Chapter 1

Modules

Every ring can be viewed as a ring of operators if we slightly weaken the re-
quirement that it act as linear operators on a vector space. Any ring can be
viewed as operators on an abelian group in many ways; the abelian group on
which the ring acts is called a module over that ring.

1.1 Definitions and examples

If (M, +) is an abelian group then the set of all group homomorphisms M — M
can be made into a ring by defining

(¥ +0)(v) :== ¢ (v) +6(v),

and
Y =1 ob.

We denote this ring by Endz M. Elements in this ring act on M; they are
operators M — M. Endz M is analogous to Endy, V', the ring of linear operators
on a vector space.

Now, if p : R — Endz M is a ring homomorphism we can think of the
elements of R as acting on M through p. That is, we can define

r.m = p(r)(m)

for r € R and m € M. The rule (r,m) — r.m is a function R x M — M.
Because p is a ring homomorphism the following properties hold:

1. r.(s.m) = (rs).m;

2. 1.m =m;

3. (r£s).m=rm=s.m;
4. r.(m£tn)=rmtrn
5. 0.m = 0;
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6. 1.0 = 0;

Compare these properties to the defining properties of vector space over a field
k which are expressed in terms of a map k x V — V.

A left module over a ring R is an abelian group (M, +) together with an
action of R on M satisfying conditions (1)—(6) above.

Example 1.1

If k£ is a field then a k-module is the same thing as a k-vector space.

Of course, there are right modules too.

Every ring R can be considered as both a left and as a right module over
itself: the left action of r € R on x € R is given by r.z = rz, the product
obtained by using the multiplication in R. To distinguish these two modules we
sometimes denote them by rR and Rg.

Definition 1.2 Let M and N be left R-modules. An R-module homomorphism
f: M — N is a group homomorphism such that

f(rm) =r.f(m)

for all r € R and m € M. The set of all R-module homomorphisms from M to
N is denoted by Hompg (M, N).

If f is bijective, then its inverse f~! is also an R-module homomorphism.
In this case we say that f is an isomorphism and that M and N are isomorphic
R-modules; we denote this by M = N.

A homomorphism f: M — M is called an endomorphism of M. If f is also
an isomorphism from M to itself it is called an automorphism of M. ¢

Exercises. 1. If f; and f, are R-module homomorphisms M — N, sois f;+ fo
defined by (f1 + f2)(m) := fi(m) + f2(m). In this way, Homg(M, N) becomes
an abelian group with identity element the zero map defined by 0(m) = 0 for
allme M.

2. f f: M - N and g : L - M are R-module homomorphisms, so is
fg: L — N. Composition gives a homomorphism of abelian groups

Homp(M, N) x Homp(L, M) — Homg(L, N).

3. Let M be a left R-module. Show that the action of r € R on M is
a homomorphism of abelian groups p, : M — M. Hence show that the map
p: R — Endz M that sends r to p, is a ring homomorphism. Conversely, show
that if M is an abelian group and p : R — Endz M is a ring homomorphism,
then M becomes a left R-module if we define

r.m = p(r)(m).

Example 1.3 If M is a left R-module. The set of all endomorphisms of M is
denoted by Endr M. It is a ring with multiplication given by composition of
maps, and addition given by pointwise addition, i.e., the product 6% is the map

m — 0(yp(m)). %
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Exercise. If R is commutative and M is an R-module, show that the map
® : R — Endgr M defined by ®(r)(m) = rm for r € R and m € M is a ring
homomorphism. Further, show that the image of ® is contained in the center
of Endgr M.

What happens if R is not commutative?

1.2 Submodules and quotient modules.

Definition 2.1 A subgroup N of a left R-module M is a submodule if it is closed
under the action of R, i.e., if rm € N for all m € N and r € R. Of course, M
and 0 are submodules of M. O

The submodules of R, viewed as a left R-module, are its left ideals.

Definition 2.2 Let N be a submodule of M. The quotient module M /N is defined
as follows: as an abelian group M/N is the quotient group M /N and the action
ofr € Ron[m+ N] € M/N is defined by

r.m + N] =[rm + N].
0

The construction and verification of the module axioms is analogous to the
construction and verification of the quotient vector space axioms.

The natural map 7 : M — M/N, m — [m + N] is a homomorphism of left
R-modules. Its kernel is V.

There is a bijection between the submodules of M/N and the submodules
of M that contain N; if N C N' C M is a submodule of M, then N'/N is a
submodule of M /N, and also

M/N
! ~
MIN' = I

Proposition 2.3 Let f: M — N be a homomorphism of R-modules.
1. ker f is a submodule of M and im f is a submodule of N.
2. im f = M/ker f.

Proof. (1) The reader should check this.

(2) Write K = ker f. Define g : M/ker f — im f by g([m + K]) = f(m).
This is well-defined because if [m; + K] = [ms + K], then m; — my € K,
so f(mi — mg) = 0, whence f(m1) = f(mz). It is easy to check that g is
an R-module homomorphism because f is. It is obviously surjective. And it
is injective because if g([m + K]) = 0, then f(m) = 0, whence m € K and
[m + K] = 0. Hence g is an isomorphism. O

Exercises. In the following exercises M denotes a left R-module.
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1. Show there is a bijection between the submodules of M that contain N
and the submodules of M /N, the bijection being K +— K/N.

2. Show that an intersection and sum of submodules is again a submodule.
The sum of two submodules L and N is defined to be

L+N:={{+n|leL,ne N}

3. Some people make the mistake of thinking that if M; and M, are iso-
morphic modules having isomorphic submodules N; and Nj, then the quotients
M; /Ny and M5 /N> are isomorphic. Give an example to show this is not always
true.

If M is a left R-module and m € M, then the set of all multiples of m,
Rm = {rm | r € R}, is a submodule of M. It is the analogue of a principal
ideal in a commutative ring. We call Rm the submodule of M generated by m.

Definition 2.4 If M = Rm for some m € M, we say that M is cyclic. O

For example, gR is a cyclic module because R = R.1. If I is any left ideal,
then R/I is cyclic because r.[1 + I| = [r + I] for every r € R. The next result
shows that, up to isomorphism, these are all the cyclic modules.

Lemma 2.5 If M is cyclic, then M = R/I for some left ideal I of R.

Proof. If M = Rm, define ¢ : R = M by ¢(r) = rm. Then 4 is a surjective
homomorphism of left R-modules. Its kernel is a left submodule of R, hence a
left ideal, so the result follows from Proposition 2.3. d

Notice that the cyclic groups are precisely the cyclic Z-modules.

Example 2.6 Let V be the k-vector space with basis ey, ..., e, and make V a
k[z]-module by making x act as the matrix

00 --- 001
10 --- 000
01 .--- 00

00 --- 100
00 --- 010

Then z.e; =ejq1 for 1 < j <n—1 and z.v, =e1, so V = Re; for every j; in
particular, V is a cyclic R-module. O

Exercises. 1. Show that the module V in the previous example is generated
by e1 + ...+ e,. How does the submodule structure of V' depend on the field k?
2. The space V = k? of column vectors is a left module over the ring

= 2)

a,ﬂ,vek}
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of upper triangular 2 x 2 matrices over the field k. Write

ce () i ().

Show that ke; is an R-submodule of V' but ke is not. Show that the R-modules
ke; and V/ke; are not isomorphic. Show that V is not isomorphic to the direct
sum of these two modules (after you have looked at definition of the direct sum
below).

Many of the basic properties that you are already familiar with in the context
of groups and/or vector spaces, extend to modules.

Lemma 2.7 (The second isomorphism theorem) If A and B are submod-
ules of an R-module M, then

A+B _ A
B ~ AnB’

Lemma 2.8 (The modular law) If A, B, and C, are submodules of M and
B C A, then
AN(B+C)=B+AnC.
1.3 Annihilators
The annihilator of a left R-module M is

AnnM :={r e R|rm =0 for all m € M}.

This is a two-sided ideal of R.
If I is an ideal of R and M a left R-module, we write

(- um

i=1

IM :

a; € I, m; € M}
= the submodule generated by {am |a € I,m € M}.

If IM = 0, we say that I annihilates M. In that case, we can make M and
R/I-module by defining

[r + Il.m = rm.

The fact that Im = 0 ensures that this is well-defined. We leave the reader to
check that the module axioms hold.

Exercises. In these exercises M denotes a left R-module.

1. If S is any subset of M define AnnS = {r € R|rs =0 for all s € S}.
Show that AnnS is a left ideal of R.

2. If S is a submodule of M, show that AnnS is a two-sided ideal of R.
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3. If I is a two-sided ideal of R that is contained in AnnM, show that M
can be made into an R/I-module by defining [r + I].m = rm. Check this action
is well-defined.

4. If I is a two-sided ideal of R, and M is an R/I-module, show that M can
be made into an R-module in a natural way, and show that as an R-module I
is contained in the annihilator of M.

5. Let I be a two-sided ideal of R. Show that IM := {3} rym; | r; € I,m; €
M} is a submodule of M, and that M/IM is an R/I-module via the action

[ + I).fm + IM] = [xm + IM].

The point is to show that his action is well-defined.

6. Let I be a left ideal of R and set M = R/I. Show that AnnM is
the largest two-sided ideal of R that is contained in I. In particular, if R is
commutative Ann(R/I) =1I.

7. If M and N are isomorphic R-modules, show that AnnM = AnnN.
Give an example to show that the converse is false.

8. Observe that a module M is cyclic if and only if there is a surjective
module homomorphism R — M, and hence if M is cyclic so is every quotient
M/N.

The result in Exercise 7 is very useful for deciding when two modules are
not isomorphic so we record it.

Proposition 3.1 Let M and N be modules such that AnnM # AnnN. Then
M % M.

1.4 Direct products and direct sums

If {M; | i € I} is a collection of left R-modules, their direct product [],.; M;
is the set of all tuples (m;);c; with m; € M; and the action of R defined by
r.(m;) = (r.m;). In other words, [[;c; M; as a set is the cartesian product of
the M;s with componentwise addition and R-action as described.

Their direct sum @;crM; is the subset of [];.; M; consisting of all tuples
(m;)ier in which only a finite number of the m; are non-zero. Check that this
is a submodule of [[;.; M;. When I is finite [[;c; M; = ®ic1M;.

Example 4.1 Let L and N be submodules of a module M. If LN N = 0, then
there is an isomorphism ¢ : L@® N — L + N, given by ¢({,n) = £ + n. Thus,
when L N N = 0 we sometimes denote their sum L+ N by L & N. O

We will often make use of the previous example, and write
M=L&N

when L and N are submodules of M such that M = L+ N and LN N = 0; for
example, see the statement of Corollary 10.7. Strictly speaking we should only
write M =2 L& N.
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We can extend this notion to sums of more than two submodules. Suppose
that L,,...,L, are submodules of a module M. Suppose further that M =
L1+ ...+ Ly; i.e., every element of M can be written as ¢; + ... + £, with
l; € L;. Claim: if the only way to write 0 = ¢y + ... + £, with £; € L; is by
taking 4y =...=¥¢, =0,then M 2 L; &...® L,. To prove this claim we first
note that there is a surjective R-module homomorphism

defined by ¥ (f1,...,4,) = €1+ ...+ £,. The condition on the uniqueness of the
representation of zero is equivalent to ¢ being injective, hence equivalent to ¥
being an isomorphism.

We again abuse notation by writing M = L4 & ... L, if Ly,...,L,, are
submodules of M such that M = L; + ...+ L,, and the only way to write zero
asasum 0 =4, +...+ £, with ¢; € L; is to take each ¢; to be zero.

Notice the similarity with linear independence in a vector space. If M =
Ly ®... % L,, then every element of M can be written in a unique way as
by + ...+ £, with £; € L;. Some authors say that such submodules L, ..., L,
are independent.

A submodule L of M is called a direct summand of M if there is a submodule
N such that L® N = M.

Lemma 4.2 A submodule L C M is a direct summand if and only if there is a
homomorphism 6 : M — L such that 0| = idy.

Proof. If L is a direct summand, say L® N = M, then define 6 by §({+n) = £
for £ € L and n € N. Conversely, if such 8 exists, take N = ker 6, and observe
that M = L& N. d

Lemma 4.3 Suppose that f : M — N and g: N — M are such that fg = idy.
Then

1. g is injective and f is surjective;
2. M =ker f ®im(g) and N = im(g).

Proof. (1) Clear.
(2) Let m € M and write m = gf(m)+(m—gf(m)); then m—gf(m) € ker f
so this shows that M = im(g) + ker f. If m € im(g) Nker f, then m = g(m/')
and 0 = f(m) = fg(m') =m' so m = g(m') = 0. Hence im(g) Nker f = 0.
Since g is injective it is an isomorphism from N onto its image. O

Since M = ker f ® im(g) = ker f & N, we often say in the context of the
previous lemma that N is a (direct) summand of M. What we really mean is
that M has a submodule that is isomorphic to N and a direct summand of M.
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1.5 Idempotents

The module theory of a ring that is a direct sum of other rings can be easily
expressed in terms of the module theory of the individual summands. Such
summands correspond to central idempotents.

Lemma 5.1 Let R be a ring.

1. Suppose I and J are left ideals such that R=1&® J, and write 1l = e+ f
withe € I and f € J. Then

(a) e=e*, f=[> ef =fe=0;
(b) I =Re and J = R(1 —e).

2. Conversely, if e € R is such that e = €%, then R = Re ® R(1 —e).

Proof. (1) We have e = e? + fe,s0 fe=e—e?2€INJ. But INJ =0, so we
deduce that e? = e and fe = 0. Similarly f2 = f and ef = 0.

Certainly, Re C I. If z € I, then x = 1.z = ex + (1 —e)z, so (1 —e)z =
z—ex€INJ,sox =ex. Thus I C Re, so I = Re.

(2) Certainly R = Re + R(1 —e¢). If ze = y(1 — ¢e) is in ReN R(1 — ¢), then
ze = ze? = y(1 — e)e = y(e — €2) = 0. Hence the intersection is zero, and R is
the direct sum of these two left ideals. O

Definition 5.2 An element e € R such that e = e is called an idempotent.

If e and f are idempotents such that ef = fe = 0, we say that e and f are
orthogonal idempotents.

A set {eyq,...,en} of pairwise orthognal idempotents is called a complete set
of idempotents if e; +---+e, = 1.

An idempotent e is primitive if it is not a sum of two non-zero orthogonal
idempotents. O

Thus, idempotents correspond to decompositions of R into a direct sum of
two left ideals. There is nothing special about left ideals here, and one easily
sees that idenmpotents also correspond to decompositions of R into a direct
sum of two right ideals.

Furthermore, if R is a direct sum of left ideals, say R =1 @ --- ® I,, we
may write 1 = e; + ...+ e, with e; € I;. Then e} = ¢; for all j and e;e; = 0 if
i # j. That is, {e1,...,e,} is a complete set of orthogonal idempotents.

Example 5.3 Let R = M, (k) be the ring of n x n matrices over a field k. Then
eii, the matrix with a 1 in the ii-position and zeroes elsewhere is an idempotent.

The left ideal Re;; consists of those matrices that are zero everywhere except
possibly in the " row. The right ideal e;; R consists of those matrices that are
zero everywhere except possibly in the i** column. The left ideal R(1 — e;;)
consists of those matrices that are zero in the i*® row.

Notice here that e;; is orthogonal to e;; if i # j. Hence {ei1,...,€enn} is a
complete set of primitive orthogonal idempotents. O
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If e is an idempotent, then eRe is a subring of R in which e is the identity
element.

Lemma 5.4 Let R be a ring.
1. Suppose that {e1,...,en} is a complete set of orthogonal idempotents. If

each e; is central, then
(a) ejRe; = Rej, and

(b) there is an isomorphism of rings R = Ry x---x R, where R; = e;Re;.
2. Conversely, if there is an isomorphism of rings R = Ry X --- X R,,, then

(a) each R; becomes a two sided ideal of R, and
(b) R; = Re; = ejRe; wheree; = (0,...,1,...,0) has the identity of R;
in the j** position and zeroes elsewhere, and

(c) {e1,...,en} is a complete set of orthogonal central idempotents.

Now we come to the module theory.

Lemma 5.5 Suppose R = Ry @ ---® Ry,. Sete; = (0,...,1,...,0) has the
identity of R; in the 7 position and zeroes elsewhere.

1. If My, ..., M, are modules for Ry,...,R, then M1 ® --- ® M, is an R-
module via

(riye-oyrn)(my,...omy) == (F1Map, . .., Ty

2. If M is an R-module, then M; := e;M is an R-submodule of M, and if
we view each M; as an Rj-module, then M = My @ --- @® M, as in (1).
R-submodule of M.

1.6 Simple Modules

The smallest non-zero modules are the simple modules. An important problem
in many branches of algebra is to classify and understand the structure of simple
modules.

Definition 6.1 A non-zero left R-module is simple if its only submodules are zero
and itself. O

Lemma 6.2 A non-zero map between two simple modules is either an isomor-
phism or zero.

Proof. Let f : M — N be a non-zero homomorphism between simple modules.
Then ker f and im f are submodules of M and N respectively. Since f # 0,
ker f # M and im f # 0. Since M and N are simple this forces ker f = 0 and
im f = N; i.e., f is injective and surjective, hence an isomorphism. a
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Definition 6.3 A division ring is a ring D such that every non-zero element of D
has an inverse. O

For example, a field is a division ring. Fields are the commutative division
rings.

Example 6.4 (The Quaternions.) The ring H of quaternions is the R-vector
space with basis 1,1, j, k and multiplication table given by

i=j2=k>=-1andij =k, jk=1, ki=j,

extended R-linearly.

To check that this really is a ring it is simplest to realize it as a subring of
M4 (R) in the following way. As an R-vector space H has a basis 1,4, 7, k. The
multiplication on H allows us to define a map

p:H = My(R)
by p(z) :=the matrix with respect to the basis {1, 4, j, k} representing the linear
transformation a — za. For example, since 1.1 = 4,44 =—1, . =k, 1.k = —j
we have

0 -1 0 O

: 1 0 0 O

PO=10 0 0 -1

0 0 1 0

One now checks that the images of 1,14, j, k span a 4-dimensional subspace of
M4(R) and that the products of these images are the same as the images of
their products in H. O

Lemma 6.5 (Schur’s Lemma) If M is a simple module over a ring R, then
Endgr M is a division ring.

Proof. Let f: M — M be a non-zero R-module map. Then ker f is a submod-
ule of M and is not equal to M, so is zero. Also, im f is a non-zero submodule
of M, sois equal to M. Thus f is both injective and surjective, so is an isomor-
phism. Hence Endg M contains f~!. g

Exercise. Consider the ring R of differential operators on k[z] when char k = 0.
Show that k[z] is a simple left R-module.

Example 6.6 1. Let k be a field. The simple k-modules are the 1-dimensional
vector spaces. They are all isomorphic to one another. So we often say that
there is a unique simple module, meaning that there is a unique simple module
up to isomorphism.

2. The simple Z-modules are the cyclic groups Z, with p prime.

3. The module &™ of n x 1 column vectors is a simple left M, (k)-module.
To see this, suppose that 0 # v € k™. If u € k™, then there is a matrix A such
that Av = u (we can change basis!), so M, (k).v = k™, whence k" is simple.
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Definition 6.7 A left ideal of R is maximal if it is not equal to R and the only
left ideals containing it are R and itself. O

Definition 6.8 Let M be an R-module. A submodule N of M is maximal if it is
not equal to M and the only submodules containing it are M and itself. O

Lemma 6.9 If M is a non-zero finitely generated R-module, then M has a
mazimal submodule.

Proof. Suppose that M = Rm; + ... + Rm,. By throwing away some of the
m;s and renumbering, we can assume that M # Rmj + ... + Rmy,_1. Hence
M := M/Rmi+...+Rmy_1 # 0, and it suffices to show that M has a maximal
submodule. However, M is cyclic, so M = R/I for some left ideal I # R and it
suffices to show that R has a maximal left ideal that contains I.

Let S := {left ideals J such that I C J and J # R}. The condition that J #
R is equivalent to the condition that 1 ¢ J. If J; C J; C --- is an ascending
chain of left ideals belonging to S, then J := UJ; is also in §. Hence, by Zorn’s
Lemma, S has maximal members. Pick one, say J. Then J is a maximal left
ideal of R that contains I. O

Warning. If M is not finitely generated it need not have a maximal sub-
module. For example, consider the Z-submodule M = {a2" | a,n € Z} C Q.
Notice that M is the union of the ascending chain

1 1 1
7 C 2ZC 4ZC SZC---.

If N is a submodule of M that is not equal to N, then N does not contain all
1/2", n > 0. So, choose n maximal such that 1/2" € N. Hence 1/2"t! # N,
and N' = N + 5457 is strictly larger than N. However, N’ # M because
1/2"*+2 is not contained in N’. Hence N is not a maximal submodule of M.

Perhaps this argument is clearer if one simply notes that the only proper
submodules of M are 5~ 7.

Proposition 6.10 If M is a simple left R-module, then M =2 R/I for some
mazximal left ideal 1.

Proof. Since a simple module is cyclic, M = R/I for some left ideal I. But the
submodules of M are in bijection with the left submodules of R (i.e., the left
ideals of R) that contain I. Hence M is simple if and only if I is maximal. O

Corollary 6.11 Over a commutative ring the set of isomorphism classes of
simple modules is in bijection with the set of mazximal ideals, the bijection being
given by

m+— R/m.
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Proof. In a commutative ring left ideals are the same things as two-sided ideals,
so the simple modules are R/m where m is a maximal ideal. If m; and m, are
distinct maximal ideals, then R/my; 2 R/my because isomorphic simples have
the same annihilator and m = Ann(R/m). O

Example 6.12 The simple modules over k[z] are in bijection with the monic
irreducible polynomials; if k is algebraically closed these are the monic polyno-
mials of degree one, z — a, a € k. Hence the simple modules are in bijection
with the elements of k. In that case, the simple modules are k[z]/(z — o); this
is a one-dimensional vector space where x acts like multiplication by a. Not
too interesting! Slightly more interesting is the two-dimensional simple module
R[z]/(z? + 1), which we can view as having an ordered basis {1,Z}, and the
action of x is given by the matrix
0 -1
(%)

with respect to this basis; notice that the square of this matrix is —1. The
subspace of M»(R) spanned by 1 and the above matrix is isomorphic to C. ¢

Exercise. Let f be a non-zero polynomial in k[z,y] when k is algebraically
closed, and let R = k[z,y]/(f). Show that the simple R-modules are in bi-
jection with the points in k2 that lie on the curve where f is zero, namely
C ={(a,B) | f(a, ) = 0}. This bijection is the start of algebraic geometry.

Proposition 6.13 If R is a ring containing an identity 1 # 0, then R has a
mazximal left ideal, and a mazimal two-sided ideal.

Proof. We use Zorn’s lemma. Let S be the set of (left) ideals not equal to
R. This set is non-empty because it contains {0}. Inclusion provides a partial
ordering on S. The union of an ascending sequence of elemnts in S again belongs
to S. Such a union provides an upper bound for the ascending sequence, so
Zorn’s Lemma ensures that S has maximal elements. O

Irreducible representations. Let G be a finite group and % a field. The
group algebra kG is, first, a k-vector space with basis {e, | g € G} and multipli-
cation defined by

€g€p 1= €gh
extended to a k-linear multiplication on kG. Then kG is a ring with identity
1 = e;. A simple kG-module is also called an irreducible representation of G.
The study and classification of such irreducible representations is a central part
of algebra. The answers are oftenb extremely beuatiful.

For example, consider CS,,, the group algebra of the symmetric group. The
complex irreducible representations of S,, are in bijection with the partitions of
n, denoted A F n. The dimension of the simple CS,,-module iM) corresponding
to A is equal to the number of Young tableaux of shape A. First, the Young
diagram D) associated to A = (A; > Ay > ...) is the diagram with \; boxes in
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the " row. A tableau is then obtained by putting the numbers 1,2,...,n in
the boxes so that each row increases going from left to right, and each column
increases going down.

1.7 Composition series

If M is a module and K C L C M are submodules, we call L/K a slice, or
subquotient, of M.

Definition 7.1 A sequence of submodules
0=MyCM;C---CM,=M

of amodule M is called a composition series if M;/M;_; issimplefori =1,...,n.
The slices M;/M;_; are called composition factors of M.

If M has such a composition series we say M has finite length and write
length(M) = n. 0

When speaking of the composition factors of a module care about the iso-
morphism classes of the simple slices and the number of times a particular
simple module occurs. We call this the multiplicity of the simple module in the
composition series. Thus the composition factors of M form a multi-set.

For example, the composition factors of Z4 are {{Z2,7Z52}}, but the compo-
sition factors of Zo are {{Z2}}.

The abelian groups Z4 and Zs X Z2 have the same composition factors,
namely Zo counted with multiplicity two in each case.

In general, a module of finite length may have many different composition
series, but we shall see that the composition factors are, up to isomorphism,
independent of the composition series. Thus we may speak of the composition
factors of M.

Example 7.2 If 0 # f € k[z], then we can write f as a product of irreducible
polynomials, say f = pr...pl. The slices of the series

Kzl = 1) D (p) D (@) DD @)D ®Mp2) D--- D (f)

are of the form (g)/(pig) = k[z]/(p;), and this is a simple module because p; is
irreducible. Hence the composition factors of k[z]/(f) are the k[z]/(p;) counted
with multiplicity n;. In particular, if & is algebraically closed there is a natural
bijection between the compoisition factors of k[z]/(f) counted with multiplicity
and the zeroes of f counted with multiplicity. O

In order to compare two composition series we introduce a more general
notion. A finite filtration of a module M is a sequence of submodules 0 = M, C
My C ... C M, = M. There is no requirement that M;/M;_; be simple; in
fact, we even allow it to be zero. We say that a filtration (M;,0 < i < n) is a
refinement of a filtration (M},0 < j < p) if every M; is equal to some M;.
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Proposition 7.3 Let F = (M;,0 <i < n) and F' = (M},0 < j < p) be finite
filtrations of a module M. Then there are refinements B of F and E' of I, and
a bijection between the mon-zero slices of B and the non-zero slices of B such
that each slice of E is isomorphic to the corresponding slice of E .

Proof. Define N;; := M; 1 + (M; N M}). Then
M;_1 = N;o CNjpo C...C N;p = M;,
so this is a refinement E of F. A typical slice of E is

M; 1+ (M;n MJ')

7-1
M;_1+ (M, n M;—l) ( )

Sz'j =

for a suitable ¢ and j.
There is an analogous filtration E' of F' slices

M! M; N M!
gt o Miza + (MO M) (7-2)

VM + (M N M)

There is a module homomorphism

M; 1+ (Mz n Mjl)
M;_1 + (Mz n M]"—l)

@:MiﬁMJ,-—>

given by ®(a) = a. Now ®(a) = 0 if and only if a = b+ ¢ with b € M;_; and
¢ € M;NM; ;. However, a and c are in Mj, so such b must belong to M; 1 NMj.
Hence ker ® = (M; 1 N M;) + (M; N M;_,). Thus

M; N Mj o M+ (M;NMj)

(Mioa N M)+ (M; N Mj_y) — Miq +(Min M}_y) v

Similarly,

M;n M} L MorQnnM)

(Mo NM)+ (MO M_)  M_ + (M nM) 9

Combining these two isomorphisms we see that S;; = S}, O

Theorem 7.4 The composition factors of a finite length module are well-defined,
i.e., they do not depend on the choice of composition series.

Proof. Let F and ' be composition series for M, and E and E' the refinements
of each constructed as in Proposition 7.3. It is clear that the non-zero slices of
E are exactly the composition factors for F. Similarly for E' and F'. The result
now follows from the conclusion of Proposition 7.3. O
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Corollary 7.5 Let M be a finite length module and N a submodule of M.
Then every composition factor of N, and every composition factor of M /N is a
composition factor of M.

Proof. Choose a composition series for M such that one of its terms is N. The
result follows. |

Corollary 7.6 Let R be a ring containing o field k in its center. Let M be a
left R-module such that dimy M < co. Then M has finite length.

Proof. We argue by induction on dimy M. If dimy M = 0, there is nothing
to do so suppose that dim; M > 1. Set My = 0 and let M; be a non-zero
submodule of M of smallest dimension. Then M; must be a simple module. We
may now apply the induction hypothesis to M/M;, thus obtaining a sequence
of submodules of the form My/M; C ... M, /M, = M/M; where My C M> C
...C M, = M are submodules of M. Since

M; . M;/M;

M~y M;_1/My’

this is a composition series for M. O

Corollary 7.7 Let R be a ring that contains a copy of a field k in its cen-
ter. If dimy R < oo, then R has only a finite number of simple modules up to
isomorphism.

Proof. By the previous result R has a composition series, say 0 = Ip C I; C
...C I, =R. Let {{S1,-..,Sn}} be the corresponding composition factors.
Let M be a simple R-module. Then M 2 R/J for some left ideal J. Now J
has a composition series, say 0 = Jo C J; C --- C J,,, = J, and we may extend
this to a composition series for R by setting Jp41 = R. Thus Jpq1/Jm =
R/J = M is a composition factor of R, so M is isomorphic to some S;. O

A look ahead. Let R be any ring. Let A be the free abelian group with
basis given by the isomorphism classes of the simple R-modules. There is a well-
defined map from the set of finite length R-modules to A, M — [M], defined
by

[M] == a1[S1] + - - - + an[Sh]

where Si,...,S5, are the distinct simple modules that occur as composition
factors of M and a; is the number of times that S; occurs as a composition
factor. This assignment has the property that if 0 - L - M — N — 0 is an
exact sequence of finite length R-modules, then [M] = [L] + [N].

This is the idea behind the Grothendieck group Ko (R).
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1.8 Semisimple rings and modules

Definition 8.1 A module is semisimple if it is the sum of its simple submodules.
A ring is semisimple if it is semisimple as a module over itself. ¢

‘Warning. We should really say that R is left semisimple if it the sum of its
simple left ideals, but we shall see below that R is semisimple as left R-module
if and only if it is semisimple as a right R-module.

Proposition 8.2 The following conditions on a module M are equivalent:
1. M is the sum of its simple submodules;
2. M is a direct sum of simple modules;

3. if N is a submodule of M there is a submodule L of M such that M =
LON.

Proof. a
If M =L@ N we call L a complement to N in M.

Lemma 8.3 Suppose that M is a semisimple module. Then so is every quo-
tient, and submodule of M.

Lemma 8.4 If R is (left) semisimple so is every left R-module.

Proof. If one has a collection M;, i € I, of semisimple modules, their direct
sum is semisimple too. This is clear if the sum is finite. However, even if the
sum is infinite then every element in @®;c;M; belongs to a finite direct sum of
various M;s, so belongs to a sum of simple submodules; thus the full direct sum
is semisimple.

The previous paragraph shows that every free left R-module is semisimple.
But every R-module is a quotient of a free module, so is semisimple too by
Lemma ?7?. O

Lemma 8.5 A semisimple ring is a finite direct sum of simple submodules.

Proof. Write R = ), ; M; as a sum of simple submodules. Then 1 =} m;,
and this is a finite sum so 1 belongs to the direct sum of only finitely many of
the M;s; hence R itself is contained in the sum of only a finite number of simple
submodules. The result follows. d

Lemma 8.6 Suppose that R is a semisimple ring, and write R=1 &---® I}
as a direct sum of left ideals, each of which is a simple R-module. Then every
simple R-module is isomorphic to some I;.
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Proof. Let M be a simple left R-module and let 0 # m € M. The map
m: R — M, n(xz) = xm is surjective. Hence, 7(I;) # 0 for some j. Since the
restriction of 7 to I; is a non-zero map between two simple modules it must be
an isomorphism. O

Matrix representations of module homomorphisms. Consider an R-
module homomorphism

fiM=M® &M, —N=N@--&N,.

Let a; : M; — M be the obvious inclusion and let w; : N — N; be the projection
vanishing on the summands Ny, for k # j. We define

fz'j ::ijfoa,-:Mz-—>N]-

and call this the ij-component of f with respect to the given decompositions.
Now let p; : M — M; and ¢; : N; — N be the obvious projection and
inclusion. Notice that

T T
idy =Y aipi,  piok =0k,  idy =D ¢im, bk = k.
i=1 j=1
It follows that

F=YY di0fijop:

i=1 j=1

If g : M; = Nj, then the ¢j-component of
pjogopi: M = N

is g and all other components of ¢;gp; are zero.
It follows that

Hompg(M, N) = @ Hompg(M;, N;).
More precisely,
Homp(M, N) = @ ¢; Homg(M;, N;) pi,
and the map
Hompg(M;, N;) — ¢; Homg(M;, Nj)pi, g+~ ¢pjogo0p;

is a bijection onto its image.
One should think of all the f;;s arranged into an r x s matrix, and write this

f=(fi);
if elements of M are written as row vectors, m = (my1,...,m,), then the matrix
f acts by right multiplication on this vector, and the product is exactly f(m)

as
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viewed again as a row vector corresponding to the decomposition N = Ny @
.- @ N;.
IfL=1L;&---® L, is a third module, then the composition

Homp(M, N) x Homg(L, M) — Homg(L, N)

is compatible with matrix multiplication. This is because matrix multiplication
is defined so as to make this true!

Lemma 8.7 Let Sy,...,S; be simple left R-modules that are pair-wise non-
isomorphic. Let M be a left R-module and define M; to be the sum of all
submodules of M that are isomorphic to S;. Then the sum My + ...+ M, is
direct.

Proof. We can argue by induction on ¢. The case ¢ = 1 is certainly true, so
supppose that My + ...+ M;_; is a direct sum. We must show that N:=M; N
(My+ ...+ M;_1) =0. Suppose N # 0. Because N is a submodule of M;, all
the composition factors of N are isomorphic to S;. But it then follows that S;
is a composition factor of M; + ...+ M; ;. This is absurd. O

If in the previous lemma M = M; @ ---® M; we call M; the S;-isotypic com-
ponent of M, and call this the decomposition of M into its isotypic components.

Theorem 8.8 Let R be a semisimple ring. Then there are division rings D1,. .., Dy
and positive integers ni,...,n; such that

R M, (D)®---® M,,(Dy).

Proof. If we view R as a right module over itself, there is a ring isomorphism
¥ : R — Endg(Rg) given by
U(r)= A\

where A, is the map “left multiply by r”, i.e., A\.(z) = rz. (Notice that ¥(rs) =
U(r)P¥(s); it is for this reason that we viewed R as a right module over itself;
if we had viewed R as a left module over itself, then Endg(R) would be anti-
isomorphic to R.)

Now, suppose that Si,...,S; are the distinct simple right R-modules up to
isomorphism. Define

Ry := the sum of all right ideals of R isomorphic to S;.

Since R is a sum of simple submodules, R = Ry + ...+ R;. By Lemma 8.7, this
is a direct sum.

Each R; is obviously a right ideal of R. It is also a left ideal: if I is a simple
right ideal of R and z € R, the map ¢ : I = R, ¢(a) = za, is a homomorphism of
right R-modules, so its image xI is either zero or isomorphic to I; in particular,
if I C R;, then zI C R; too.

O
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1.9 Finitely generated modules

If my,...,m, are elements of a module M, the submodule they generate is
defined to be the smallest submodule that contains them (this makes sense
because an intersection of submodules is again a submodule). It is equal to

Rmi+ ...+ Rmy :={rimi+...+rpymy, | r1,...,7 € R}.

If there is a finite set of elements in M such that M = Rmi + ...+ Rm, we

say that M is finitely generated. We also call {m;,...,m,} a set of generators
for M.
A left R-module M is finitely generated if there is a finite set of elements
my,...,my € M such that every element in M can be written in the form
rimi + -+ ramy (9-3)
for suitable elements ry,...,7, € R. In general, if my, ..., m, are any elements
of M we write Rmy + --- + Rm,, for the set of all elements of the form (9-3)
as ri,...,r, range over all possibilities. It is an easy exercise to check that

Rmq + ---+ Rm,, is a submodule of M.

For example, R is a finitely generated left (and right) R-module because
R = R.1; every element in R is a left multiple of 1! The reader should be
warned that a submodule of a finitely generated module need not be finitely
generated. For example, the ideal (z1,z2,...) of the infinite polynomial ring
k[z1,22,...] is not finitely generated.

In analogy with vector spaces we define the left R-module R™ to consist of
n-tuples (r1,...,7,) of elements from R with the action given by r.(r1,...,7) =
(rri,...,rrn). We call this the free left R-module of rank n. It is finitely gener-
ated, a generating set being given by the elements

er = (1,0,...,0),--- ,en = (0,0,...,1).

Because each element of R™ can be written in a unique way as rie; +---+rpén
we call {e1,...,e,} a basis for R™.

If N is a submodule of a finitely generated R-module M, then M/N is finitely
generated: if {my,...,m,} generate M, then M/N = Ry + - - - + R, where
m; = [m, + N]

Initially, we only need to consider modules that arise in the following way.

If R is a subring of a ring S, then S is both a left and a right R-module. The
multiplication of elements in S can be viewed as restricting to maps R x S — S
and Sx R — S giving S the structure of a left and a right R-module, respectively.

For example, every k-algebra is in the first place a k-vector space.

More generally, if 8 : R — S is a homomorphism of rings, then S becomes a
left and a right R-module by defining

r.s =0(r)s s.r=ab(r)
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for r € R and s € S. The module action is induced by the multiplication in S
and the fact that S is a ring implies that all the axioms for S to be an R-module
are satisfied.

Every left ideal of S is an S-submodule of g5, and hence is a left R-
submodule of S.

Lemma 9.1 If R C S C T be commutative rings. If if T is a finitely generated
S-module and S is a finitely generated R-module, then T is a finitely generated
R-module.

Proof. By hypothesis, S = Ra; + -+ + Ray, and T = Sby + - -+ + Sb,, so

m n

T= ZZRaibJ’,

i=1 j=1
whence the result. O

Let v : R — S be a homomorphism of commutative rings, and let m be a
maximal ideal of R. The image t(m) need not be an ideal of S, but it does
generate an ideal, say J. The composition

R—S—S/J

is aring homomorphism that sends m to zero. The kernel of this composition can
be no bigger than m, so we have an injective ring homomorphism R/m — S/.J.
If S is a finitely generated R-module, say S = Rs1 + - - - + Rsy,, then it follows
at once that S/J is a finitely generated R/m-module, generated by the images
of the s;s. but R/mis a field, so S/J is a finite-dimensional vector space over
R/m.

The following innocent looking result is one of the most frequently used
results in commutative algebra.

Lemma 9.2 (Nakayama’s Lemma) Let R be a commutative ring having a
unique mazximal ideal m. If M is finitely generated R-module such that mM = M
then M = 0.

Proof. It suffices to show that if M is a non-zero finitely genereated R-module,
then mM # M. Choose n minimal such that M is generated by n elements.
Modding out the submodule generated by n—1 of those elements gives a non-zero
cyclic quotient, say M = R/.J. Hence M has a quotient M /N that is isomorphic
to R/m. Thus m annihilates M /N, which implies that mM C N # M.

In fact, this proof shows that mM is contained in every maximal submodule
of M, and that M does have maximal submodules. O

Example 9.3 Nakayama’s lemma does required the finitely generated hypoth-
esis. To see this, consider the ring R = {a/2" | a € Z,n > 0} C Q}. Then



1.10. FREE MODULES 21

m = (2) is the unique maximal ideal of R. Because R is a subring of Q, multi-
plication gives Q the structure of an R-module. However, mQ = Q.

You might try to find a direct proof that Q is not a finitely generated R-
module. You can also try to show that Q is not a finitely generated Z-module.
Does Q have a maximal Z-submodule? Equivalently, does Q have a simple
quotient Z-module? O

1.10 Free modules

Free modules are (in some respects) the modules most like vector spaces. They
have a basis, and elements of a free module can be expressed in a unique way
as linear combinations of the basis elements with coefficients in the ring. Every
module is a quotient of a free module (possibly in many different ways), and one
can use this to get insight into arbitrary modules. For example, every abelian
group can be expressed as M /N where M and N are free abelian groups.

Definition 10.1 A subset B of a left R-module M is linearly dependent over R if
there exist elements ry,...,r, € R, not all zero, and elements my,...,m, € B
such that rymq + ... + r,m, = 0. If B is not linearly dependent we say it is
linearly independent. We call B a basis for M if B is linearly independent and
M = RB, i.e., if every element of M is an R-linear combination of elements of
B. If an R-module has a basis it is called a free module, and the cardinality of
that basis is called the rank of the module. O

If M is generated by elements {m; | i € I}, then any R-module homomor-
phism 9 : M — N is completely determined by what it does to the m;s. That
is, once we know 1(m;), we know 1 because if m € M, then m = >, ; rim;,
for some elements r; € R, so

P(m) = Z Y(ri)m;
i€l

because ¢ is an R-module homomorphism. Notice that in the expression ), rim;
only a finite number of the r;s are non-zero, else the sum cannot make sense. If
F is a free R-module with basis B = {e; | i € I}, then every element of F' can
be expressed in a unique way as

E T'i€i,
iel
for some r; € R. The uniqueness is because if ), ; me; = ), si€i, then
0= Z(Ti - 8i)€;
il

so the linear independence of the e;s implies that r; = s; for all i.
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Definition 10.2 The free R-module of rank n is
RP"=RO®R®---®R,

the direct sum of n copies of R with itself. Elements of R™ are n-tuples
(r1,...,7ms), with componentwise addition and action

x.(re,...,rn) = (Tre, ..., 2ry).

The elements e; = (0,...,0,1,0,...,0), 1 <4 < n, where the 1 occurs in the *h
position, form a basis for R™. O

The module R" is analogous to an n-dimensional vector space over R; indeed,
over a field the free module of rank n is an n-dimensional vector space. However,
when R is not a field there are lots of ways in which R™ does not behave like a
vector space. For example, there are rings R for which there is an isomorphism
of left R-modules R = R ® R.

Exercises. 1. Let k be a field, and let V' be a vector space over k with
basis e1,e3,.... Let R = Endy V. Let V, = ke; + kes + kes + ... and let
Ve =kea+kes+.... Thus V =V, @ V,. Let a and b be elements of R such
that im(a) = im(b) = V and ker(a) = V. and ker(b) = V,. Show that there are
isomorphisms of left R-modules R = Ra = Ra. Show that Ra N Rb = 0 and
R = Ra+ Rb, whence there is an isomorphism of left R-modules R = Ra @ Rb =
RO R.

2. If R is commutative show that the left R-modules g R and R ® R cannot
be isomorphic. Hint: consider their endomorphism rings. How would you show
that R @ R is not isomorphic to R ® R @ R when R is commutative?

3. Let (V,6) be a finite dimensional k-vector space and a k-linear endomor-
phism of it. Make V into a k[z]-module by requiring = to act like . Show that
V is not a free k[z]-module. If we allow V to be an infinite dimensional vector
space, what conditions on § are necessary for V' to be a free k[z]-module of rank
one? What conditions on € are necessary for V to be a free k[z]-module?

4. Show that Q is not a free Z-module.

There is another way of defining R”. For any set I define R to consist
of all functions f : I — R such that f(4) is non-zero for only a finite number
of i € I. Make this into a left R-module by defining f + g to be the map
(f +9)(@) = f(i) + g(i) and r.f to be the map (r.f)(i) = r.f(i). Then R
becomes a left R-module. It is a free R-module with a basis given by the maps
{f; | j € I} where f; : I - R is the map defined by

1) = {(1J 1?;;]]

If I = {1,...,n}, then RY) = R™ the isomorphism being given by sending
S orifi to (r1,...,7rp), le. f; is sent to e;.
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Proposition 10.3 An R-module M is free if and only if M = R for some
set I.

Proof. (=) Let B be a basis for M. Define ¢ : M — R® by (3, 57sb) to
be the map that sends ¢ € B to 7, the coefficient of ¢ in the sum above. Check
this is an isomorphism

(<) We have already observed that RY) has a basis. O

Let M and N be free R-modules with bases By and By . If these bases have
the same cardinality, then M is isomorphic to V.

Theorem 10.4 Let F' be a free module over a commutative ring. Then any two
bases for F' have the same cardinality.

Proof. Let m be a maximal ideal of R. Such an ideal exists by Zorn’s Lemma.
Then V = F/mF is a module over the field k = R/m. If b;, ¢ € I, is a basis for
F, then v; = [b; + mF] is a basis for V over k. Certainly these elements span V
since the b;s span F. On the other hand if we have a linear dependence relation

[r1 +m][by + mF] + ...+ [rn +m][b, + mF] =0

in V, then by + ... + rpb, € mF = ZieI mb;. Hence there are elements
T1,...,Tn, € m such that 716y + ... + b, = 21b1 + ... + 2,b,. It follows
that r; = z; for ¢ = 1,...,n, whence [r; + m] = 0 in R/m. In particular,
{[b; + mF] | i € I} is linearly independent over R/m.

It follows that the cardinality of an R-basis for F' is equal to the cardinality
of a k-basis for F/mF. Since any two bases for a vector space have the same
cardinality, the result follows. |

The exercise above showed that a free module can have bases of different
cardinality. However, if B and C are two bases for a free left R-module, then
B is infinite if and only if C is. To see this suppose that B is finite, say B =
{b1,...,bn}. Because C is a basis there exist a finite number of elements ¢;; € C
and r;; € R such that b; = ) ;TijCij- Since B generates the module so does
the finite set of c;;. Hence if ¢ € C, then c is in the R-span of the c;;s; but C is
linearly independent so C must equal the set of ¢;;s.

Exercise. Let E and F be free modules over a commutative ring R, of
ranks m and n respectively. If ¢ : E — F is an injective R-module map show
that m < n. Hint: look first at the cases n = 1 and n = 2. This is a little tricky.

Much of the importance of free modules derives from the next result. It says
that every module is a quotient of a free module.

Theorem 10.5 Let M be a left R-module, and {m; | i € I} C M any collection
of distinct elements. Let F' be the free R-module with basis {e; | i € I'}. Then
there is a unique R-module homomorphism v : F — M such that ¥(e;) = m;.

Conversely, if F is an R-module having elements {e; | i € I} with this property,
then F' is free with basis {e; | i € I}.
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Proof. Define ¢ : F - M by

0 (Z riei) = rim;.

el i€l

Because each element of F' can be expressed as ) ;. 7:€; in a unique way, 1 is
well-defined. It is clear that 1 is an abelian group homomorphism, and ¢ (r.f) =
rap(f) for all rinR and f € F, so ¢ is an R-module homomorphism. The
uniqueness of ¥ is due to the fact that a module homomorphism is completely
determined by what it does to a set of generators.

For the converse, take N = R) and for each i € I, let f; be themap I — R
sending i to 1 and every other element of I to zero. Then N is free with basis
{fi | i € I'}. By the hypothesis on F there is a map ¢ : F — N with ¢(e;) = f;
for all 4. By the first part of the proof with F' playing the role of M, because N
is free with the prescribed basis, there is a module homomorphism ' : N — F
with ¢'(f;) = e; for all 4. It follows that ¢ o9 = idp and ¥ o ¢’ = idn, so
F =2 N. Thus F is free as claimed. d

Corollary 10.6 If M is an R-module, then there exists a free R-module F' and
a surjective R-module homomorphism ¢ : F — M. If M can be generated by n
elements we can take F' = R™.

Thus any R-module is isomorphic to a module of the form F/K for a suitable
free module F' and suitable submodule K C F. We call this a presentation of
M and call a set of generators for K a set of relations for F//K. There are many
ways to write a particular module M as F'/ K; indeed, each choice of generators
for M leads to such a presentation.

This is one method to describe an abelian group. For example, let G be the
abelian group with generators a, b, ¢ subject to the relations 2a 4+ 3b + 4¢ = 0
and 5a+4b+3c = 0. As an exercise decide whether G has any torsion elements,
that is elements g # 0 such that n.g = 0 for some 0 # n € Z.

Corollary 10.7 If ¢ : M — F is a surjective R-module homomorphism and
F' is free, then there is an R-module homomorphism 6 : F — M such that
Y0 = idp, and M = kery ®imb. Notice that im 6 = F is free.

Proof. Let {f; | i € I} be a basis for F', and choose elements m; € M such that
¥(m;) = f;- By Theorem 10.5, there is an R-module homomorphism § : F — M
such that 6(f;) = m; for all i. Then ¥6(f;) = f; for all 4, so ¥ = idp.

Let m € keryy Nim@. Then m = 6(f) for some f € F, and 0 = ¢p(m) =
YO(f) = f, so m = 0. Hence kerty Nim# = 0. On the other hand, if m € M,
then m = (m — 6y(m)) + 0(m); but m — 6¢¥(m) € ker ¢ and ¢ (m) € im 6, so
M =kert +imé. Hence M = kert @ im86. O

Example 10.8 Consider the ring R = R[z,y,2]/(z? + y? + 22 — 1), the ring
of polynomial functions on the sphere S2. Let F' = R3 denote the rank three
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free R-module. The elements of F' are triples (a,b,c) where a,b,c € R, and
those elements of R? such that za +yb + zc = 0 form a submodule of R? which
we denote by K. One can consider K as the kernel of the surjective R-module
homomorphism 1 : R?* — R defined by %(a,b,c) = za + yb + zc. Check that
this is a homomorphism, and that it is surjective. Hence we have a short exact
sequence 0 - K — R® — R — 0. By Corollary 10.7 there exists a map
6 : R — R? such that 90 = idg. It is a good exercise to show that K is not
free. By a theorem of R. Swan this is equivalent to showing that the tangent
bundle to S2 is not trivial. 0

1.11 Exact sequences, complexes, and (co)homology

The notions of an exact sequence and, more generally, a complex, play a central
role in modern algebra. Homology and cohomology groups measure how far a
complex is from being exact.

Definition 11.1 A diagram

LM, N

of R-modules and R-module homomorphisms is exact at M if kerf =ima. ¢

Definition 11.2 A sequence

n n Qn—
—_— Mn+1 i} Mn a_) ]\471‘_1 —1)

of R-modules and R-module homomorphisms is a complex if a,a,4+1 = 0 for all

n. 0

This implies that ker a,, D im a1 for all n. The complex is exact at M, if
kera, =iman41. If it is exact at all M,,, we say that the sequence is exact. A
short exact sequence is a sequence

0 sy L — s M —P 5 N ' 0

which is exact at L, M, and N. We do not need to say what the first and last
maps are because there is only one R-module homomorphism 0 — L and only
one R-module homomorphism N — 0. Exactness at L is equivalent to a being
injective, and exactness at N is equivalent to 8 being surjective.

Example 11.3 Let L and N be submodules of a module M. There is a short
exact sequence of the form

0 — > LNN —* 3 LoN L2 s L4N — 0

where a(m) = (m, —m) and B(¢,n) = £ + n. Check this. O
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The homology groups of a complex

QXn 41 n
C— My 2 M, —2 5 M, ; ——> ---

are defined to be
H, =kera,/ima,1.

Thus the homology groups measure the failure of the complex to be exact.

Half-exactness of Hom-functors

Let D be an R-module. There are two functors associated to D, namely
Hompg (D, —) and Hompg(—, D). The first of these is covariant, meaning that if
f: L — M is a homomorphism of R-modules, one obtains a homomorphism

f* : Homg(D, L) — Homg(D, M), g~ fg.

The other functor is contravariant, meaning that if f : L — M is a homomor-
phism of R-modules, one obtains a homomorphism

fﬁ : Homg(M, D) — Homg(L,D), g+ gf.

Suppose that 0 & L - M — N — 0 is an exact sequence of R-modules. Then
the sequences

0 —» Hompg(D, L) - Homg(D, M) — Hompg(D, N)

and
0 — Hompg (N, D) — Homp(M, D) — Hompg(L, D)

are exact. You should check this. However, in general, neither of these sequences
extends to a short exact sequence by placing — 0 at the right-hand end. You
should check this too, and find examples that verify the claims about failure of
exactness.

When I say that Hompg(D,—) and Hompg(—, D) are functors I mean that
they are functors from ModR, the category of left R-modules, to Ab, the cat-
egory of abelian groups. That is, evaluating the functor at a left R-module
produces an abelian group, and a homomorphism between two modules induces
a homomorphism between the associated abelian groups in such a way that
the induced homomorphism of a composition is the composition of the induced
homomorphisms. Moreover, these functors provide group homomorphisms from

Hompg(M, N) - Homz(Homg(D, M),Homg(D, N)) and
Hompg(M,N) - Homz(Homg(N, D), Homg(M, D))

respectively.

Of course, Ab is the same thing as ModZ so we may speak of exactness for
abelian groups. A functor F': ModR — Ab is said to be exact if it sends an exact
sequence in ModR to an exact sequence in Ab. The functors Hompg (D, —) and
Hompg(—, D) are not exact, but we say they are half-exact, more precisely, left
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exact, because when applied to short exact sequences they produce sequences
that are exact at the left.

Split short exact sequences. If M = L & N there is an obvious exact
sequence

0 sy [ —2 s M —~ s N > 0

given by a(f) = (¢,0) and 7(£,n) = n. An exact sequence of this form is said
to be split.

Lemma 11.4 Let

0 sy L —“ s M P N s 0 (11-4)

be an exact sequence. The following are equivalent:

1. there is an isomorphism 6 : M — L & N such that da(f) = (£,0) for all
€ L and B6~1(€,n) =n for all (¢,n) € L® N;

2. there is a map o' : M — L such that o'a = idp;
3. there is a map B' : N - M such that B3’ = idy.

Proof. (1) = (2) Let m € M. We define o'(m) := £ if 6(m) = (¢,n). If £ € L,
then da(f) = (¢,0), so o’ a(f) = £. Thus o’a = idy.

(2) = (1) Define 6 : M — L & N by §(m) := (' (m), B(m)).

To see that § is injective, suppose that §(m) = 0. Then B(m) = 0 so m =
a(f) for some £ € L because ker 8 = im(a). Also a'(m) =0, 500 =a'a(f) =¥,
whence m = a(¢) = 0.

To see that ¢ is surjective, let £ € L and n € N. Then n = g(m) for
some m € M. By Lemma 4.3, M = kera' @ im(a) = kera' ® ker 5. Hence
m — a(f) = u + v for some u € ker o' and v € ker 3. Now m —u = a(f) + v so

§(m —u) = (& (a(f) +v),B(m —u)) = (£,n).

We have shown that § is an isomorphism. Also, §(a(f)) = (¢'a(f), Ba(f)) =
(¢,0) and 36— (a/(m), B(m)) = B(m). Thus (1) holds.
We leave the reader to show that (1) < (3). O

If the equivalent conditions in the lemma hold we say that the sequence
(11-4) splits, or is a split exact sequence, that « is split monic, and that § is split
epic.

If the sequence splits, then

M=aL®kera' =ker3® f'N.
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1.12 Projective and injective modules

An R-module D is projective if Homg(D,—) is an exact functor, i.e., when
applied to an exact sequence 0 - L — M — N — 0 it produces an exact
sequence

0 — Hompg (D, L) = Hompg(D, M) — Homg(D, N) — 0.

Given what has been said above, this is equivalent to the requirement that the
map Hompg (D, M) — Hompg(D, N) is surjective. In other words, D is projective
if for every surjective module homomorphism f : M — N and every module
homomorphism « : D — N, there is a factorization a = ff for some module
homomorphism 8 : D — M.

Proposition 12.1 1. A free module is projective.

2. A module is projective if and only if it is o direct summand of o free
module.

3. A module D is projective if and only if for every surjective map f : M — D
there is a map g : D — M such that fg = idp.

Proof. (1) Let F' be a free module with basis {e; | ¢ € I}. Let f: M - N
be surjective and let o : F' — N be any map. Since f is surjective there are
elements m; € M such that f(m;) = a(e;) for all i. By Theorem 10.5, there
is a homomorphism ¢ : F — M such that 1(e;) = m; for all i. It follows that
fu(e;)) = f(m;) = ale;). Since fi and a are module homomorphisms that
agree on a set of generators for F', they are equal. Thus a = f1 as required.

(2) Suppose that D is projective. There is a surjective map f : F — D from
some free module F. By (1), there is a map g: D — F such that fg = idp. It
now follows from Lemma 4.3 that D is a direct summand of F.

Conversely, suppose that P free and P = D@ Elet # : P — D and
t: D — P be the maps n(d,e) = d and a(d) = (d,0). Then m = idp. Let
f : M — N be a surjective homomorphism, and « : D — N an arbitrary
module homomorphism. Then ar : P — N, so there is a § : P — M such that
an = fé. Hence fé. = amt = a, so 0t : D — M has the required property and
we see that D is projective.

(3) If D is projective and @ = idp, there isa g : D — M such that idp = fg.

Conversely, suppose that D has this property. There is a surjective map
1 : F' — D from a free module F. By hypothesis, there is amap g : D — F such
that ¥g = idp. It follows from Lemma 4.3 that F' = ker ¢ @ im(g) = kery ® D,
so D is a summand of a free module and hence projective by (2). O

Proposition 12.2 If N is a projective R-module then every short exact se-
quence 0 - L - M — N — 0 splits.
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Proof. Let a: L - M and 8 : M — N be the maps in the short exact sequence.
Because N is projective and f is surjective, there is a map ' : N — M such
that 83’ = idy. Hence the sequence splits. O

Remarks. 1. The converse of Proposition 12.2 is also true: if N has the
property that every short exact sequence 0 -+ L - M — N — 0 splits, then N
is projective. This is because there is such a sequence with M free, so splitting
implies that N is (isomorphic to) a direct summand of M, and hence projective.

2. A direct sum of two projective modules is again projective: if P;, i = 1,2,
is a direct summand of a free module F;, then P; & P is a direct summand of
the free module F; @ F5.

Injective modules. An R-module E is injective if the functor Hompg(—, E)
is exact. Injectives are very different from projectives. For one thing, they are
rarely finitely generated modules. For example, Q is an injective Z-module.

There are results for injectives that are analogous to the results we have
just proved for projectives. For example, E is injective if and only if for every
injective map f : L — M and every map «a : L — E, there is a factoring a = g f
for some 8 : M — E. Likewise, F is injective if and only if for every injective
map f : E — M there is a map g : M — E such that gf = idg.

Algebraic K-theory. The group Ko(R) is defined as the quotient of the free
abelian group with basis [P], the isomorphism classes of the finitely generated
projective left R-modules, modulo the subgroup generated by all [P] + [Q] —
[P @ @]. Thus, the addition in Ky(R) is given by [P] + [Q] = [P & Q]- The
identity/zero is [0].

If R is commutative, then Ky(R) also has a multiplication making it a com-
mutative ring. The multiplication is tensor product, i.e., [P].[Q] := [P ®r Q).

Tensor product. I haven’t defined the tensor product of two modules yet!
But perhaps this makes you curious enough to read about it. Here is a very
slick and short definition of the tensor product: let M be a right R-module and
N a left R-module. Then their tensor product, denoted M ®g N, is the unique
abelian group with the property that there is an isomorphism of abelian groups

Homz(M ®g N, L) = Homg(M,Homz(N, L)) (12-5)

for every abelian group L. In even fancier language, the functor — ®g N :
R — Mod — Ab is left adjoint to the functor Homz(N,—) : Ab - R — Mod.

Let’s postpone for a moment the question of whether M ® g N exists, i.e.,
whether there is an abelian group with the desired property, and try to make
sense of the definition. It is implicit in the right-hand side of (12-5) that
Homgz(N, L) is a right R-module; we make Homgz(N, L) a right R-module by
declaring (f.r)(n) := f(rn) for all abelian group homomorphisms f : N — L,
all » € R, and all n € N. One sees easily that f.r is a group homomorphism
N — L so does belong to Homz(N, L); it is also easy to check that this gives
Homz(N, L) the structure of a right R-module (you should check this at least
once in your life). Thus the right-hand side of (12-5) makes sense. The isomor-
phism in (12-5) is an isomorphism of abelian groups.
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Notice that nothing is said about whether or not M ® g N is an R-module;
in general it can not be given an R-module structure; all we can say is that
it is an abelian group. Notice too that M is a right R-module and N is a left
R-module. One can not tensor together two left modules!

However, if R is commutative then right and left R-modules are the same
things so one only speaks of R-modules, and one can tensor together any two
R-modules. It is also true that M ® g N can be made into an R-module when
R is commutative, and that is why the definition [M].[N] = [M ®g N] makes
sense in Ky(R) when R is commutative; of course, we also need to check that
M ®pg N is finitely generated and projective if M and N are.

We show the existence of M ® g N by showing that the following abelian
group gives the isomorphism (12-5):

1.13 Noetherian modules

A module M is noetherian, or has the ascending chain condition, if every chain
of submodules My C My C --- is eventually stationary.

Theorem 13.1 The following conditions on an R-module M are equivalent:
1. M is noetherian;

2. if S is a non-empty collection of submodules of M, then S has a mazimal
member by which we mean there is an N € S such that if N' € S and
N C N', then N = N';

3. every submodule of M is finitely generated.

Proof. (1)=(2) Choose M; € S. If My is a maximal member of S, (2) is

true. If not, there is an M> € S that properly contains M. If M> is a maximal

member of S, (2) is true. If not, repeat the process, thus obtaining a chain of

submodules M; C M, C ---. By hypothesis, this chain is eventually constant;

but that can only happen when we encounter a maximal member of S.
(2)=(3) Let L be a submodule of M, and define

S = {submodules of L that are finitely generated}.

Let N be a maximal member of S. If N # L, then there is some £ € L\N.
But now N + R/ is a submodule of L that is finitely generated, so belongs to S,
and is strictly larger than IV, contradicting the choice of N. We conclude that
L = N, so (3) holds.

(3)=(1) Let My C M> C --- be an ascending chain of submodules of M. Set
N =U;M;. Then N is a submodule of M, so is finitely generated by hypothesis.
But any finite subset of N is contained in some M, so some M; contains a set
of generators for N. It follows that N = M;, so the chain becomes constant
M; = Mjyq =--- . Hence M is noetherian. O

Warning: Read part (2) of Theorem 13.1 carefully. It does not say that S
contains a maximal submodule of M (a maximal submodule of M is a submodule
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M' that is not equal to M and is not contained in any submodules of M other
than itself and M). Nor does it say that S contains an N that contains all other
members of S. For example, if R = Z and S = {(p?) | p is a positive prime},
then every member of S is a maximal member!

Definition 13.2 A ring R is left noetherian if it is noetherian as a left module
over itself. A ring R is right noetherian if it is noetherian as a right module over
itself. A ring R is noetherian if it is both left and right noetherian. O

A principal ideal domain is noetherian since all its submodules (=ideals!)
are generated by one element.

The polynomial ring in n variables over a field is noetherian (see Theorem
7).

Proposition 13.3 1. All submodules and quotient modules of a noetherian
module are noetherian.

2. If L and M are noetherian submodules of a module N, then L + N is
noetherian.

3. A finite sum of noetherian submodules of a module is noetherian.

4. If N is a submodule of a module M, then M is noetherian if and only if
M/N and N are noetherian.

5. A finitely generated left module over a left noetherian ring is noetherian.

Proof. (3) (=) Every submodule of M/N is of the form N'/N where N' is
a submodule of M containing N. By hypothesis, N’ is finitely generated, so
N'/N is finitely generated. Hence M /N is noetherian. Every submodule of N
is a submodule of M, so is finitely generated. Hence NN is noetherian.

(«) Let My C My C ... be submodules of M. Because N is noetherian,

there is an n such that M,NN = M, 1NN = ---. Also the chain of submodules
My + N/NCM;+N/NC---
in M/N is eventually stable, so M, + N = Mp41 + N = --- for n sufficiently
large. Hence
M1 =Mpii N (Mp41 + N)== M1 N (M, +N)=M,+ (Mp41NN)

by the modular law. But this equals M,, + (M, N N) = M,,, so M is noetherian.
(1) There is an isomorphism L & M/L = M, so it follows from (3) that

L ® M is noetherian. But there is a surjective homomorphism L& M — L+ M,

so L + M is a quotient of a noetherian module, and hence noetherian by (3).
(2) This follows from (1) by induction: write Ly + ---+ Lp, = (L1 +--- +

Lyp_1) + Ly.
(4) Suppose that M is generated by m1,...,m,. Let F = Re; & --- Re,
be the free module with basis ey, ...,e,. By (2), F is noetherian because each

Re; = R is. And there is a surjective map F' — M, e; — m;, so M is noetherian
by (3). O
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1.14 More about simples

One often encounters modules that are direct sums of simple modules, so we
record some results about such sums.

Lemma 14.1 Let N be a cyclic R-module and S a simple R-module. Suppose
that S is not isomorphic to a simple quotient of N. Then N & S is a cyclic
R-module.

Proof. Choose generators n and s for N and S respectively, and define I =
Ann(n) and J = Ann(s). Then J is a maximal left ideal of R, and I ¢ J
because if it were there would be a surjective map R/I — R/J; but R/I = N
and R/J = S. Hence I +J = R. Write 1 =i+ j withi € I and j € J. We now
show that (n,s) generates N @ S. First, R(n,s) contains i(n,s) = (in,is) =
(0,is) = (0, s), so R(n,s) contains R(0,s) = (0,5). Similarly, R(n,s) contains
j(n,s) = (n,0), and therefore contains R(n,0) = (N,0). Hence R(n, s) contains
(N,0)+ (0,5)=(N,S)=N®aS. O

Lemma 14.2 Let S be a simple R-module. Let N be an R-module with the
property that Hompg(N',S) = 0 for all submodules N' C N. If L is a submodule
of N® S, then L=K & T for submodules K C N and T C S.

Proof. Let 1 : NS — Sand p: N& S — N be the projections with kernels
N and S respectively. It is clear that L C p(L) + n(L).

If (L) = 0, then L C N and we are done.

Suppose that 7(L) # 0. Then L contains an element of the form (n, s) with
s # 0. By the argument in Lemma 14.1, L contains S. Hence if £ = (n’, ') is
any element of L, L contains n'. In other words, p(L) C L. Hence p(L) + S C
N C p(L) +w(L), so L =p(L) + S, as claimed. O

Lemma 14.3 Suppose that M,..., M, are non-isomorphic simple modules
over a ring R. Then M := M; @ --- @ M, has exactly 2" submodules, namely
Mr =3} ;c; M; as I ranges over all subsets of {1,...,n}.

Proof. This follows from the previous lemma by induction on n. The result is
certainly true when n = 1.

Suppose that n > 2, and let L be a submodule of M. Write N = M; &
-+ ® M,_1 and S = M,. By the previous lemma, L = N' + T where N’
is a submodule of N and T is a submodule of M,. Now apply the induction
hypothesis to N’ C N. O



