\} \) and \(\gcd\{F_*, G_*\} \); (ii) the relation between derivatives of \(F \) with respect to \(x \) and \(y \) and derivatives of \(f_* \) with respect to \(t \) where \(t \) is a ratio of two linear forms.