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Abstract. Solutions....

1. Homework 1

Throughout k is an algebraically closed field and A is a k-algebra.

1.1. Show every non-zero finite dimensional representation V of a k-algebra A has
an irreducible subrep. Show by example this is false if dimk V =∞.

Let W be a non-zero subrepresentation of V having minimal dimension. Since
W is non-zero and its only non-zero submodule is itself, W is irreducible.

Let A = k[x], the polynomial ring on one variable. Let V = A with A acting on
itself by multiplication. The irreducible representations of A are

k[x]
(x− λ)

, λ ∈ k.

Hence if W is a simple A-module there is a non-zero w ∈W such that (x−λ)w = 0
for some λ ∈ k. But a product of non-zero elements of A is non-zero so V does not
contain a simple submodule.

1.2.

1.2.1. (a). Show that if V is an irreducible finite dimensional representation of A
and z ∈ Z(A), there is an element χV (z) ∈ k such that z acts on V by multipli-
cation by χV (z). Show that χV : Z(A) → k is a homomorphism. It is called the
central character of V .

If z ∈ Z(A), define fz : V → V by fz(v) = zv. Since z is central, fz is an
A-module homomorphism, i.e., fz ∈ EndA(V ).

Define f : Z(A)→ EndA(V ) by f(z) = fz. Then f is a ring homomorphism.
By Schur’s Lemma, EndA(V ) is a division ring. It contains a copy of k acting on

V by scalar multiplication. And EndA(V ) ⊂ Endk(V ) ∼= Mn(k), the n× n matrix
algebra over k where n = dimk V . In particular, EndA(V ) has finite dimension. If
φ ∈ EndA(V ), then {φ, φ2, . . .} is linearly dependent. Hence φ is algebraic over k.
But k = k̄ so φ ∈ k. Hence the natural map k → EndA(V ) is an isomrophism.

1.2.2. (b). Show that if V is an indecomposable finite dimensional representation
of A then for any z ? Z(A), the operator ?(z) by which z acts in V has only
one eigenvalue ?V (z), equal to the scalar by which z acts on some irreducible
subrepresentation of V. Thus ?V : Z(A) ? k is a homomorphism, which is again
called the central character of V .
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If λ is an eigenvalue of V , define

Vλ := {v | (z − λ)nv = 0 for somen ≥ 1}.
It is easy to see that Vλ is an A-submodule of V and that V is the sum of all the
Vλ. Follows that V is the direct sum of them.

1.2.3. (c). Does ρ(z) in (b) have to be a scalar operator?

1.3. Let I be an ideal of R = k[x, y] containing R≥n for some n. Show R/I is an
indecomposable module.

For the moment let R be any ring, M any simple left R-module and J any two-
sided ideal in R. Then JM is a submodule of M so is either M or {0}. If JM = M ,
then JnM = M for all M so Jn 6= 0 for all n.

Let m denote the image of (x, y) in R/I. We will show that m is the only maximal
ideal in R/I. Since (x, y)n = R≥n, mn = 0 in R/I. Hence mnV = 0 for every simple
R-module V , whence mV = 0. In particular, if n is a maximal ideal of R/I, then

m

(
R

n

)
= 0.

Hence m ⊂ n. Therefore m = n so m is the only maximal ideal in R/I.
If L and M are ideals in R not equal to R, then L ⊂ m and M ⊂ m, whence

L+M ⊂ m. Hence R/I is indecomposable.
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2. Homework 2

2.1. Let R be a ring, not necessarily with 1, such that x2 = x for all x ∈ R. Show
R is commutative.

Let x, y ∈ R. Then

x+ x = (x+ x)2 = x2 + x2 + x2 + x2 = x+ x+ x+ x

so x+ x = 0. We also have

x+ y = (x+ y)2 = x2 + xy + yx+ y2 = x+ xy + yx+ y

so xy + yx = 0. Adding xy to both sides and using the fact that xy + xy = 0, we
obtain yx = xy.

2.2.

3. Homework 3

Rotman: 6.25, 6.26, 6.27, 6.30, 6.31, 6.32

3.1. Let 0→ V1 → V2 → · · · → Vn → 0 be an exact sequence of finite dimensional
vector spaces. Show that

n∑
i=1

(−1)i dimVi = 0.

3.2. Let k be a field. Use the division algorithm for polynomials to show every ideal
in the polynomial ring k[x] is principal, i.e., generated by one element.

3.3. Let R = R[x, y]/(x2 + y2 − 1), the coordinate ring of the unit circle at the
origin. Show that the maximal ideal m = (x, y − 1) is not principal. Show that
m⊕m ∼= R⊕R.

3.3.1. This is a tricky question but illustrates some important points. Although
m needs two generators, its direct sum with itself needs only two. That is often a
surprise to those who haven’t seen such a phenomenon before. Although m is not
free it is projective. It can be difficult to determine a minimal set of generators for
an ideal (or module). It can be difficult to decide if two modules are isomorphic.
It is also nice to notice that m2 is principal because

m2 = (x2, x(y − 1), y2 − 2y + 1)

= (1− y2, x(y − 1), y2 − 2y + 1)

= (1− y2, x(y − 1),−2y + 2)

= (y − 1).
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3.3.2. Before addressing question 3.1, let’s make some observations.
There is a vector space decomposition

R[x, y] = (x2 + y2 − 1)⊕ R[x]⊕ R[x]y

so R = R[x]⊕ R[x]y.
The ring R is a domain (some people say integral domain), by which one means

that a product of non-zero elements in R is non-zero: if a, b, c, d ∈ R[x] ⊂ R, then

(a+ by)(c+ dy) = ac+ bd(1− x2) + (ad+ bc)y;

this is zero only if ad+bc = ac+bd(1−x2) = 0; but that implies bd2(x2−1) = −adc =
−bc2 whence b(c2 + d2(x2 − 1)) = 0; however, the value of c2 + d2(x2 − 1) at x = 1

2

is not zero (think about the signs of c2, d2, and x2 − 1); since c2 + d2(x2 − 1) 6= 0,
b = 0 because R[x] is a domain; therefore ad = ac = 0 from which we deduce that
either a is zero, in which case a + by = 0, or c = d = 0, in which case c + dy = 0.
We have just shown that if a product in R is zero, at least one of the factors is zero.
Hence R is a domain.

Elements of R[x, y] are, of course, functions R2 → R. Elements in the ideal
(x2 + y2 − 1) are precisely the polynomial functions that vanish on the unit circle
which I will denote by S1. If f, g ∈ R[x, y] belong to the same coset of (x2 +y2−1),
i.e., if there difference belongs to (x2 + y2 − 1), they take the same value at every
point on S1. Therefore elements of R are well-defined functions S1 → R. But
must not try to evaluate elements of R at other points of R2 because they are not
well-defined. Still, an element in R[x] ⊕ R[x]y is a well-defined function R2 → R.
So we can decide if two elements of R are different by picking a representative of
each in R[x] + R[x]y and observing that those representatives take different values
at some point in R2.

Lemma 3.1. Let R be any ring and M a left R-module. Let K and L be submodules
of a module M . The sequence

0 −→ K ∩ L f−→ K ⊕ L g−→ K + L −→ 0

in which K ⊕ L is the external direct sum,1 f(x) = (x, x) and g(x, y) = x − y is
exact.

Proof. It is clear that f and g are R-module homomorphisms. Certainly f is
injective and g is surjective. It is also clear that ker(g) = im(f). �

3.3.3. The exact sequence in Lemma 3.1 is useful. One nice use is when K and L
are left ideals of R such that K + L = R. In that case, let’s define h : R→ K ⊕ L
by h(r) = (rk, r`) where k ∈ K and ` ∈ L are any elements such that k − ` = 1. It
is clear that gh = idR so the sequence splits and we get K ⊕ L ∼= (K ∩ L)⊕R.

3.3.4. (Remember m, m = (x, y − 1).) For example, if n is the maximal ideal
(x, y + 1) in R = R[x, y]/(x2 + y2 − 1), then m + n = R.

Claim: m ∩ n = xR. Proof: Certainly, xR ⊂ m ∩ n. On the other hand, R/xR ∼=
R[y]/(y2−1) so dimR(R/xR) = 2. But dimR/m∩n = 2 also, because, for example,
(m + n)/m ∼= n/(m ∩ n), so m ∩ n = xR. ♦

It now follows from §3.3.3 that m⊕ n ∼= xR⊕R ∼= R⊕R.

1We are not saying that K ∩ L is {0}.
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3.3.5. Next we observe that m and n are isomorphic as R-modules: the map Φ :
m → n defined by Φ(r) = r(1 + y)/x is an R-module homomorphism with inverse
Φ−1(s) = sx/(1 + y). You need to check that the image of Φ is n; it isn’t even
obvious at first that r(1 + y)/x belongs to R if r ∈ m; however, Φ(x) = 1 + y and
Φ(1 − y) = x so, since Φ sends the generators x and 1 − y of m to the generators
1 + y and x of n, Φ is indeed an isomorphism of R-modules. Since m ∼= n,

R⊕R ∼= m⊕ n ∼= m⊕m.

A little more work is needed to write down an explicit isomorphism. I’ll leave you
to do that though all the details are implicit in the above argument.

3.3.6. Now I turn to the question of whether m is principal. I tried without success
to do this by brutal calculation. I have written out a proof that m is not principal
at some time in the (distant?) past but haven’t been able to lay my hands on it -
or remember it. It should be possible to prove it with a not-too-brutal calculation,
but since I couldn’t do that I’ll take another route.

You probably know that every ideal in the polynomial ring C[u] is principal: if
I is a non-zero ideal let f be a non-zero element in I of minimal degree and a any
element in I; by the division algorithm, there are polynomials q and r such that
a = qf + r and deg(r) < deg(f); I contains f and a so contains a− qf = r; but f
is a non-zero element in I of minimal degree so r = 0; hence a = fq and I = (f).

The ring C[u, u−1] consists of all Laurent polynomials
∑n
j=−n aju

j with the usual
multiplication. It too has the property that all its ideals are principal: one shows
every ideal in C[u, u−1] is generated by its intersection with the subring C[u].

Notice that C[x, y]/(x2 + y2 − 1) = C[u, u−1] with u = x+ iy and u−1 = x− iy,
i.e., x = 1

2 (u + u−1) and y = 1
2i (u − u−1). We can think of R as the subring

of C[u, u−1] generated by R and the elements 1
2 (u + u−1) and 1

2i (u − u
−1) which

we will, of course, denote by x and y respectively. More formally, one can show
there is a homomorphism Φ : R[x, y]→ C[u, u−1] such that Φ(x) = 1

2 (u+ u−1) and
Φ(y) = 1

2i (u− u
−1) and ker(Φ) = (x2 + y2 − 1).

OK, back to business, R = R[u+u−1, u−u−1] ⊂ S = C[u, u−1] and m = (x, y−1).
The ideal Sm is principal, say Sm = fS. Both x and y − 1 are multiples of f so
u+u−1 and u−1(u2−2iu−1) are multiples of f . Since u+u−1 = u−1(u+i)(u−i) and
u−1(u2− 2iu− 1) = u−1(u− i)2 are in fS, u− i ∈ (f). It follows that (f) = (u− i)
so we can, and will, assume f = u− i.

Suppose m is principal, i.e., there is an element g ∈ R such that m = gR. Since
fS = mS = gS, f and g are unit multiples2 each other; hence g = λun(u − i) for
some λ ∈ C−{0} and n ∈ Z. But g ∈ R so g is a well-defined function S1 → R. In
particular, its values at p = (1, 0) ∈ S1 and at p′ = (−1, 0) ∈ S1 are real numbers.
Since u(p) = (x + iy)(p) = 1 and u(p′) = (x + iy)(p′) = −1, g(p) = λ(1 − i)
and g(p′) = λ(−1)n(−1 − i). Notice that (−1)ng(p)/g(p′) = (1 − i)/(−1 − i) and
this complex number is not in R so the hypothesis that m is principal leads to a
contradiction. Therefore m is not principal.

3.3.7. A better proof that m is not principal. Suppose m = gR. Then m2 = g2R.
We observed above that m2 = (y − 1) so g2 and y − 1 are unit multiples of each
other. Write g = a+ by where a, b ∈ R[x] ⊂ R. Without loss of generality we can,

2Aaaarggghhh, I haven’t talked about units. An element a in a ring A is a unit of A if A
contains an element a−1 such that aa−1 = a−1a = 1.
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and will, assume b is monic. Thus g2 = a2 + b2(1− x2) + 2aby = λ(y − 1) for some
unit λ ∈ R. It follows that a = −λ/2b and hence that (λ2/4b2) + b2(1 − x2) = λ.
A little manipulation shows that this implies

(λ− 2b2 − 2b2x)(λ− 2b2 + 2b2x) = 0.

If either factor is zero, then λ is divisible by b so b is a unit in R. But b ∈ R[x] and
the fact that it is a unit in R = R[x] + R[x]y implies it is a unit in R[x], i.e., b ∈ R.
However, b is monic so b = 1. Hence λ = −2a ∈ R[x]. However, the only elements
of R[x] that are units in R are the elements in R − {0}. Hence λ ∈ R which is
absurd because (λ− 2− 2x)(λ− 2 + 2x) = 0. From this absurdity we conclude that
m is not principal.

3.4. Splitting. One of the questions is to prove the following result.

Lemma 3.2. Let 0 −→ L
i−→ M

p−→ N −→ 0 be an exact sequence of left R-
modules. There a homomorphism q : N → M such that pq = idN if and only if
there a homomorphism j : M → L such that ji = idL.

Proof. �

4. Homework 4

Rotman 6.60, 6.61, 6.62, 6.69

4.1. Show that a direct sum of projective modules is projective.

4.2. Show that a direct summand of a projective module is projective.

4.3. Show the following properties of a ring R are equivalent:
(1) every left R-module is projective;
(2) every left R-module is injective;
(3) every left R-module is a direct sum of simple modules;
(4) R is a direct sum of simple left ideals (necessarily a finite direct sum—why?)

A ring having the above properties is said to be semisimple—we omit the adjective
left because if the above properties hold for every left R-module they hold for every
right R-module.

We will later prove Wedderburn’s Theorem (1908?): if R is semisimple it is
isomorphic as a ring to a finite direct sum of matrix rings over division rings, i.e.,
R ∼= Mn1(D1) ⊕ · · · ⊕Mnr (Dr) where D1, . . . , Dr are division rings and Mn1(D1)
denotes the ring of n1 × n1 matrices whose entries belong to D1.

Lemma 4.1. The following properties of a ring R are equivalent:
(1) every left R-module is projective;
(2) every left R-module is injective;
(3) every short exact sequence of left R-modules splits.

Proof. (3) ⇒ (1) Let Z be a left R-module. Hypothesis (3) implies that every
exact sequence 0→ X → Y → Z → 0 splits. Hence Z is projective.

(1) ⇒ (2) Let X be a left R-module and 0 → X → Y → Z → 0 an exact
sequence. The sequence splits because Z is projective. Hence X is injective.

(2) ⇒ (3) Let 0 → X → Y → Z → 0 be an exact sequence of left R-modules.
Since X is injective the sequence splits. �
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Lemma 4.2. Suppose every short exact sequence of left R-modules splits. Then R
is a finite direct sum of simple left ideals.

Proof. Let I be the sum of all simple left ideals in R. Let S be a simple left ideal
in R. The map S → Sx, r 7→ rx, is a homomorphism of left R-modules so its
image, Sx, is a quotient of S and is therefore zero or simple. In either case Sx ⊂ I.
Hence I is a right ideal in R; since I is by definition a left R-module it is in fact a
two-sided ideal in R.

Suppose I 6= R. The ring R/I has a maximal left ideal (Zorn’s lemma argument)
which is of the form L/I where L is a maximal left ideal of R. The sequence
0 → L/I → R/I → R/L → 0 splits. Since R/L is simple, R/I has a simple left
ideal that is necessarily of the form J/I for some left ideal J that contains I. The
sequence 0→ I → J → J/I → 0 splits, so J ∼= I ⊕ (J/I). Since J/I is simple J is
a sum of simple modules. But I is the sum of all simple left ideals so J = I. This
is a contradiction so we conclude that I = R.

Let Λ be an index set and write R =
∑
i∈Λ Si where each Si is a simple left ideal.

The identity 1 belongs to this sum so is a finite sum 1 =
∑
i∈Λ xi where xi ∈ Si

and xi is non-zero for all but finitely many i. Since R = R.1 it follows that R is
contained in, hence equal to, a finite sum of simple left ideals.

We can therefore write R = S1 + · · · + Sn where each Si is simple. Choose the
minimal such n. If the sum is not direct, then 0 = a1+· · ·+an where ai ∈ Si and not
all ai are zero. Without loss of generality suppose a1 6= 0. Then a1 ∈ S2 + · · ·+Sn.
Hence S1 = Ra1 ⊂ S2+· · ·+Sn. ThusR = S2+· · ·+Sn contradicting the minimality
of n. Hence the sum S1 + · · ·+ Sn must be direct, i.e., R = S1 ⊕ · · · ⊕ Sn. �

The last two paragraphs in the proof of Lemma 4.2 showed that if R is a sum of
simple left ideals it is a finite direct sum of simple left ideals.

Lemma 4.3. If R is a direct sum of simple left ideals, then every simple left R-
module is projective.

Proof. Let M be a simple left R-module. Let m ∈M − {0}. Then M = Rm and
M ∼= R/L where L = {r ∈ R | rm = 0}. Write R = S1 ⊕ · · · ⊕ Sn where each Sn
is a simple left ideal of R. Let θi : Si → R/L be the composition Si → R → R/L.
Since R/L 6= 0 some θi 6= 0; since Si and R/L are simple a non-zero θi : Si → R/L
must be an isomorphism. Hence Si ∼= M for some i. But Si is projective because
it is a direct summand of the free module R. Hence M is projective. �

The proof of Lemma 4.3 showed that every simple left R-module is isomorphic
to a simple left ideal in R. In particular, if R is sum of simple left ideals it has only
finitely many simple left modules up to isomorphism.

Lemma 4.4. Let M =
∑
i∈I Si be a sum of simple modules Si, and N ⊂ M a

submodule. Then there is a subset J ⊂ I such that

(4-1) M =
(⊕
j∈J

Sj

)
⊕N.

In particular, every submodule and every quotient module of M is a direct sum of
simple modules.
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Proof. By Zorn’s lemma, there is a subset J ⊂ I that is maximal with respect to
the property that

MJ :=
(∑
j∈J

Sj

)
+N

is a direct sum of the Sjs, j ∈ J , and N . Suppose MJ 6= M . Then there is k ∈ I
such that Sk 6⊂ MJ . But Sk is simple so that implies Sk ∩ MJ = {0}, whence
Sk + MJ is a direct sum. But k /∈ J so this contradicts the choice of J . Hence
MJ = M .

Applying this to N = 0 we see that M is a direct sum of simple modules.
Let M̄ be a quotient of M . Since M is a sum of simple modules so is M̄ . Hence

M̄ is a direct sum of simple modules.
Let N be a submodule of M . It follows from (4-1) that N is isomorphic to a

quotient of M so N is a direct sum of simple modules. �

Proposition 4.5. The following conditions on a module M are equivalent:
(1) M is the sum of its simple submodules;
(2) M is a direct sum of simple modules;
(3) if N is a submodule of M there is a submodule L of M such that M = L⊕N .

Proof. It is clear that (2) implies (1)). It follows from Lemma 4.4 that (1) implies
(2) and (3).

(3) ⇒ (1) Let N be the sum of all simple submodules of M , and let N ′ be a
submodule of M such that N ′ ⊕N = M . We will show that N ′ = 0.

Suppose to the contrary that N ′ 6= 0, and let 0 6= m ∈ N ′. Because Rm is a
finitely generated module it has a submodule K such that Rm/K is simple. By
hypothesis, there is a submodule K ′ of M such that M = K ⊕ K ′. Since Rm
contains K, it follows that

Rm = K ⊕ (K ′ ∩Rm).

Hence K ′ ∩ Rm ∼= Rm/K is simple, and therefore contained in N . But this is
absurd because K ′ ∩Rm ⊂ Rm ⊂ N ′. Hence N ′ is zero. �

If M = L⊕N we call L a complement to N in M .

Lemma 4.6. Suppose R is a direct sum of simple left ideals. Then every left
R-module is a direct sum of simple modules.

Proof. Since R is a direct sum of simple left R-modules every free left R-module
is a direct sum of simple left R-modules. Every left R-module is a quotient of a
free left R-module so is the sum of its simple left modules. Now apply Proposition
4.5. �

Lemma 4.7. Suppose R is a direct sum of simple left ideals. Then every left
R-module is projective.

Proof. By Lemma 4.6, every left R-module is a direct sum of simple modules.
By Lemma 4.3 every simple left R-module is projective. Since a direct sum of
projective modules is projective every left R-module is projective. �

This completes the solution of problem 4.3.
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