Chapter 1

Modules over a principal ideal domain

In every result in this chapter R denotes a commutative principal
ideal domain. But notice that we allow R to be any commutative domain in
Definition 2.1 and in Lemma 2.3.

1.1 Free modules

Theorem 1.1 Let F' be a free R-module, and E a submodule of F. Then E is
also free, and rank E < rank F'.

Proof. If rank F = oo, the result is true, so suppose that rank F' < co.

If rank F = 1, then F' = R, and the submodules of F' are the ideals of R (up
to isomorphism). But an ideal of R is of the form aR for some a € R. If a =0,
then I is free of rank zero. If a # 0, then the map z — za is an isomorphism of
R-modules, R = I, so I is free of rank one.

We now argue by induction. Suppose that {fi,..., f.} is a basis for F.
Define a: F' — Rf1 by

alrifi+...+rnfn) =rif1.

Then « is a surjective R-module homomorphism with kernel Rfs + ...+ R fy,
which is free of rank n — 1. Let 6 denote the restriction of a to E. Since
kerf C kera, ker@ is free of rank < n — 1 by the induction hypothesis. The
image of 6 is an ideal of R, so is free of rank at most one. However, by Corollary
7?7, E 2 kerf ®im@ so E is free of rank < n. |

We cheated in the last result. Rank is defined as the cardinality of a basis,
so the first sentence of the proof is inadequate: we need to distinguish between
different infinite cardinals. But we will ignore this matter. A proof that covers
the case of infinite cardinals can be found in several books, for example in
Hungerford.

Remarks. 1. The theorem is false if R is not a PID. Because then R
contains an ideal that is not a free module. For example, the ideal (z,y) in
k[z,y] is not a free module.
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2. It is possible for a free module to have a proper submodule of the same
rank. For example, take the ideal (2) C Z.

3. If M is a finitely generated module over a principal ideal domian R, then
there is a surjective map « : FF — M from a finite rank free module F. If we
write K = ker q, there is a short exact sequence

O K—-F—-M=>0

with both F' and K free of finite rank. This is called a free resolution of R.
Such resolutions are important because the map K — F' can be represented
by a matrix (compare this to a linea map between two vector spaces), and M
is determined by that matrix. This allows us to carry over several ideas from
linear algebra, for example, the row operations, and the idea of putting a matric
in echelon form.

Corollary 1.2 If an R module can be generated by n elements, so can every
submodule of it.

Proof. Let a: FF —+ M be a surjective map with F' free of rank n. If N is a
submodule of M, then the restriction of a gives a surjective map a=1(N) — N.
Since a~!(N) is a submodule of F it is free of rank < n, so can be generated by
< n elements. Since the images of those generators provide a set of generators
for N, the result follows (if o 1(N) has rank < n, take several zeroes to get
exactly n generators for it). O

Power series. Let k be a field. The ring of formal power series k[[z]] consists
of all power series

2
Qo + o1 + apx” + -+

with coefficients in k. We add and multiply these in the usual way. These are
formal expressions and there is no question of convergence. It is easy to see that
the units are those power series in which oy # 0. There is a unique maximal
ideal (z) and the non-zero ideals are the ideals (z™), n > 0. In particular, k[[z]]
is a principal ideal domain.

Exercises. 1. A commutative domain R is called a Euclidean domain if there
is a function ¢ : R\{0} — N U {0} such that

L ¢(zy) > max{¢(z), ¢(y) };

2. if a,b € R and b # 0, then there exits ¢, € R such that a = ¢b + r and
either r = 0 or ¢(r) < ¢(b).

Show that a Euclidean domain is a principal ideal domain.
2. Use the previous exercise to show that Z[i], the ring of Gaussian integers,
is a principal ideal domain.
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1.2 Torsion and torsion-free modules

Definition 2.1 Let R be a commutative domain and M an R-module. An el-
ement m € M is torsion if rm = 0 for some non-zero r € R. The torsion
submodule of M, which we denote by 7M, consists of all the torsion elements
in M. If TM = 0 we say that M is torsion-free. If TM = M we say that M is a
torsion module. O

It is easy to check the following:
1. the set of torsion elements do form a submodule;
2. every submodule of a torsion-free module is torsion-free;

3. every submodule and every quotient of a torsion module is a torsion mod-
ule;

4. a sum of torsion modules is a torsion module;

5. a sum of torsion-free modules is torsion-free.

Example 2.2 1. Over the ring Z, the modules Z and Q are both torsion-free.
Both Q/Z and Z, = Z/(2) are torsion modules. The module Q & Z is neither
torsion nor torsion-free. Every finite abelian group G is a torsion Z-module
because if g € G, then n.g = 0 for some n > 0.

2. Let (V, ) consist of a k-vector space and a k-linear endomorphism of it.
Make V into a k[z]-module by making x act as 6. Then V is a torsion R-module.
To see this, observe that if dimV =n, and v € V, then {v,zv,z%v,... 2"} is
linearly depenedent, so there are non-zero scalars Ag, ..., A, such that

Mo+Az+--+A2")v=0.

3. Let M = k[z,y]/(z). Then M can be viewed as both a k[z,y]-module
and as a module over kly] = k[z,y]/(z). As a k[z, y]-module M is torsion, but
as a k[y]-module it is torsion-free. ¢

Lemma 2.3 Let R be a commutative domain and M an R-module. Then M
is a submodule of M, and M/TM is torsion-free.

Proof. If m and n are torsion elements of M, then xm = ym = 0 for some
non-zero elements xz,y € R. Hence zy(m = n) = 0; since zy # 0, m £ n is
torsion. If r € R, then rm is torsion because x(rm) = ram = 0. Hence 7M is
a submodule of M.

Let 0 # z € R, and suppose that z.[m + 7M] = 0. Then zm € TM, so
there is a non-zero element y € R such that y(zm) = 0. Since (zy)m = 0 and
xy # 0, m € 7M. Therefore [m + 7M] = 0. We have shown that the only
torsion element in M /7TM is zero, so M/TM is torsion-free. O
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Remark. Let R be a PID. If T is a non-zero ideal of R, then R/I has
finite length. A finitely generated R-module is torsion if and only if it has finite
length. (Prove this.)

If p1,...,p are primes in R and f = p}'* --- pi"* then the composition factors
of R/(f) are the R/(p;)s occurring with multiplicities n;.

Theorem 2.4 Let R be a PID. A finitely generated torsion-free R-module is
free.

Proof. Let my,...,m, be a set of generators for a torsion-free R-module M.
We can suppose that all the m; are non-zero. The map R — Rm; defined by
T+ rmy is an R-module isomorphism because m; is not torsion. In particular,
Rmy is free.

Renumber the m; so that {my,...,ms} is a maximal linearly independent
subset of {mi,...,m,}. Thus s > 1 and F := Rm; + --- + Rm is free. If
s = n, we are done, so suppose that s < n. Hence if i > s, ;m; € F for some
0 # x; € R. Define £ = 341Z542 ... Z,. Then z is non-zero and M C F. The
map 6 : M — F defined by 8(m) = zm is an R-module homomorphism and is
injective because M is torsion-free. Thus M = §(M). By Theorem 1.1, (M)
is free. Hence M is free. d

A torsion-free module need not be free if it is not finitely generated. For
example, Q is not a free Z-module.

Theorem 2.5 If M is a finitely generated R-module, then M = F & M with
F free.

Proof. The module M/TM is torsion-free and finitely generated, so is free.
Corollary ?? now implies that M = 7M @ F with F free. O

Remarks. 1. In writing M = 7M & F with F free, there are usually many
choices for F. For example, over Z, the module M = Z® Z/(2) = F & M may
also be written as M = E @ 7M with E = {(a,a) | a € Z}, and E is free with
basis (1,1).

2. Theorem 2.5 shows that to understand finitely generated modules over
a PID we must understand the structure of the torsion modules. The rest of
this chapter is devoted to that task. The first step is to introduce a finer notion
of torsion, namely p-torsion for each prime p € R. Then, in analogy with the
way in which the torsion submodule of a finitely generated module “splits off”,
meaning M = M/t M & (somthing), a torsion module splits up as a direct sum
of its p-torsion submodules. we are then left with understanding the structure
of a p-torsion module.

1.3 Structure of modules

In a PID R, a non-zero element p is prime if and only if it is irreducible, if and
only if pR is maximal.
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Definition 3.1 Let p be a prime in R. An R-module M is p-torsion, or p-primary,
if for each m € M, p"m = 0 for n > 0. For each R-module M we write

M(p)={me M |p"M =0 for n>> 0}.

Just as for the torsion module, it is easy to check that M (p) is a submodule
of M, and it is the largest p-torsion submodule of M.

Theorem 3.2 Let M be a finitely generated torsion R-module. Then

M= @ M),

primes peR
and M (p) = 0 for all except a finite number of p.

Proof. Let m € M and suppose that Ann(m) = Rs where s = pi't ...pJ";
here we have used the fact that R is a UFD (= unique factorization domain)
to write s as a product of primes in a unique way. For each i write s; = s/p;".
Then ged(s1,...,8) =1,s01 = 22:1 r;8; for some elements r; € R. Now

P (risim) = rism =0,

so r;s;m € M(p;). But m =Y r;s;m, som € > M(p;) and

M= Y M@p).

primes peR

We now claim that this sum is finite. By hypothesis M is finitely generated,
say M = Rmy + ...+ Rm,. The argument in the previous paragraph shows
that each m; is in a finite sum of the M (p)s. Hence there is a finite sum of
the M (p)s such that each m; is contained in that finite sum. Since those m;
generate all of M, M itself is contained in a finite sum of the M (p)s. We can
therefore write

M = M(p1) + -+ M(p)

for some finite set of distinct primes py, ..., p;.

We now prove by induction on ¢ that this is a direct sum. If ¢ = 1 that is
clear, so suppose that ¢ > 1. Suppose to the contrary that my +...+m; =0
with each m; € M(p;) and that some m; is non-zero. (Warning: these m;s are
NOT the generating m;s that appear in the previous paragraph!) Without loss
of generality we may suppose that m; # 0 and that ms # 0. Choose a and b
such that p¢m; = pims = 0. Since ged(p1,p2) = 1 there are elements z,y € R
such that zp¢ + ypb = 1. Then

0 # ma = (zp} + yph)ms = zpimo.
In particular, pfms # 0. Therefore

0=pf(ms+---+my) =pima + -+ pimy
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is a sum of non-zero terms in M (ps) + - -- + M (p;), contradicting the induction
hypothesis. We conclude that 22:1 M (p;) is a direct sum. O

Exercise. Show that if ¢ : M — N is an isomorphism of R-modules, then 1)
maps each M (p) isomorphically onto each N(p).

We now examine the finitely generated p-torsion modules. When M is
finitely generated and p-torsion there is an n such that p"M = 0; if M =
Rmy + --- + Rmy, and p™im; = 0, then n = max{ny,...,n;} works.

Lemma 3.3 Let p be prime. The only ideals of R that contain (p") are (p?)
with 0 <1 < n.

Proof. Certainly these ideals contain p”R. Conversely, if zR D p™R, then =
divides p™ and, since R is a unique factorization domain, x = up® for some unit
u and ¢ with 0 < ¢ < n, whence xR = p'uR = p'R. a

It follows that the submodules of R/p™R are exactly
R _ () _ Y ")
D) D) D---D »)
CORNCORND! @)~ @)
Also notice that (p?)/(p") = R/(p" ).

=0.

Lemma 3.4 In any domain R, if 0 # a = be, then bR/aR = R/cR.

Proof. Because bR/aR is cyclic with generator b = [b + aR], bR/aR =
R/ Ann(b) by Lemma ??. Now z € Ann(b) if and only if zb € aR, or if
and only if there is y € R such that b = ay = bey, and this is equivalent to the

condition that z € ¢R; in other words Ann(b) = cR. O

Lemma 3.5 Let p be a prime. If m € M and p"m = 0 and p"'m # 0, then
Ann(m) = Rp".

Proof. The annihilator of m is an ideal of R containing Rp™, so must be of
the form Rp® for some 0 < i < n. However, if § # n, then p"~! € p’R, and this
contradicts the hypothesis that p?~1m # 0. d

Proposition 3.6 Let M be a finitely generated p-torsion module such that
p"M = 0 but p" 'M # 0. Let m € M be an element such that p" 'm # 0.
Then there is o submodule N of M such that

M=Rm®N=R/p"R& N.

Proof. Consider the set of pairs (Q,0) where Q@ D Rm is a submodule of M
and 6 : Q - Rm is an R-module homomorphism such that 0|gm, = idgm. It
follows from Lemma ??.?? that Rm is a direct summand of ). We define a
partial order on these pairs by declaring (Q1,61) > (Q2,02) if @1 D Q2 and
01|, = 02. By Zorn’s Lemma this set has a maximal member, say (Q,9).
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We will now show that ) = M, which will prove the Proposition. Suppose
to the contrary that @ # M. Then M/Q is a non-zero p-torsion module, so we
can choose m' € M\@ such that pm' € Q. By Lemma 3.5, Ann([m'+Q]) = pR.

For some y € R, 6(pm') = ym. Therefore p"~lym = p"~10(pm') =
f(p™m’) = 0, so we conclude that y € pR. Let’s write y = pz. Thus 6(pm') =
pzm.

Notice that 8(m') is not defined because m' ¢ Q. However, we can define
P : Q+ Rm' - Rm by ¥(q+rm') = 0(q) + rzm. This map is well-defined
because if ¢ +rm' = ¢ +r'm/, then (r —r')m' =¢' —q € Q so r —r' = ps for
some s € R because Ann([m'+ @Q]) = pR. Therefore

v(g+rm') =@ +r'm') =0(q—4q') +rz2m—r'zm
=60(q—q') + spzm
=6(q —q') + s0(pm')
=0(q—q' +spm')
=0(qg—q + (r—r")m)
=0.

The map % is an R-module homomorphism and ¢| g, = idgm, so (Q+Rm/', ) >
(Q,0), contradicting the choice of ). Hence Q) = M. O

Theorem 3.7 If M is a finitely generated p-torsion R-module, then
M=R/(p™)&-- & R/(p™) (3-1)
for some integers nqy > ny > ... > ny > 1 that are uniquely determined by M.

Proof. Choose n; such that p™* M = 0 but p™* ' M # 0. By Proposition 3.6,
there is an m € M such that M = Rm & N = R/(p™)® N. If N =0 we can
stop, and if N # 0 we can continue this process with IV in place of M. That is,
we choose ny such that p™2 N = 0 but p"2~'N # 0, et cetera.

To see that this process eventually stops, consider the finitely generated
module M/pM. It is a module over the field k = R/(p). However,

M/pM = R/(p) ® N/pN,

so dimy N/pN = dimy M/pM — 1. Because the dimension drops by ne each
time we split off a summand of the form R/(p™), the process stops.

We now show that the m;s are uniquely determined. Consider the chain
M>pMD>---D>P"“M =0 and set L, = p"M/p"*1 M. Since pR annihilates
L,, L, is a k-vector space. The numbers d,, := dimy, L,, are invariants of M;
they depend only on the isomorphism class of M. Since p™(R/Rp™) = 0 if and
only if n > n;,

p"M = p"R/p™R®---®p"R/Rp™
=R/p" "R®---®R/Rp™"
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where the second sum is only over those n; > n. Therefore d,, is the number of
summands in (3-1) with n; > n + 1. In other words, the number of summands
in (3-1) of the form R/(p"*!) is d,, — dp41; but this depends only on M. O

Theorem 3.8 Let M be a finitely generated module over a PID R. Then M =
RY® 1M for a unique d > 0. Furthermore, TM is isomorphic to a direct sum
of modules of the form R/(p™) for various primes p € R and positive integers n;
for a particular p and n, the number of summands of the form R/(p™) depends
only on M.

The p"s that occur in the decomposition of M are called the elementary
divisors of M and they are counted with multiplicity. The module M is com-
pletely determined up to isomorphism by its elementary divisors and the rank
of M/TM.

Example 3.9 Take R = Z. If G is a finitely generated abelian group, then
G=2Z®---®Z (finite group) and the finite group is a direct sum of cyclic
p-groups Z /p"Z for various p and n. For example, because 120 = 2°.3.5,

Z)(120)=7Z/(2°) @ Z/(3) ® Z/(5).

We may identify each summand with a submodule of Z/(120). The decomposi-
tion becomes

7./(120) = (15)/(120) & (40)/(120) & (24)/(120).
0

Example 3.10 If R = k[z], the primes are the irreducible polynomials and the
cyclic p-torsion modules are k[z]/(f™) with f irreducible. If g € k[z] is not a

constant, we may write g = f{"' ... f{"* as a product of irreducibles, and then

kla]/(f) = klz]/(f") @ - .. © K[z]/(fi*)-
0

There is another way to decompose torsion modules over a PID. To see this,
consider the finite abelian group

G=Z/p")®Z/P)SZ/(*) ©L/(¢*) ©Z/(q)
where p and ¢ are distinct primes. Then
G =17/(pq) ® Z/(pa*) ® Z/(0°°),

so we have written G as a direct sum of cyclic modules Z/(f1) ®Z/(f2) ®Z/(f3)
with f1|f2 and fa|fs. Theorem 3.13 gives the general result, but first we need a
preliminary result which is important in its own right.
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Lemma 3.11 Let R be a commutative domain. If R = Rz + Ry, then

R/(zy) = R/(z) ® R/ (y)-

Proof. By hypothesis we can write 1 = uz + vy. And Rz N Ry = Rxy because
if re = sy, then r = r(uz + vy) = urz + rvy € Ry so rz € Rxy; the reverse
inclusion is obvious. It follows that

R/(zy) = Rz/(zy) ® Ry/(xy) = R/(y) © R/(z),
where the last isomorphism follows from the remark before Lemma 3.5. a

Applying this lemma inductively gives the following result.

Lemma 3.12 If py,...,ps are distinct primes in a PID R, then
R/(p{"...p") = R/(p1") © --- © R/(P}").

The previous two results are versions of the Chinese Remainder Theorem.
In one form this says the following. If a1,...,a, € Z satisfy (a;,a;) = 1
for all i+ # j, and if by,...,b, € Z are arbitrary, then there exists x € Z
such that z = b; (mod a;) for all j. To see this, prove that Z/(a1---a,) =
Z[(a1) P ---PZ/(an), where the map from Z is given by z — (z (mod a4)),...,z
(mod a,)). The fact that this map is surjective solves the problem.

Theorem 3.13 Let M be a finitely generated torsion module. There exist
€1,..-,6¢ € R suchthat M = R/Re; @ --- @ R/Rey, ande; | ez,es | €3,...,€41 |
et. The ey,...,e; are uniquely determined (up to unit multiples) by M.

Proof. There are primes p; (not necessarily distinct) and integers n; > 1 such
that

k
M = P R/Rp}’.
Jj=1

Let {q1,.-.,qs} be the distinct primes amongst py, ..., p. For each i set m; =
max{n; | p; = ¢;} i.e., m; is maximal such that ¢;"* = p;-” for some 1.

Collecting the terms R/ Rp;”, it follows that @;_, R/Rq[™, is a direct sum-
mand of M, and a complement is N say. Write by = ¢! ---¢7**. By Lemma
3.12, R/(b1) = @;_, R/Rq*". Hence R/(b;) is a direct summand of M, and
the complement N is the direct sum of various R/ Rp?j. The important point
is that if R/Rp;” appears in the expression for N, then p;” divides b;.

Repeating the argument, we see that N has a direct summand of the form
R/Rbs, with ba chosen in the same fashion as was b;. Because b; involved the
largest powers of the primes g1, it follows that by divides by. We continue in
this way until, eventually, M = R/Rbi @ R/Rb> @ - -- with b | b1, bs | ba etc.
Relabel the b’s as e’s, and the theorem is proved. a

The elements ey, ..., e; are called the invariant factors of M.
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The difference between the elementary divisors and the invariant factors can
be seen in the next two examples. The abelian groups of order 24 are:

Group Invariant FElementary
factors divisors
Doy = T ® T3 24 8,3
T12@ Ty =Ty ® Tz ® Lo 12,2 4,3,2
Le@®Lo® Loy 2Ls®Ly®Lo®Zo  6,2,2 3,2,2,2

And consider the following modules over R = k[z] for which the product of the
invariant factors is p®¢? = (z — 1)3(z + 1)%

Module Invariant FElementary
factors divisors
R/(p) ® R/(pq) ® R/(pa) pa, P8P PP, P04
R/(pq) ® R/(p*q) P4, P°q P, 0%, 4,4
R/(p®) ® R/(q) ® R/(q) q,p%q P’ 4,q
R/(p) ® R/(p) ® R/(pq®) pa*p,p 00,04
R/(p) ® R/(p*¢®) . P P, ¢
R/(p*¢®) P*¢®p P, ¢

A close examination of the previous proof yields the following result.

Proposition 3.14 If M is a finitely generated torsion module, then the product
of the elementary divisors of M equals the product of the invariant factors of
M.

Application to finite abelian groups. Remember that an abelian group
is the same thing as a Z-module. A finitely generated abelian group is torsion if
and only if it is finite. Hence the structure theorem for Z-modules implies that

every finite abelian group is a direct sum of cyclic abelian groups.



Chapter 2

Linear algebra

Throughout this chapter k& denotes a field, and T denotes a k-linear transfor-
mation of a finite dimensional k-vector space V.

We will apply the structure theorem for finite dimensional modules over the
polynomial ring k[z] to obtain various canonical forms for a matrix representing
a linear transformation of a finite dimensional vector space.

2.1 Linear transformations and matrices

For computational purposes it is helpful to represent vectors and linear trans-
formations by matrices. To do this one must first choose bases for the vector
spaces involved. We will write vectors as column matrices and the action of a
linear transformation on a vector is given by left multiplication by a matrix.

Matrix representations. Let T : U — V be a linear map between two
finite dimensional k-vector spaces. Let B = {uy,...,u,} and C = {v1,..., v}
be bases for U and V respectively. Define scalars {a;; |1 <i<m, 1<j <n}
by the requirement that

m
T(U]) = Za,-jvi for all i and j. (1_1)
i=1

We assemble these scalars into a single m x n matrix

11 . Qap
ME(T) = (ai5) = | : B
Qm1 e Qmn
that depends on the bases B and C.
Vectors u € U can be represented as column vectors with respect to the

basis B,
A1

[ulg := Atur + -+ + Apup +— | :
An

11
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We write [T'u]¢c for the matrix representation of Tu with respect to the basis C.
Matrix multiplication is defined so that

[Tule = ME(T)[uls.

The notation is cumbersome but it allows us to be precise.
Let S : V — W be another linear ransformation and D a basis for W. Then

ME(ST)uls = [STUp = M5 (S)[Tule = ME(S)ME(T)[uls

for all w € U, so
ME(S)ME(T) = MB(ST).

Change of basis. If the bases for U and V change, so do the matrices
representing v and 7. If B’ and C’ are bases for U and V there are invertible
matrices P € GL, (k) and Q € GL,,,(k) such that

[u]sr = Plu]s and [v]e = Q[v]c.
Thus, P = M5, (idy) and Q@ = Mg, (idy). It follows that
ME(T) = ME (idy Tidy) = MS (idy)ME(T)ME (idy) = QME(T)P.

In other words, if A is the matrix representing T with respect to the bases B
and C, and B is the matrix representing 7' with respect to the bases B’ and C',
then

B=QAP '

The matrices A and B have the same intrinsic properties because they both
represent the linear transformation 7.

Matrices A, B € M,,x,(k) are similar if there exist P € GL,(k) and Q €
GL,, (k) such that B = QAP~!. You should check that similarity is an equiva-
lence relation.

We define an action of the group GL, (k) X GL,,, (k) on M, «x, (k) by declaring
(P,Q).A = QAP~!. The similarity classes are the orbits for this action.

It is a basic problem to describe the similarity classes of matrices. This
problem has many aspects, algebraic, geometric, combinatorial, topological, etc.
and has been the inspiration for huge amounts of mathematics.

2.2 Linear operators and modules

We now specialize to the case where U = V. A linear transformationT : V — V
is called a linear operator.

Because only one vector space is involved, we have one basis rather than
two.

Notation. If B is a basis for V' we write M (T") for the matrix representing
T with respect to B. That is, M(T)p = M(T)5.

If we change the basis for V' as in section 2.1, then the matrix A is changed
to the matrix Pt AP.
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Definition 2.1 Two n x n matrices A, B € My(k) are conjugate if there exists
P € GL,(k) such that B =P 1AP. O

The problem now is to describe the conjugacy classes of n xn matrices. These
are the orbits of GL,(k) on M,(k) under the conjugation action. Problem:
find a canonical form for A under conjugacy. The problem may be rephrased:
Find a “nice” element in each orbit.

The connection with k[z]-modules. Our strategy for understanding T
is to associate to it a k[z]-module, and then apply the results about finite-
dimensional k[z]-modules. We make V' a k[z]-module by defining

zw=Tv

for all v € V, and extending linearly so that (Ao + Mz + --- + Apz™)v =
AoV + AT (v) + - -+ + A T™(v). The point we wish to make is that

the theory of finite dimensional modules over k[z] is equivalent to the

theory of a single linear operator on a finite dimensional vector space.

The next result formalizes this important point.

Proposition 2.2 Let A and B be two n x n matrices. Make k™ into a k[z]-
module in two different ways:

1. let M = k™ with the k[z]-action defined by x.v = Av;
2. let N = k™ with the k[z]-action defined by x x v = Buv.

These two k[z]-modules are isomorphic if and only if A and B are conjugate to
one another.

Proof. The modules M and N are isomorphic if and only if there is a k-linear
isomorphism 6 : k™ — k™ such that 6(z.v) = z x8(v) for all v € k™. Such a 6 is
given by 8(v) = Pv for some P € GL,(k), and the condition §(z.v) = z*0(v) is
equivalent to the condition PAv = BPv. Hence the k[z]-modules are isomorphic
if and only if PAv = BPwv for all v € k™. That is, if and only if PA = BP. O

To further emphasize the utility of this point of view, notice that

1. a subspace W C V is stable under the action of T' (i.e., T(W) C W) if
and only if W is a k[z]-submodule of V', and

2. a decomposition V = W7 @ - - - @ W; into T-stable subspaces is equivalent
to a decomposition of V' into a direct sum of k[z]-submodules.

The structure theorem for modules over a PID may be applied to this situation:
it gives a canonical form for each finite dimensional k[z]-module and hence gives
a way of decomposing V into T-stable subspaces. The next result shows that
writing V' as a direct sum of T-stable subspaces corresponds to representing 7'
by a “block matrix”.
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Lemma 2.3 Suppose that V. = U@ W, with TU C U, and TW C W. Let
U = {uy,...,un}, and W = {ws,...,wi} be bases for U and W respectively.
Then V =UUW is a basis for V, and

_ | M(T)u 0
More generally, if V. = @, Vi is a decomposition into T-stable subspaces and
B is a union of bases from each individual Vi, then M (T)p decomposes into a
block diagonal matrix.

Proof. Obvious. g

The structure theorems for modules over PIDs yield two decompositions of
V as a direct sum of cyclic k[z]-modules, namely

V= P P Hlal/ (f:)™ (2-2)

where the f; are distinct irreducible monics and the f;*

;| are the elementary
divisors of V', and

t
V = (B k[e]/(9:) (2-3)

i=1
where the g; are the monic invariant factors of V, and g1 | 92,92 | 93,---,9t—1 |

Gt-
We observed in Proposition 1.3.14 that

S
gg2---9e = [T £

i=1 j

i.e., the product of the elementary divisors equals the product of the invariant
factors.

Definition 2.4 The minimal polynomial of a linear transformation 7' : V — V is
the monic polynomial f € k[z] of least degree such that f(T) = 0. O

Lemma 2.5 The minimal polynomial of T : V — V is the monic generator of
the ideal AnnV where V is made into a k[z]-module via x.v = T'(v). If we
decompose V' as in (2-2) and (2-3), then that minimal polynomial is

s

9t=Hf,mi

i=1

where m; = max{n;; | i,j}.
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Proof. Obvious. O

Notice that deg g; < dim V' by (2-3), so the degree of the minimal polynomial
of T is at most dim V. That is not obvious without the theory of modules over
PIDs. Because M, (k) is a vector space of dimension n?, all we can say at first
is that {T" | 0 < i < n?} is linearly dependent, so the minimal polynomial of T
has degree < nZ.

Eigenvalues and eigenspaces. Let T : V' — V be a linear operator. Then
A € k is called an eigenvalue for T if there exists 0 # v € V such that Tv = Av;
such a v is called an eigenvector for T'. For A € k, define

ii={veV|Tv=\v};

notice that T' (V) C V). This is a subspace of V, and is called the A-eigenspace.
If A1,..., A\, are distinct eigenvalues then the sum V), +---+ V) is a direct
sum.
A linear operator T : V. — V is diagonalizable if the matrix representing T
is diagonal withe respect to some basis for V.

Lemma 2.6 The following are equivalent:
1. T is diagonalizable;
2. there is a basis for V consisting of eigenvectors;

3. as a k[z]-module V is a direct sum of 1-dimensional submodules.

Proof. (1) = (2) If T is diagonalizable, say M (T = diag(A1 Az --- Ap), then
each column matrix e; = (0,...,0,1,0,...,0) is an eigenvector with eigenvalue
Aj.

(2) = (3) If {v1,...,v,} is a basis for V and each v; is an eigenvector, then
V =kvi & --- ® kv, and each kv; is a k[z]-submodule.

3)=> 1)UV =kvi ®---® kv, and each kv; is a k[z]-submodule, then
there are scalars \; € k such that Tv; = zv; = \;u;. Hence, with respect to the
basis B = {v1,...,vn}, M(T)g = diag(A1 A2 -+ An). O

Example 2.7 Suppose that A € M, (C) is such that A™ = 1. Pick the least
such m. The minimal polynomial is 2™ — 1, so viewing C" as a C[z]-module,
its biggest invariant factor is g; = ™ — 1. Over C, 2™ — 1 factors as a product
of distinct linear factors

m—1
" —1= H (x —¢')  where e = e2™/™,
=0

Hence each invariant factor g; is a product of distinct linear factors. The Chi-
nese Remainder theorem therefore implies that C[z]/(g;) is a direct sum of
1-dimensional C[z]-submodules. Thus C" as a C[z]-module is a direct sum of
1-dimensional submodules. It follows that A is a diagonalizable matrix. ¢
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You might find it helpful to think about the previous example without in-
voking modules. Just factor 0 = A™ — 1 = HgBI(A — ¢'I) and look at the
individual eigenspaces {v € C" | Av = g'v}.

2.3 The rational canonical form

Consider the k[z]-module V = k[z]/(g) where
g=a+az+---+a, 12"
Write T : V — V for the linear map T'(v) = zv. The set
B={1,7,...,271}
is a basis for V, where @ denotes the image of a in V. Because
T
T

il
Il
8]

)

=,

Sl
Il

T2 = 71,
Ter—' = —(apl + T+ -+ + a,_1z" 1)

the matrix of T" with respect to B is

00 .-+ 00 —-a
1 0 --- 00 —-a1
01 -+ 0 0 —a
MT)s= | ' (3-4)
00 --- 1 0 —ap_e
00 --- 0 1 —ap_1

This is called the companion matrix to g. The minimal polynomial of 7' is g.

Proposition 3.1 Let T : V — V be a linear transformation of a finite di-
mensional k-vector space. Then there is a decomposition V.= @V, such that
T (Vi) CV; for all t, and bases for each Vi such that M(T|y,) is the companion
matriz for the minimal polynomial of Ty,.

Proof. Consider V as a k[z]-module with z acting as T', and decompose V' into
a direct sum of cyclic k[z]-modules. Then use (2-3). O

Corollary 3.2 Let T : V — V be a linear transformation of a finite dimen-
sional k-vector space. Then there is a basis B for V' such that

My O O --- 0 O

0 My 0 -~ 0 0
MT)s=| . : (3-5)

o o0 0 --- 0 M
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where the M; are the companion matrices for the invariant factors g; of T.

Proof. Use (2-3). O

This is the rational canonical form for 7" and can be achieved over any field.

Lemma 3.3 Let A,B € M, (k). Let P,Q € GL,(k) be such that P~ AP, and
Q'BQ are in rational canonical form. Then A and B are conjugate if and
only if P"YAP = Q='BQ (up to ordering of blocks).

Proof. By Proposition 2.2, A and B are conjugate if and only if the k[z]-
modules they determine are isomorphic. But isomorphic modules have the same
invariant factors and, conversely, two modules are isomorphic if they have the
same invariant factors. |

Changing the field. When we speak of a linear operator T : V. — V|,
the underlying field k& needs to be specified because we must say that V is a
vector space over k. However, when we explicitly write out a matrix we usually
just write out the matrix without saying what field the entries belong to. For
example, a matrix with integer entries might be viewed as a matrix over Q, R,
C, or any other field containing Q. The question then arises, does the rational
canonical form of a given matrix change as the field changes? The answer is
NO because the rational canonical form is determined by the invariant factors,
and these are entirely characterized by the fact that g1|g2, ...

An improvement. I think we can all agree that the more zeroes there are
in a matrix the happier we are. Certainly this is one reason we like the rational
canonical form. But sometimes it is not helpful to use the rational canonical
form. For example, suppose that T : RS — R® is a linear transformation with
minimal polynomial

(22 =)@ + D@ +2+1).

Then, as an R[z]-module with z acting as T,

RS = Rjz] ~ Rz] _ Rg] Riz] Rlz]
(22— + D=2 +z+1) (xz-2) (z+2) (22+1) (22+2+1)

In some ways the second expression is nicer. For example, it makes it clear that
T has two eigenspaces of dimension one with eigenvalues +2, and two other
2-dimensional T-stable subspaces, and that R® is the direct sum of these. It
therefore seems sensible to pick a basis reflecting this, so that the matrix for T’
becomes

2 0 0 0 0 O0 O
0 -2 0 0 0 O
0 0 0 -1 0 O
0 0 1.0 0 O
0 0 0 0 0 -1
0O 0 0 0 1 -1
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Here we have used two 2 x 2 blocks that are the companion matrices for the
elementary divisors 2 + 1 and z? + = + 1.

However, there is only one invariant factor, namely the minimal polynomial,
so if we write T in rational canonical form we must mutiply out this minimal
polynomial to get

(> -4 (2> + 1)@ +2+1) =2 +2° —22* —32° — 222 +z +1

and the rational canonical form does not reflect the structure of R® under the
action of T" in a good way.

2.4 Jordan Normal Form

Throughout this section we suppose that k is algebraically closed.

Since the irreducible polynomials in k[z] are those of degree one, it follows
from (2-2) that

V2 ka]/(w— )" P Pkl (w - M)™ (4-6)

for various Ay,...,\; € k.
Consider V = k[z]/(z—A)". Write T : V — V for the linear map T'(v) = zv.
A basis for V' is given by

B={vi=Tve=x—A\vs=(x—N)2,...,0, = (z— A1}

where for a € k[z], @ denotes the image of a in V. Because

Tvy = Avy + va,
Tvs = My + v3,

Tvp—1 = Ap—1 + Un,
Tv, = Avy,

the matrix of T" with respect to B is

A0 - 00 0
1 A - 000
01 .- 00 0
(4-7)
00 -~ 1 X0
00 -~ 01 A

This is called the Jordan normal form for T. The minimal polynomial of T is
(x=N)".

Note that kv, is a submodule (this is equivalent to v, being an eigenvector
for T), that (kv,—1 + kvy,)/kve is a submodule of V/kv,, that (kv,—a + kv,—1 +
kvp)/kvy, is a submodule of V/(kv,—1 + kvy,), etc.
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Theorem 4.1 (k algebraically closed) Let T : V — V be a linear transfor-
mation of a finite dimensional vector space. Consider V as a k[z]-module with
x acting as T. Then V decomposes as into a direct sum of k[z]-submodules

V=P --Pw
= Klal/(x = \)™ @@ @D Klel/ (= — )™

where T(V;) C V; for all i, the x — \; are the elementary divisors of T. There
is a basis B for V such that

My O O --- 0 O
0 My 0 --- 0 O

M(T)s= | . | (48)
0 0 O 0 M,

where M; is the n; X n; matriz

i 0 - 0 0 0
1 X - 0 0 0
0 1 -~ 0 0 0
(4-9)
0 0 -~ 1 XN 0
0 0 -~ 0 1 )

This is called the Jordan Normal Form for T', and the M; are called the Jordan
blocks of M.

Corollary 4.2 (k algebraically closed) Two matrices are conjugate if and
only if they have the same Jordan normal form (up to ordering of the Jordan
blocks).

Nilpotent Matrices. A linear transformation T is nilpotent if 7™ = 0
for some m. The only eigenvalue for a nilpotent linear transformation is 0.
The number of conjugacy classes of nilpotent linear transformations of an n-
dimensional vector space is therefore equal to the number of possible Jordan
blocks (with zeroes on the diagonal). If the Jordan blocks of a nilpotent n x n
matrix are of size ej,...,eq then n = e; + --- + e4; conversely if n = e; +
--- + eq, then there is a Jordan normal form (for a nilpotent T") with blocks
of size ey,...,eq. Hence the number of conjugacy classes of nilpotent linear
transformations of an n-dimensional vector space equals the number of ways of
writingn =e; +---+eq4. If n € Nand ey, ..., eq are positive integers such that
n =ey +---+ ey, then we call (eq,...,eq) a partition of n. Hence the number of
conjugacy classes of nilpotent linear transformations of a n-dimensional vector
space equals the number of partitions of n.

The partitions of n are also in bijection with the conjugacy classes in the
symmetric group S,,. There are deep relations between the representation theory
of the group S,, and the nilpotent n x n matrices.
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Eigenvalues. The \; that occur in the Jordan blocks for T" are the eigenval-
ues of T', and each Jordan block with diagonal entry A; provides one eigenvector
(more precisely, one 1-dimensional subspace of eigenvectors) of eigenvalue ;.
Since A is an eigenvalue for T if and only if ker(T'— ) # 0, dim(ker(T'—);)) = #
Jordan blocks with A; on the diagonal.

Jordan decomposition. A linear transformation S is semi-simple if V' can
be written V = V1 @ --- €@ V,, where each V; is 1-dimensional, and S(V;) C
V;j. Thus, S is semisimple <= V has a basis consisting of eigenvectors for
S <= S is diagonalisable. When k is algebraically closed, an arbitrary linear
transformation 7' can be written as T' = S + N where S is semisimple, N is
nilpotent and SN = NS; to see this write T in Jordan normal form, take S to
be the “diagonal part,” and N to be the “off-diagonal part.” This is called the
Jordan decomposition of T'.

2.5 The Characteristic Polynomial.

Let k be any field. If A € M, (k), then I — A is an n x n matrix over k[z], so
its determinant, det(zl — A), is in k[z]. The characteristic polynomial of A is

pa(z) == det(zI — A).

If B= P7'AP for P € GL,(k), then 2 — B = P~!(zI — A)P, so pp(z) =
det(xI — B) = det(P~1)det(zI — A)det(P) = det(x] — A) = pa(x). So the
characteristic polynomial is invariant under conjugation. Hence if T is a lin-
ear transformation, Pr(z) is well-defined: just take pa(x) for any matrix A
that represents T' with respect to any basis. We call pr(z) the characteristic
polynomial of T'.

Proposition 5.1 The eigenvalues of T are the zeroes of pr.

Proof. ) is an eigenvalue for T <= ker(T — )\) # 0 <= det(T — )\) = 0 <
pr(A) = 0. 0

An important property of determinants is that

det (A 0) = (detA)(detB). (5-10)
0 B
More generally, if
My O O --- 0 O
0O M, 0 --- 0 O
A= . (5-11)
0 0 0 0 M,

then pa = pav,pas, - - P, -



2.6. COMPUTATION 21

Theorem 5.2 (Cayley-Hamilton Theorem) For any linear transformation
T, pr(T) =0.

Proof. By Lemma 2.5, it suffices to show that the minimal polynomial of T'
divides pr. Let A be the rational canonical form for T', and suppose that A
is written as in Corollary 3.2 with the M; being the companion matrices for
the invariant factors gi,...,g¢ of T, with g1|---|g:+. A computation shows that
the characteristic polynomial for the companion matrix of the polynomial g is
g itself. Hence, pr = pa = g1 --- g¢- Since the minimal polynomial for T is g,
the result follows. O

Proposition 5.3 The characteristic polynomial of T is the product of the in-
variant factors of T, and this equals the product of the elementary divisors of
T.

Proof. Combine the observations in the proof of Theorem 5.2 with Proposition
1.3.14 d

Trace. The trace of a matrix A = (a;;) € M, (k) is the sum of its diagonal
entries, namely
Tr(A) = a11 + az + -+ - + nn.

Its basic properties are:
(a) tr(A+ B) =tr(A) + tr(B).
(b) tr(AB) = tr(BA).

(c) If the characteristic polynomial of A is ™ + ¢, 12 1 + --- + c1z + ¢,
then tr(A) = —c,_1; this follows at once by looking at the coefficient of
z" ! in det(z] — A).

(d) If P € GL,(k), then tr(P~' AP) = tr(A) because P~' AP and A have the
same characteristic polynomials;

(e) The trace of a linear transformation 7" may be unambiguously defined as
the trace of the matrix representing T with respect to any basis.

(f) If k is algebraically closed, and A C GL, (k) satisfies A™ = 1, then A is
diagonalisable; if P~ AP = diag(\y, ..., ;) then tr(A) = tr(P7'AP) =
A1 + -+ Ap where \q,..., A\, are the eigenvalues for A (counted with
multiplicities).

2.6 Computation

Let R be a PID and M an R-module of finite length. How do we find the
invariant factors for a module M?

Let M be a finitely generated R-module, and choose generators my, ..., m,.
Let R™ be the free R-module with basis e1,...,e, and define ¢ : R* - M by
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p(ej) =mj, j=1,...,n. Then ker p C R™ is also finitely generated (and free),
5o let v1,...,vm be a set of generators for ker ¢. Let R™ be the free R-module
with basis f1,..., fm and define ¢ : R™ — R™ by ¢(f;) = v;. Thus we have an
exact sequence
R" —Y 3 g —% 4, N
There are elements a;; € R such that

e

n
vi=Zaijej, (i:l,...,m).
j=1

We call the m x n matrix A := (a;;) the relations matrix; the terminology is be-
cause the rows of the matrix give “relations” between the generators myq, ..., m,
for M;i.e.,

a;1mi + a;pmsa + - - + aipymy, = 0, (1<i<m).

If we write elements of R™ and R™ as row vectors with respect to the chosen
bases, the map ¢ : R™ — R™ is given by right multiplication by A.

Of course, there are many choices for generating sets for M, which then
changes ¢ and ker @; likewise, ker ¢ has many different generating sets, so the
relations matrix is not uniquely determined.

However, changing the generators for M corresponds to performing elemen-
tary row operations on A, and changing the generators for ker ¢ corresponds to
performing elementary column operations on A. For example, switching the pt®
and ¢'" rows of A corresponds to switching m, and m, in the generating set
for M; replacing m;, by m, + am, corresponds to replacing row p by the sum
of row p and a times row g, et cetera.

If all the entries of A are zero, then M is free with basis m,...,m,. So,
suppose that not all entries of A are zero.

Claim: Let di = ged(a;;). We can perform elementary row and column
operations on A to obtain a matrix in which the 11-entry is d, and all other
entries in the first row and column of A are zero. Proof: First perform elementary
row operations on A so that all the zeroes in the first row occur at the right
hand end of the row, and all the zeroes in the first column occur at the bottom.
If there is only one non-zero entry in the first row, and in the first colummn we
are done, so suppose this is not the case. Suppose that a;; and a;2 are non-zero
(the argument for a1 and ag; is similar).

Let’s assume we have a Euclidean algorithm so there are elements ¢,r € R
such that a;; = qai2 + r, with r “smaller” than a;2. Then r = a;; — qaiz so
replacing C; C; — qCs replaces a;; by r. Now we can repeat this, performing
elementary column operations on C; and Cs so that eventually the 11-entry is
di. O

Our matrix A is now of the form

_(dy 0
-0 4)
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where d; divides every entry in the (m —1) x (n — 1) matrix A;. We can repeat
the process for Ay, thus obtaining a matrix of the form

d 0 0
A=10 d» O
0 0 Aj

where dy is the ged of the entries in Ay, and so on. Eevntually, we obtain a
diagonal matrix, with diagonal entries dy,ds,...,d, where r = min{m,n} and
zeroes elsewhere. It might happen that some of d;s are zero.

If m < n, then M has a free summand of rank > n — m. The d;s that are
not units or zero are the invariant factors of 7M, the torsion submodule of M.



