Chapter 1

Representation theory

Let k be a field. A k-algebra is a ring R together with a homomorphism k& — R
that maps k to the center of R.

We shall always study rings in which 1 # 0, so that the map ¥ — R is
non-zero and hence injective. Thus, we always think of k as a subring of R.
Conversely, if R is a ring containing a copy of k in the center of R, then R is a
k-algebra. If I is a two ideal in a k-algebra R, then R/I becomes a k-algebra
too.

For example, all the quotient rings of a polynomial ring k[z1,...,z,] are
k-algebras.

Multiplication gives k an action on R making R a k-vector space. Similarly,
if M is an R-module, then restricting the R-action to k makes M a k-vector
space. Then the map p : R — Endz M defining the module structure factors
through R — End, M. In fact, giving an R-module is the same thing as giving
a k-vector space V and a k-linear ring homomorphism R — Endy V.

1.1 Group algebras

We will use the letter G to denote a group and will write the group operation
multiplicatively.

Definition 1.1 Let k be a field and G a (finite) group. The group algebra kG
is the k-vector space with basis {v, | g € G} indexed by G endowed with the
multiplication

VgUp ‘= Ugh,

extended k-linearly. O
Thus a typical element of kG is ), Agvy Where Ay € k, and the product

in kG is (g;; )\gvg) (hezguhvh) =Y ( > Azuy)g-

9EG TYy=9g

One should check that this does make kG into a ring with identity, the identity
being the element v, where e is the identity element in G.

1
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The subset {v, | g € G} of kG is closed under multiplication and, in fact,
is a group isomorphic to G. We therefore think of G as a subset of kG, and
reinforce this perspective by a tendency to write g rather than v,. Doing this,
the identity e € G becomes is written as 1 because it is the identity in the ring
kG.

The ring kG is commutative if and only if G is abelian. When G is not
abelian (the usual case) we must take care to distinguish between left and right
ideals, and between left and right kG-modules.

We will (usually) work with left modules.

A left kG-module is also called a representation of G over the field k. In
particular, CG-modules are often called complex representations of G.

Because k is a subring of kG, a kG-module is also a k-module, i.e., a vector
space over k.

If V is a kG-module, then the action of kG on V gives a ring homomorphism
kG — Endi V into the ring of linear operators on V. If dimgV = n, then
Endy, V = M, (k). Hence, giving an n-dimensional representation of G over k is
the same as giving a ring homomorphism kG — M, (k). Restricting this map
to G gives a group homomorphism p : G — GL, (k). Conversely, if one is given
a group homomorphism p : G — GL,(k), there is a unique extension of p to a
ring homomorphism kG — M, (k).

This was the point of view when group representation theory was first devel-
oped in the period 1895-1900 by Molien, Frobenius, and Burnside: a represen-
tation is a group homomorphism p : G — GL,, (k). That is, one tries to realize,
or represent, G as a group of matrices.

In fact, the group algebra was introduced in 1854 by Cayley in the same
paper in which he introduced the notion of an abstract group.

Theorem 1.2 (Molien) Let k be a field in which |G| # 0. Let M be a kG-
module and N C M a kG-submodule. Then there is a kG-submodule L C M
such that M = L& N.

Proof. Let L be any subspace of M such that M = N@® L,andlet w: M - N
be the projection with kerm = L. Define ¢ : M — N by

Zgﬁg Lm).

gEG

If m € N, then g~'m € N, so 7(g~'m) = g~ 'm; hence ¢(m) = m. Thus ¢ is a
projection of M onto N, and M = N & ker ¢.
However, ¢ is a kG-module homomorphism because if h € G, then

|G|Zg7r “Thm) = |G|th7rw m) = h¢(m).
9eqG zeG

It follows that ker ¢ is a kG-submodule of M. O

A simple kG-module is also called an irreducible representation of G.
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Corollary 1.3 Let k be a field in which |G| # 0. Every finite dimensional
representation of G is a direct sum of irreducible representations.

Proof. Molien’s Theorem says that kG is a semisimple ring (see Proposition
?7?2.77. O

Corollary 1.4 Let k be a field in which |G| # 0. Then there are division rings
Dy, ..., D; and positive integers nq, . ..,ns such that

kG = M,,(D1) & - -+ & My, (D).

Proof. This is the Wedderburn theorem for semisimple rings. O

In the context of the previous corollary each D; is obtained as D; = Endgg S;
where Si,...,S; are the distinct simple kG-modules. The dimension over k of
Si is n; dimk Di.

Theorem 1.5 kG is semisimple if and only if chark does not divide |G|.

Proof. We must show that if |G| is zero in k, then kG is not semisimple. It is
enough to show that kG itself is not a semisimple left kG-module.

Let € : kG — k be the linear map defined by e(g) = 1. Then ¢ is a ring
homomoprhism, so m := kere is a a two-sided ideal in kG, and kG /m is a left
kG-module of dimension one. Notice that m is the linear span of {g—1 | g € G}.

If kG were semisimple, m would have a complement, say kw, a left ideal such
that kG = m@® kw. There is a kG-module isomorphism kw 22 kG /m, so w would
be annihilated by every g — 1. If we write w = }__ _; Az, then the condition
gw = w implies that all \;s are the same, i.e., w = A1 ), . But this implies
that e(w) = M|G| =0, so w € m. From this contradiction we deduce that kG
is not semisimple. a

Remark. Suppose that M and N are kG-modules and f : M — N a
k-linear map. Then f is kG-module homomorphism if and only if f(zm) =
zf(m) for all z € kG and m € M. However, every element of kG is a k-linear
combination of the elements in G, so f is a kG-module homomorphism if and
only if f(gm) = gf(m) for all g € G and m € M.

1.2 Examples

Molien’s theorem shows that in “good characteristic” the representation theory
of G is completely determined by knowledge of its irreducible representations.
Hence, we wish to determine all simple kG-modules. If we fix G the answer
depends on the field.

Certainly every 1-dimensional kG-module is simple, so we begin by looking
for the 1-dimensional representations.
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The trivial representation. The trivial representation of G is that cor-
responding to the map G — GLi(k) = (k\{0},.), g — 1. Thus, the trivial
representation is the kG-module k with every g acting on it as the identity.

The sign representation. Let S, be the n'" symmetric group and let
S, = {£1} € GL; (k) be the map defined by

p(o) =

+1 if ¢ is an even permutation
—1 if o is an odd permutation

The associated 1-dimensional representation of S, is called the sign representa-
tion.

If chark # 2 the sign and trivial representations of S,, are not isomorphic.
One way to see this is to notice that their annihilators are different (remember
that isomorphic modules have the same annihilator). The trivial representation
is annihilated by all 1 — g, g € G. These elements span an ideal of kG called the
augmentation ideal. However, if chark # 2, and ¢ € S, is an odd permutation,
then 1 — o acts on the sign representation as multiplication by 2 # 0, so does
not annihilate the sign representation.

1-dimensional representations. Let G be any group. A 1-dimensional
representation of G is the same thing as a group homomorphism ¢ : G —
GLy(k). Since GL;(k) is abelian the kernel of such a homomorphism must
contain all elements of the form zyz~'y~!. Such an element is called the com-
mutator of = and y, and is denoted by [z,y]. The subgroup of G generated by all
commutators is called the commutator subgroup of G. It is a normal subgroup
because

alz,yla™" = [a, [z, y]][z, y].
The quotient G/[G, G] is abelian, and if A is any abelian group

{homomorphisms G — A} = {homomorphisms G/[G,G] — A}.
Hence
{1-dimensional repns of G} = {1-dimensional repns of G/[G, G]}.

So, we need to determine all 1-dimensional representations of a finite abelian
group A. We can write A = A; X ---x A, as a product of cyclic abelian groups.
There is a corresponding decomposition

kA= kA x---x kA, 2 kA1 & --- D EkA,

of the group algebra as a product (or direct sum) of group algebras of cyclic
abelian groups. Lemma ?? shows that the representation theory of a finite
abelian group A = A; x ... x A, is completely determined by that for each A;.
Thus we need to determine the representation theory of the cyclic groups.

Lemma 2.1 There is a ring isomorphism kZ, = k[z]/(z"™ — 1).
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Proof. We have Z,, = (g | g" = 1), 50 kZ" =k ® kg D kg*> ® - -- ® kg™ '. Let
¥ : k[z] = kZ,, be the ring homomorphism determined by 1 (z) = g; of course,
we also insist that 1) is k-linear. This map is surjective and its kernel is (™ —1),
hence the result. |

This isomorphism says that kZ,-modules are the same things as k[z]-modules
that are annihilated by (z™ — 1). The theory of k[z]-modules shows that every
kZ ,-module is isomorphic to a direct sum of modules of the form

klz]

(f)
where f is a monic irreducible polynomial such that f¢ divides z™ — 1.
At one extreme we have the case when chark = p and n = p. In this case,
k[z] klz]  Klz]

= = (2-1)

S R e T PO

1%

The equality in (??) follows from the fact that in characteristic p,
(a4 b)P = aP + b7;

this holds because the binomial coefficients (?) are divisible by pfor 1 < < p—1.
The final isomorphism in (??) is induced by the ring isomorphism k[z] — k[z],
2 +— x + 1. The isomorphism kZ, — k[z]/(«P) is given by g — = + 1.

We have proven the following result.

Proposition 2.2 If chark = p, then every kZ ,-module is a direct sum of mod-

ules of the form
klz] _ _kZy

(z) ~ (g-1)7
More generally, kZ,» = k[z]/(z?") if chark = p.

At the other extreme, we have the following result.

Lemma 2.3 Suppose that k has a primitive n'" root of unity, say w. Fiz a
generator, g say, for Z,. Then kZ, has n distinct simple modules up to iso-
morphism, namely

Vi == kZ,/(g — W), 0<i<n-—1.

Proof. As remarked above, kZ, = k[z]/(z™ — 1) where g + z under the
isomorphism. The hypothesis implies that ™ — 1 factors into a product of n
distinct irreducibles over k, namely

" —1=(z—-1)(z—w)(z—w?) - (z—-w"t).

Let M be a k[z]-module that is annihilated by 2™ — 1. By the structure theorem
for modules over a p.i.d., M is isomorphic to a direct sum of modules of the
form k[z]/(f") where f is irreducible and f" divides ™ — 1. Hence M is a direct
sum of modules of the form k[z]/(z — w?). a
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Lemma 2.4 Let p,p' : G — GLy(k) be group homomorphisms, and let V' and
V' be the corresponding 1-dimensional representations of G. Then V = V' if
and only if p=p'.

Proof. The module V is, by definition, the vector space k with the action given
by g.v = p(g)(v) for g € G and v € k. Now V is isomorphic to V' if and only
if there is a k-linear isomorphism ¢ : V' — V' such that ¢(g.v) = g.¢(v) for all
g € G and v € V. The k-linear isomorphisms from % to itself are of the form
¢(v) = Av for some 0 # X € k. Thus V = V' if and only if there is a non-zero
A € k such that Ap(g)(v) = p'(9)(\v) for all g € G and v € k. But p'(g) is a
k-linear map, so this equality holds if and only if p = p'. O

The natural representation of S,,. Let V be the k-vector space with
basis ey, ..., €, and define
g.€; 1= €44,

for ¢ € S, and extend the action of ¢ to a k-linear action on all of V. We
call this the natural representation of S,. It is an example of a permutation
representation (see below).

Lemma 2.5 Suppose that char k does not divide n!. Then the natural repre-
sentation of Sy, is the direct sum of the trivial representation and an (n — 1)-
dimensional irreducible representation.

Proof. Notice that o.(e; +---+e,) =e1 +---+ e, for all ¢ € S,,. Hence the
line spanned by e; + - - + e, is an S,-submodule of V' and is isomorphic to the
trivial representation.

The map f : V — k defined by f(aner + -+ anen) = 01 + -+ ayp is
easily seen to be an S,-module map to the trivial representation, so U := ker f
is an Sp-submodule of V. A basis for U is given by the elements e; — e;41,
1<i<n-1.

Let W be a non-zero kS,-submodule of U, and choose 0 # u = (a1, ...,a,) €
W. Certainly, u has at least two non-zero entries. If only two of the entries in
u are non-zero, then W contains e; — e; for some ¢ # j; now we could act by S,
to get every e, — ep11 € W since these elements span U, we have W =U.

Now suppose u has at least three non-zero entries. The non-zero entries in
u can not all be the same because f(u) = 0 and n! # 0 in k. Permuting entries,
we may therefore assume that ajas # 0 and aq # az. Now W contains

(1 —az)™t (a2 - 01(12))-U = (0,01 + az,03,...,05).

By induction, we may assume the lemma is true for S,,_1, so if G is the subgroup
of S, fixing 1,

kG.(0,a1 + as,az,...,a,) = (0,%,%,...,%) Nker f C W.

This subspace of W has dimension n — 2, and does not contain u, so dim W >
n — 1, whence W = U. Thus U is simple. O



1.2. EXAMPLES 7

Permutation representations. Suppose G acts on a set X, i.e., we have
a group homomorphism

¢ : G = S(X) := {bijective maps X — X}.

We also write gz := ¢(z). Thus, the action of G on X is the same thing as a
map G x X — X, (g,z) — gz, such that g.(h.z) = (gh).z for all g,h € G and
rzeX.

Now fix a field k and let V' denote the k-vector space with basis {e, | z € X }.
We make V' into a representation of G' by defining g.e, := ey, for all g € G and
z € X, and extending this action linearly. Check that this makes V a kG-
module.

We call V' a permutation representation of G.

If O = Gz is an orbit in X, then

is a subrepresentation. Further, since V is a disjoint union of orbits there is an
analogous decomposition of V' as a direct sum of submodules, V' = & 1its 0 Vo-

Example 2.6 Suppose that chark # 2. Let G = S3, the symmetric group.
What is the endomorphism ring of the 2-dimensional irreducible representation
V'? Suppose that ¢ : V — V is a kS3-module homomorphism. Then ¢ commutes
with the action of S3. Remember that V' C ke; + kes + kes is the kernel of the
linear form defined by A(e;) =1 for all i.

Now (12) has two distinct eigenvectors e; — es and e; + e2 — 2e3 with eigen-
values —1 and 1, respectively. Hence ¢ must preserve each of these eigenspaces.
Similarly, (13) has eigenvalues +1 and ¢ preserves those two eigenspaces. It
follows that ¢ is multiplication by a constant. Hence Endgs, V' = k. O

Since G is finite, kG is a finite dimensional vector spaces. Thus kG is left
and right noetherian.

Proposition 2.7 If G is a finite group kG has only a finite number of simple
modules up to isomorphism.

Proof. This is Corollary ??.77. |

As already mentioned, a basic task of representation theory is to find all the
representations of all finite groups over all fields. In particular, one must find the
simple modules. The proposition shows this is a finite task. If (char k, |G| = 1),
this finishes the task because all modules are direct sums of simple ones.

A module is indecomposable if it is not a direct sum of two non-zero modules.
It is easy to see that every module is a direct sum of indecomposable ones. It is
not so easy to see that over kG (or, more generally, over any finite dimensional
k-algebra) every module is a direct sum of indecomposable ones in a unique
way. Thus, to find all modules one must find all the indecomposable ones. For
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example, we have already seen that over a field of characteristic p, Z, has exactly
p + 1 indecomposable representations.

The question of whether kG has only finitely many indecomposable repre-
sentations must have arisen at an early stage of representation theory. The
answer is “no”. For example, if chark = p, then k(Z, x Zp) = k[z,y]/ (P, y?).
Set R = k[z,y]/(z?,zy,y?). For each (a, ) € k* define M, 3 = R/I, 3 where
I, p is the ideal k(az + By). Thus M, g is a two-dimensional representation of
k(Z, x Zp). It’s only submodules are itself, zero, and k% + ky. It follows that
M, is indecomposable. The annihilator of M, g is I g; since I g # I, s if
(e, B) are distinct points of P*, M, 53 # M, 5 if (o, 8) # (v,9). Thus, if k is an
infinite field of characteristic p, then the modules M, g provide infinitely many
non-isomorphic indecomposable representations of Zj, X Z,,.

The G-structure on Homy (M, N). Let M and N be (left!) £G-modules.
Then Homy (M, N) becomes a left kG-module via

(9-f)(m) = gf(g~'m) for g€ G, m e M. (2-2)

To verify this we must check that (hg).f = h.(g.f). If m € M, then

(n(9-N) () = g(h-£) (g 'm) = gh.f(h""g (m) = ((gh).f)(m).

A particular case is when N is the trivial representation. We write M* :=
Homk (M, ktrz’v)-

Example 2.8 (The discrete Heisenberg group) Let G C GL3(Z,) be the
subgroup consisting of the upper triangular matrices with ones on the diagonal,
i.e., the elements of G are

b

1
0 a,b,c € Zny,.
0

O~ R

c
1
This is the finite Heisenberg group of order n®. It is generated by

110 1 00

a=(0 1 0], =10 1 1

0 01 0 01

A computation shows that

—_ O =

1 0
aptap=1(0 1
0 0

and this element is central. In terms of generators and relations,

G={(a,B,z|a"=p"=2"=1,a" ' af = 2, za = az, 28 = B2).
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The commutator subgroup of G is equal to its center (z). Since the commutator
subgroup acts trivially on every 1-dimensional representation and G/(z) = Zp x
Zn, CG has n? 1-dimensional modules up to isomorphism.

Now I describe an irreducible complex representation of dimension n. Let w
be a primitive n'® root of 1 and define a group homomorphism p : G — GL,(C)

0 0 01 1 0 0 0 0
10 00 0 w O 0 0
2
pa) = 01 00 p(B) = 0 0 w 0 0
0o 0 --- 10 00 0 - 0 w't!

Notice that p(8)p(a) = wpl(a)p(B), so p really does extend to a group homo-
morphism G — GL,(C). To see that this action on C* makes C* an irreducible
representation, let m be a non-zero element of C*. First, let’s write e1,..., e,
for the ordered basis of C* with respect to which we wrote these matrices. Thus,
a.e; = e;y1 (where e, 1 = e,) and B.e; = wi~le;. Write m = Y \je;. If A; #0,
then e; € C[f].m. Hence the CG-submodule of C* generated by m contains
some e;. Now Cla].e; = C*, so CG.m = C". This shows that C" is a simple
CG-module.

Notice that z acts on this representation as multiplication by w=?. ¢

Proposition 2.9 Let p be a prime and G the Heisenberg group of order p.
Then G has p? 1-dimensional representations and p — 1 distinct irreducible ir-
reducible representations of dimension p.

Proof. Let V be an irreducible representation of CG. Then (z — \)V = 0 for
some A € C by Corollary 3.5. Since 2P = 1, AP =1 too.

If A =1, then V is an irreducible representation of G/(2) & Z, x Zp. There
are exactly p? such representations.

Now suppose that A # 1. Then ) is a primitive p** root of 1. We just saw
in the previous example that G has an irreducible representation of dimension
p that is annihilated by (2 —\). As X varies over the distinct primitive p*® roots
of unity we obtain p — 1 different irreducible representations of dimension p.
These, together with the 1-dimensional representations give a complete list of
the irreducible representations because (p — 1)p? + (p?).1 = p® = |G|. O

1.3 Basic results

Of course we identify the field k¥ with the subring k.1 of kG. Of course, k is in
the center of kG.

Lemma 3.1 Let R be any ring, Z(R) its center, and M a left R-module. There
is a ring homomorphism ® : Z(R) — Endg M, defined by ®(z) = ¢, where
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¢, : M — M is given by ¢,(m) = zm. Moreover, the image of ® is contained
in the center of Endg M.

Proof. First, if r € R, then ¢, (rm) = zrm = rzm = r¢,(m), so ¢, € Endg M.
If ¢ € Endg M, then ¢.1p(m) = z¢(m) = yp(2m) = 9. (m) so ¢4 = Pg.; e,
the image of ® is contained in the center of Endg M.

It remains to show that @ is a ring homomorphism. This is easy. O

Hence if M is a simple kG-module, the map from Z(kG) to the division ring
D = Endyg M sends k to the center of D. Since kG has finite dimension over
k sodo M and D.

Lemma 3.2 Let R be a commutative domain. If R contains o field k and
dimy R < oo, then R is a field.

Proof. Let 0 # z € R and define o : R — R by a(r) = zr. Because R is
a domain, « is iunjective, and hence surjective because dimy R < oco. Hence
1 = a(r) for some r, and we deduce that r is the inverse of z. Thus R is a field.
O

Lemma 3.3 Let k be an algebraically closed field and D a division ring that
contains a copy of k in its center. If dimy D < 0o, then D = k.

Proof. Let x be any non-zero element of D. The subring R = kz + kz? + ...
of D is a domain and is commutative. It is also finite dimensional because D
is, so it is a field by Lemma 3.2 But k is algebraically closed so R = k. Thus
z € k. d

Proposition 3.4 If k is an algebraically closed field and V' an irreducible kG-
module, then EndigV = k.

Corollary 3.5 Let k be an algebraically closed field, V' an irreducible kG-
module, and z € Z(G) a central element of G. Then (z — A\)V = 0 for some
A€EEK.

Proof. Recall that the action of Z(kG) on V gives a ring homomorpphism
¢ : Z(kG) — Endge V. But that endomorphism ring is k, so ¢(z) = A for some
A € k. In other words, if v € V then zv = v, whence (z — A\)v = 0. O

This corollary can sometimes be used to recognize when two irreducible rep-
resentations are not isomorphic. Since isomorphic modules have the same anni-
hilator, if 2 € Z(G) acts on V as multiplication by A and on W as multiplication
by p# A, then V22 W. We use this argument in Example 2.8.

Theorem 3.6 Suppose k is an algebraically closed field such that chark does
not divide |G|. Then

kG = M,, (k) ® - ® M, (k)
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where there are t different simple kG-modules, say Si,...,S:, of dimensions
Niy...,Ng.

Notice in particular, that |G| is equal to the sum of the squares of the
dimensions of the irreducible CG-modules.

Proposition 3.7 Suppose k is an algebraically closed field such that char k does
not divide |G|. Then the number of irreducible representations of G is equal to
the number of conjugacy classes in G.

Proof. Because kG is semisimple, we have a Wedderburn decomposition
kG = M, (k) ®--- & My, (k)

where ¢ is the number of simple modules. From the Wedderburn decomposition
we see that the center Z of kG has dimension ¢: it has basis given by the
idempotents ey, . ..,e; where e; is the identity element in M,, (k).

If {91,...,9r} is a conjugacy class in G, then g1 + ...+ g, is in Z. We call
this a class sum.

Claim: The class sums form a basis for the center of kG. Proof: Certainly
the different class sums are linearly independent. On the other hand, if z =
dec Agg is in the center of kG, then for every z € G,

_ -1 _ -1
z=2x2T —E AgrgT™ .

9€@
Hence A\; = A,y,-1. In other words if {g1,...,9-} is a conjugacy class in G,
then Ay, = Xy, for all 4,5. Hence Ay, g1 + ...+ Ag,9r = Ag, (91 + ...+ gr), 50 2
is a linear combination of class sums. |

As the next example illustrates, it is sometimes possible to determine the
dimensions of the irreducible representations rather easily by using the results
in this section.

Example 3.8 (Dihedral Groups) The dihedral group of order 2n is
D,:={o,7|0*=7"=1,010 =77}

Suppose that char k|2n so every representation of D,, over k is semisimple.
(1) Suppose that n = 2m is even. There are two conjugacy classes with m
elements, namely

{o, o2, o7, ... ,07'2'”72} and {oT, o, 07°,.. ., 07'2'”71}.

The center of Dy, is {1,7™}. There are m — 1 conjugacy classes with two
elements, namely

{7',7'_1}, {7'2,7'_2}, e, {Tm_l,Tl_m}.
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This is a total of m + 3 conjugacy classes.
The commutator subgroup is generated by 72 = o7 lo7T, so

G = G/[G,G] EZQ X Z2.

Then G, and hence G, has four distinct 1-dimensional representations, and all
other irreducible representations have dimension > 2. But 4.12 4+ (m — 1).22 =
4m = |Day|, so we conclude that D, has four 1-dimensional representations
and m — 1 two-dimensional irreducible representations.

(2) Now suppose that n = 2m + 1 is odd. There is one conjugacy class with
n elements, namely

{o,07%,07,.. o™ = o™} 07?2 = g1,07°,..., 07! = o712}
The center of Da,,41 is trivial. There are m conjugacy classes with two elements,

namely
{r, 7'}, {=*, 772}, ..., {7™, 7 ™}.

This is a total of m + 2 conjugacy classes.

The commutator subgroup is generated by 72 = o7 ~!

oT, so equals (1), and
G :=G/[G,G] = Zs.

Then G, and hence G, has two distinct 1-dimensional representations, and all
other irreducible representations have dimension > 2. But 2.1+ (m).2? = 4m+
2 = |Dam41], so we conclude that Dy, 41 has two 1-dimensional representations
and m two-dimensional irreducible representations. O

Example 3.9 (The quaternion group) Let @ = {£1,+i,+j,+k} be the
subgroup of the quaternion algebra H. Although @ 2 D, the representation
theory of these two groups is in some naive sense the “same”. (We will explain
later why it is not really the same—compare the character tables.)

The center of () is {£1} so there are two conjugacy classes of size one. There
are three other conjugacy classes, namely {+i}, {%j}, {k}. Since there are five
conjugacy classes, over C, () has four one-dimensional and one two-dimensional
irreducible representation. This is the same as for Dy. O

Consider the irreducible representations of S,,. The conjugacy classes in S,
are in bijection with the partitions of n.

Representations of S4. The partitions of 4 are
(1M, (1%,2), (1,3), (2,2), 4.

We already know there are two 1-dimensional irreducibles. The only way to
write 24 as a sum of five squares, one of which is 1, is

24 =12 +12+ 22+ 3% + 32
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We know this without even trying to find the representations.

Representations of S;. The partitions of 5 are

(1%), (1%,2), (1,2%), (1%,3), (1,4), (2,3),(5),

so S5 has 7 irreducible representations. We already know there are two 1-
dimensional irreducible representations, and an irreducible representation of
dimension 4, so that leaves four to find of dimensions a, b, ¢, d where a® + b*> +
A +d?=120-1%2 - 12 — 42 = 102.

1.4 Characters

Throughout this section G denotes a finite group and all the representations we
consider will have finite dimension.

Definition 4.1 Let V be a finite dimensional k-vector space and p : G — GL(V)
a representation of G. The character of the representation, denoted x, or xv,
is the function G — k given by

xv(g) = Trp(g),

the trace of p(g). We call dimy V' the degree of xy. If V is an irreducible
representation we call xy an irreducible character. O

It is clear that isomorphic representations have the same character. Theorem
4.5 below shows the converse is also true—this is a remarkable fact.

A class function on G is a function ¢ : G — k that is constant on conjugacy
classes, i.e., ¥(zgz~') = 9(g) for all g,z € G. We write CI(G) for the space of
class functions.

A character is a class function because conjugate matrices have the same
trace, i.e., the trace of a linear map does not depend on the choice of basis.

The class functions G — k form a k-vector space in an obvious way, i.e.,
(v +¢)(g) :=¥(g) + #(g). We can also multiply two class functions, (¢¢)(g) :=
¥ (g)p(g), and their product is a class function too. Hence the class functions
form a ring.

Each class function ¢ : G — k extends in a unique way to a linear map
¥ : kG — k. We make use of this observation and evaluate class functions at
elements of kG.

Now suppose that the base field is C. We speak of complex characters to
indicate that we are working over C.

Lemma 4.2 Let x be complex character of G of degree n. Then
1. x(1) =n;

2. x(9) is a sum of roots of unity, hence an algebraic integer;
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3. x(9) =x(g71);
4. if g #1, then Rex(g) < n.

Proof. (1) The trace of the identity in M,(C) is n.

(2) If g € G, we can view C" as a representation of the cyclic group (g),
and as such it decomposes into a direct sum of 1-dimensional (g) submodules.
Thus the matrix for g may be diagonalized, and the diagonal entries are the
eigenvalues \q,..., )\, for g. Since g™ = 1 for some m > 1, each ); is an m*®
root of unity (A} is an eigenvalue for g").

(3) If X is a root of unity, then A~ = X. To see this, suppose that A™ = 1.
Then A\ is a positive real number whose m'" power is equal to 1, whence A\ = 1.

(4) The real part of x(g) is the sum of the real parts of the \;. However, if
g # 1 some \; # 1, so the real part of \; is < 1. O

If x is a class function we define a new class function ¥ by

x(9) == x(g™")

for all g € G. We call this the dual of x. The next result explains this terminol-
ogy.

Proposition 4.3 Let M and N be finite dimensaional kG-modules, and view
H = Homy(M,N) as a kG-module via (2-2). Then

XH = XMXN-

In particular, Xy = Xar-

Proof. Choose bases e;,...,e, for M and fi,...,f, for N. Fix g € G and

write " :
g*l-ej = Zaije,- g,fj = ZBUfi
=1 i=1
A basis for Homy (M, N) is given by the maps 8;; defined by
05 (ee) = fibje-
Then
(9.6:5)(es) = 9.0i5(g ".e5)
= 99” (Z apsep)
p=1
=9 (ajsfi)

n
=ajs Y Biifi-
t=1
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Thus
905 = > jsBribs,

t,s

and the trace of g acting on H = Homy (M, N) is
xm(9) =D _0jiBi = (Z ajj) (Z ﬂm) =xm(g~ xn(9) = Xar(9)xn(9)-
4,3 j=1 i=1

This completes the proof of the first statement, and the second is given by
observing that the character of the trivial representation is identically one. O

Let G be a finite group with ¢ distinct conjugacy classes. By Proposition 3.7,
CG has t different simple modules up to isomorphism. Label these S, ...,S5; and
let CG = M,,(C)®---® M,,(C) be the corresponding Wedderburn decomposi-
tion. Thus n; = dim¢ S;. Let e; be the identity element in M, (C) = Endcg S;.
Then {ey,...,e,} is complete set of orthogonal idempotents, labelled so that
e;S; = 0if ¢ # j and e; acts on S; as the identity. We adopt the following
notation:

simple modules S| Se | ------ S
their dimensions ny | ng | ~reee- ng
irreducible characters | x1 | x2 | -=---- Xt
central idempotents er | ey | oeen et

Theorem 4.4 The irreducible characters form a basis for the class functions.

Proof. With the above notation it is clear that
Xz'(ej) = ”z’&j-

It follows at once that {x1,...,X:} is linearly independent. Since the number
of conjugacy classes is ¢, dimy C1(G) = t and the result follows. O

Theorem 4.5 IfV and W are CG-modules, then V=2 W if and only if xv =
Xw -

Proof. Let Si,...,S; be the distinct simple CG-modules and x1,--.,Xx: the
corresponding irreducible characters. If V= S7' & --- @& S, then xy = a1x1 +

...+agx¢- The result now follows from the linear independence of the irreducible
characters. a

We write xreg = Xcg and call it the regular character.

G| ifz=1,

Lemma 4.6 If x € G, then xreq(2) = {0 ifo#1.
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Proof. Since dimCG = |G|, xreg(1) = |G|. If z # 1, then the action of = on
CG by left multiplication permutes the basis elements {g € G} leaving none
fixed so, with respect to that basis, the matrix for z has zeroes on the diagonal.
O

Lemma 4.7 With the above notation,

.7 |G| ZX] _1 .’L'.

z€G

Proof. By the Wedderburn decomposition xreq = n1x1 +---+nx:. If g € G,
then g~'e; acts on S; as g~' does, and on S; as zero if i # j. Hence

Xreg anXz 16] _n]XJ(g 1)-

On the other hand, if we write e; = ), Asz, the previous lemma shows that

Xreg Z )‘ereg g I.Z' |G|/\g
zeG
Thus A\, = |G| 'n;jx;(g"), as required. O

Definition 4.8 The Hermitian inner product of two characters x and £ is
8) = G| > x(9)El9) = @ G| > xl(g
9€G 9eG

The norm of a character is
[IxIl = v (X x)-

0

We saw in Lemma 4.2 that x(g7!) = x(g) so x(9)x(g~!), and hence (x,X)
is a non-negative real number so the norm of y is a non-negative real number.

Lemma 4.9 Let x and & be complex characters. Then

1. (€7X) = (Xa );
2. (x1+x2,6) = (1,8 + (x2,8);
3. (A, &) = A0, ) and (x, AE) = A(x, &) for all X € C

Theorem 4.10 The irreducible characters form an orthonormal basis for the
space of class functions. That is, (i, X;) = 0ij-
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Proof. We have already seen that x;(e;) = n;d;;. Thus, by Lemma 4.7,

n;6i; = Xieg) = 1or D Xil@ ™ xale) =5 (xe: x3)-
| |mEG

The result follows. O

Fourier coefficients. If x is any class function, we can write

t
X = ZazXz =) 06 X)X
i=1

We call a;; = (), x:) the it" Fourier coefficient of x.

Corollary 4.11 A character has norm one if and only if it is irreducible.,

Proof. We have just seen that |[x;|| = 1 for all j. On the other hand if
X = AX1+--.+AnXn, then (x, %) = A2 +---+ 2. However, if x = xy for some
representation V', each ); is a non-negative integer and, if V is not irreducible,
this sum is > 2, so ||xv|| > V2. O

The character table. One of the basic steps in understanding a group
is to compute its character table. This is a square array of numbers with one
row for each irreducible character and one column for each conjgacy class. The
entry corresponding to row x; and conjugacy class C; is x;(g) where g € C;.

Warning. Although the number of irreducible CG-modules equals the num-
ber of conjugacy classes in G there is no natural bijection between the conjugacy
classes and the complex irreducible representations.

This comment is a little vague because I do not say what I mean by “natural”.
However, let’s look at a special case to see the problem. Let G be a cyclic
group of order n. Then each element of G is a conjugacy class, so we are
saying that there is no natural bijection between the elements of G and the
irreducible representations. The irreducible representations are given by the
group homomorphisms a : G — GL;1(C). The image of @ must be contained in
the group p,, of n*® roots of unity. So we are saying there is no natural bijection
between the elements of G and the homomorphisms a : G — uy.

More to say!

Theorem 4.12 (Frobenius’s Orthogonality Relations) 1. The weighted
rows of the character table are orthogonal, i.e., for all 1 <1i,j <t,

t
Z |Ck|x:i(Cr)X; (Ck) = 6i5]G]. (4-3)

k=1

2. The columns of the character table are orthogonal, i.e., for all1 <i,j <t,

G
Z x(C ~ 3 (44)
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Proof. (1) This is a restatement of the result that the irreducible characters
form an orthonormal basis, namely

8i = (X4, X5)
- % 3 (@)X, (@)

zeG

1 t
=G > 1CkIxi(Cr)X; (Cr)
k=1

(2) Let M be the ¢t x ¢t matrix with ij*® entry

lic.
M;; = %Xi(cj)

and let M* be its conjugate transpose. Then (1) says that MM* = I, so
M*M =T too, and writing out what this means for each entry gives (2). O

1.5 Tensor product of representations.

We observed earlier that a product of class functions is again a class function. It
is reasonable to ask if the product xv xw of two characters is again a character
and, if so, what is the representation of which it is the character.

The answer is this:

XVXW = XVW,

where V ®;, W is the tensor product of V and W.
In brief, V ® W is a vector space spanned by elements that are denoted by
v ® w where v € V and w € W, and the action of G on V ® W is defined by

g-(v @ w) := (gv) ® (gw).

Although V®W is spanned by elements v®w, there are lots of linear dependence
relations between them. It turns out that

dim(Ve@ W) =dimV x dim W
and if {v; | i € I'}} and {w; | j € J} are bases for V and W, then
{viow;liel,jeJ}
is a basis for V@ W.

Definition 5.1 Let V and W be k-vector spaces. Their tensor product, denoted
V @k W, is the vector space spanned by all symbols {v@w |v € V, w € W}
subject to the relations:
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1. (v1 £v2) @w =1 @ w £ V2 @ w;
2. 0@ (wr tw2) =v@w; v ws;
3. Avew) =) w=1ve (w);
o

Confessions and Misgivings. It seems that almost everyone finds the
definition of tensor product unsettling at first. I have postponed giving the
definition for this reason. There are several different ways to define tensor
product and all seem to have their disadvantages (and advantages).

One definition I like is the most abstract one wherein one does not define
V @ W as a particular set with certain structure but one defines it in terms of
its properties. (The idea that one might define an object by its properties is
reminiscent of Matthew 7:15-18 “Ye shall know them by their deeds”.) This is
a new kind of definition. An example will show you what I mean.

The cartesian product of two sets M and N is usually defined as the set of
ordered pairs (m,n) is m € M and n € N. But we could also define it as the
set M N having the property that there are “natural” isomorphisms

Map(M N, D) = Map(M, Map(N, D))

for all sets D. Of course it appears that the first definition is preferable because
it is concrete. An obvious problem with the second definition is that we do not
even know if there is a set M N with the stated property. And there might be
more than one such set. And what do we mean by “natural”? Given all this,
it is probably not easy for you to believe that the second definition is in many
ways better!

In this spirit, here is how one defines the tensor product of two modules.

Definition 5.2 Let M be aright R-module and N a left R-module. Then M ® g N
is the unique abelian group (up to unique isomorphism) with the property that
for every abelian group D there is an isomorphism

Homz(M ®g N, D) =2 Homg(M,Homz(N, D)). (5-5)
0

For this definition to begin to make sense we need the right-hand side of the
isomorphism to be defined and for this we need to make Homgz(N, D) into a
right R-module. We do this by defining

(6.r)(n) :==6(rn)

forne N,r € R,and 8 : N — D a group homomorphism. It is straightforward
to check that this does indeed make Homz(N, D) into a right R-module.
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Notice that the right-hand side of (5-5 gives a contravariant functor F' :
Ab — Ab from the category of abelian groups to itself, namely

M s Hompg (M, Homz(N, D)).

Whenever we have such a functor we can ask whether there is an abelian group
G such that F(D) = Homz(G, D) for all D.
Claim: If there is such a G then G is unique up to unique isomorphism.
We then show that there is such a G, namely the quotient of the free abelian
group with basis the elements of the Cartesian product M x N modulo the
subgroup generated by all elements of the form
(mr,n) — (m,rn) meM,neN,reR
(m1 + ma,n) — (m1,n) — (ma,n) my,ms € M, n € N,
(m,ny +na) — (m,n1) — (m,n2)  m € M, ny,na € N.
One usually writes m ® n for the image of (m,n) in the quotient group.
This is certainly explicit, but is difficult to work with. In practice what one
works with is the defining property (5-5).

Proof: Suppose that G and G’ are such. Then taking D to be G and G" we
see that F(G) 2 Homgz(G',G) and

1.6 Applications of characters

Lemma 6.1 Let N be a normal subgroup of G, and 7 : G — G /N the natural
map. If p: G/N — GL(V) is a representation of G/N, then

1. pr: G — GL(V) is a representation of G;
2. p is irreducible if and only if pw is;
3. dim¢cV = xyv(1) = xv(x) for allz € N.
Proof. O

Lemma 6.1 shows that each representation of G/N determines a represen-
tation of G in an obvious way; we call this process lifting a representation from
G/N to G.

Proposition 6.2 Let p: G — GL(V) be a representation. Then
1. kerp={z € G| xv(z) =xv(1);

2. p determines a representation p of G/kerp and p is the lift of .

Proposition 6.3 It is possible to determine the following informations from
the character table of G:

1. the order of G;
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2. the size of the conjugacy classes;
3. the order of the normal subgroups;

4. whether G is a simple group.

Proof. (1) We have |G| = Yk, xi(1)%.

(2) If C is a conjugacy class, then
e

Skt xi(C)X:(©)

(4) Claim: G is not simple <=> there is a non-trivial irreducible character x
and 1 # z € G such that x(z) = x(1).

Proof: Let N # G be a normal subgroup of G. Then G/N # 1so G/N has a

non-trivial irreducible representation, say p : G/N — GL(V). Then V becomes
a representation of G too and xv(z) = x(1) for all z € N. O

ICI

Recall that w € C is called an algebraic integer if w is the zero of a monic
polynomial with coefficients in Z.

Lemma 6.4 Let z; be the sum of the elements in the conjugacy class Cj. Then
zj acts on the simple module S; as multiplication by

1
wij 1= n_i|Cj|Xz’(Cj)-

Proof. By Schur’s Lemma, Endgg S; = C, and left multiplication by z; is a
CG-module endomorphism of S; so x;(z;) = n;w for some w € C. However,
Xi(2;) = |C;|xi(C;) because z; is the sum of the elements in Cj. 0O

Let p; : G = GL,,(C) be the i** irreducible representation. Then
wij = pi(z;)-

Lemma 6.5 The number c;)
Wij = nJ xi(Cj)

i

s an algebraic integer.

Proof. We consider the integral group algebra

ZG::EBZgC(CG.

g€eG

The class sums, zc = )., ., form a Z-basis for the center of ZG as C runs
through the conjugacy classes in G. For simplicity we label these class sums as
Z1,...,%. Since the center of ZG is a ring there are elements a5, € Z such that

t
RZikj = E Qjjk 2k -
k=1
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Applying p, to this equality gives

t
WeiWe; = § Qi Wek
k=1

or
t

Z(az’jk - 5jkwei)w1fk =0

k=1
for all 4,5 and £. Let A be the t x t matrix with j&'® entry a;;, and let X be
the ¢ x 1 column matrix whose kt® entry is wer. Then

(A - Iwig)X =0.

Since pe(er) # 0, X # 0. Hence wj is an eigenvalue for A and hence a zero
of the characteristic polynomial of A. But all the entries of A are integers, so
that characteristic polynomial is a monic polynomial in Z[z]. Hence wj, is an
algebraic integer. O

Proposition 6.6 The dimension of every complex irreducible representation of

G divides |G)|.
Proof. By (4-3) and Lemma 6.4,

t

t
G =D ICkIxi(Ck)Xi(Ck) = Y miwinXi(Ch)-

k=1 k=1

By Lemma 4.2, x,;(C}) is an algebraic integer. Since the algebraic integers form
a ring, |G|/n; is an algebraic integer. But the only rational numbers that are
algebraic integers are the integers themselves, so |G|/n; € Z. O

Lemma 6.7 Let C' be a conjugacy class and x = xv an irreducible character.
If (|C),dim V) =1 and = € C, then either x(z) =0 or |x(z)| =dim V.

Proof. Recall that dimV = x(1). Let a,b € Z be such that a|C| + bx(1) = 1.
Since V is a direct sum of z-eigenspaces with eigenvalues roots of unity, the
number

x(z) x(z)
=2 ==a|C|== + bx(z)
XEVRNEYEY
is of the form (g1 + - -- + €,)/n for some roots of unity ¢;, where n = dim V.
Certainly, |A| < 1. Suppose that x(z) # dim V. Then |A| < 1. We need to
show that A = 0.
Write m for the order of z. Let G be the Galois group of the polynomial
™ — 1 over @, and write
B = H a(A).

oceG
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Now o(A) = (o(e1) + --- + o(en))/n, so |o(A)| < 1. Hence |8| < 1. However,
B =0o(B) forall o € G,s0 B € Q. But g is also an algebraic integer, so is in Z.
Hence g = 0. Thus A = 0. O

Lemma 6.8 Let p be an irreducible representation with character x = xv. If
Ix(z)| =dimV, then p(z) = eidy and x(z) = edimV for some root of unity e.

Proof. Write n = dim V. We can pick a basis for V so that p(V) = diag(e1, ..., &n).
Then
n=|x(@)] <ler| +--- +len| = n.

This forces €1 = --- = &,, whence the result. O

Theorem 6.9 (Burnside) Let p and q be primes. There is no simple group
of order p®q® for any a,b > 1.

Proof. Let G be a group of order p®q®. We will assume that G is simple and
obtain a contradiction.

Certainly G is not abelian. Furthermore, the center of G must be {1}.

Let @ be a g-Sylow subgroup and suppose there is 1 # g € Z(Q). Let C
be the conjugacy class in G containing g and let H := {h € G | gh = hg} be
the centralizer of g. Since g is not in the center of G, H # G. Since ) C H,
|C| =[G : H] = p° for some ¢ > 0.

Let’s label the representations so that p; is the trivial representation. Now

t t
0=Xreg(9) = >_mixi(9) =1+ Y _ max(9).
i=1 k=2

Let p be a prime number. If p divides ny for all k¥ > 2, then p~! € Zxa(g) +
-+-+Zx(g), so would be an algebraic integer and hence in Z. Hence (p,ng) =1
for some k.

Hence (|C|,nt) = 1. But xx(g) = eidy. O



