Homework 1

- (1) Let R be the ring of continuous functions $[0,1] \to \mathbb{R}$ with point-wise addition and multiplication. Prove that the set of functions vanishing at a point $x \in [0,1]$ is a maximal ideal in *R*—we denote it by \mathfrak{m}_x . If \mathfrak{m} is a maximal ideal of R that is not equal to \mathfrak{m}_x for any $x \in [0,1]$ show that there are a finite set of elements f_1, \ldots, f_n in \mathfrak{m} that have no common zero on [0, 1]; by considering $f_0^2 + \dots + f_1^2$ show there is no such \mathfrak{m} ; i.e., the maximal ideals in R are the ideals $\mathfrak{m}_x, x \in [0, 1]$. (2) Factor $x^8 - 1$ and $x^{12} - 1$ in $\mathbb{Q}[x]$.
- (3) If d and e are greatest common divisors of $\{a_1, \ldots, a_n\}$ in a domain R show that d and e are associates, i.e., unit multiples of each other.
- (4) Let k[x, y] be the polynomial ring on two variables with coefficients in the field k. Show that the ideal $k[x,y]_{\geq n} = \operatorname{span}\{x^i y^j \mid i+j \geq n\}$ can be generated by n+1 elements but not by n elements. (Hint: think of degree.)
- (5) Show that the ring of Gaussian integers, $\mathbb{Z}[i] = \mathbb{Z}[\sqrt{-1}]$, is a Euclidean domain with respect to the function $\delta : \mathbb{Z}[i] \to \mathbb{Z}$ defined by $\delta(x) := x\bar{x}$ where \bar{x} denotes the complex conjugate of x.
- (6) Factor 2, 3, and 5, in $\mathbb{Z}[i]$ as products of primes.
- (7) Prove that a Euclidean domain is a PID.
- (8) Let $k[x, x^{-1}]$ be the subring of k(x) generated by x, x^{-1} , and k. Is $k[x, x^{-1}]$ a PID? Why?
- (9) Let d be a square-free positive integer. Define the norm function N: $\mathbb{Z}[\sqrt{-d}] \to \mathbb{Z}$ by $N(a + b\sqrt{-d}) = a^2 + b^2 d$.
 - (a) Establish some important properties of N.
 - (b) Show that u is a unit in $\mathbb{Z}[\sqrt{-d}]$ if and only if N(u) = 1.
 - (c) Show that the only units in $\mathbb{Z}[i]$ are ± 1 and $\pm i$.
 - (d) If d > 1 show that only units in $\mathbb{Z}[\sqrt{-d}]$ are ± 1 .
- (10) Find an irreducible element in $\mathbb{C}[x, y, z]/(xy z^2)$ that is irreducible but not prime. Hint: think about homogeneous polynomials.

Homework 2

- (1) Show that the fields $\mathbb{Q}(\sqrt{5})$ and $\mathbb{Q}(\sqrt{7})$ are not isomorphic.
- (2) Let \mathbb{F}_{11} be the field with 11 elements. Let $K = \mathbb{F}_{11}(\alpha)$ where α is a root of $x^2 2$. Let $L = \mathbb{F}_{11}(\beta)$ where β is a root of $x^2 4x + 2$. Show there is an isomorphism $\Phi: K \to L$ that is the identity on \mathbb{F}_{11} .
- (3) Let K/k be a degree-two field extension. If $\operatorname{char}(k) \neq 2$ show that $K = k(\alpha)$ where α is a root of a polynomial $x^2 d$ for some $d \in k$. Show this fails in characteristic two.
- (4) Let K/k be a degree-two field extension and suppose that $\operatorname{char}(k) = 2$. Show that $K = k(\alpha)$ where α is a root of a polynomial $x^2 + x + d$ for some $d \in k$.
- (5) Let f be a polynomial of degree n in k[x]. Show that the images of $1, x, \ldots, x^{n-1}$ in k[x]/(f) form a basis for k[x]/(f).
- (6) Find the minimal polynomial of $\sqrt{3} + \sqrt{5}$ over the fields \mathbb{Q} , $\mathbb{Q}(\sqrt{3})$, $\mathbb{Q}(\sqrt{10})$, and $\mathbb{Q}(\sqrt{15})$.
- (7) Let f and g be non-zero polynomials in k[x] and write z for f(t)/g(t) which is an element in the field k(x). Compute [k(x) : k(z)].
- (8) Let $\alpha = \frac{1}{2}(1 + \sqrt{5})$ denote the Golden ratio. You are used to writing numbers to base 10, or other integer bases. This problem is about base α . Let $a_n, a_{n-1}, a_{n-2}, \ldots$ be an infinite sequence of numbers in $\{0, 1\}$ with the property that $a_i a_{i+1}$ is never equal to 11. We will write

$$\beta = a_n \dots \alpha_1 a_0 \bullet \alpha_{-1} \alpha_{-2} \dots$$

for

$$\beta = \sum_{j=-n}^{\infty} a_{-j} \alpha^{-j}$$

and call this the α -expansion for β .

- (a) Find the α -expansions for 2, 3, 4, 5.
- (b) What is the number with α -expansion $0 \cdot 101010...?$
- (c) What is the number with α -expansion $0 \cdot 100100100...?$
- (9) Let $\omega = e^{2\pi i/5}$. Find the minimal polynomial for $\omega^2 + \omega^3$ over \mathbb{Q} and the degree of $\mathbb{Q}(\omega^2 + \omega^3)$ over \mathbb{Q} .
- (10) A complex number is algebraic if it is the root of an irreducible polynomial with coefficients in \mathbb{Q} . If α and β are algebraic show that $\alpha + \beta$ and $\alpha\beta$ are also algebraic. Hint: use another characterization of algebraic numbers, and the formula [K:L][L:k] = [K:k] for field extensions $k \subset L \subset K$.

Math 504

Homework 3

3

- (1) Let $F = \mathbb{F}_2(x)$ be the field of rational functions over the field of order 2. Show that the extension $K = F(\sqrt[6]{x})$ of F is equal to $F(\sqrt{x}, \sqrt[3]{x})$. Show that $F(\sqrt[3]{x})$ is separable over F. Show that $F(\sqrt{x})$ is purely inseparable over F, i.e., the minimal polynomial of every element in $F(\sqrt{x})$ has only one root.
- (2) Find the degree of a splitting field over \mathbb{Q} for the following polynomials: $x^4 1, x^4 + 1, x^4 + 2, x^4 + 4.$
- (3) Find the degree of a splitting field for $x^6 + 1$ over \mathbb{Q} and \mathbb{F}_2 .
- (4) Show that the extension of \mathbb{Q} generated by a root of $x^4 2$ is not normal. Deduce that a normal extension of a normal extension need not be normal.
- (5) If a field of characteristic p has n distinct n^{th} roots of unity show that p does not divide n.
- (6) Let K be a field and G the group of all automorphisms of K. Show that the invariant subfield K^G is perfect.
- (7) Let x be transcendental over a field k. Show that k(x) is a degree-six extension of $k(x)^G$ where G is the group generated by the automorphisms $x \mapsto x^{-1}$ and $x \mapsto 1-x$. Show that $(x^2 x + 1)^3/(x^2 x)^2$ is in $k(x)^G$ and use that to compute the minimal polynomial of x over $k(x)^G$.
- (8) Show that $\mathbb{Q}(\sqrt{2}, \sqrt[3]{2}) = \mathbb{Q}(\sqrt{2} + \sqrt[3]{2}).$
- (9) Find the smallest normal extension of \mathbb{Q} that contains $\sin(\frac{\pi}{5})$.
- (10) Give an algebraic proof that every angle can be bisected by using a ruler and compass.

4

Homework 4

In the following questions p is a prime number and $\xi_p = e^{2\pi i/p} \in \mathbb{C}$. If q is a power of a prime we write \mathbb{F}_q for the field with q elements.

- (1) Using only the fact that \mathbb{F}_{p^n} is the splitting field of $x^{p^n} x$, show that \mathbb{F}_{p^m} is a subfield of \mathbb{F}_{p^n} whenever m divides n.
- (2) Let $\xi = \xi_p$. Let $\hat{R} = \{\xi^i \mid i \in \mathbb{Z}\}$. Show that R is a ring with the operations $\xi^i \oplus \xi^j = \xi^{i+j}$ and $\xi^i \odot \xi^j = \xi^{ij}$.

Show that $R \cong \mathbb{F}_p$.

- (3) Let p be a prime number. Let $\xi_p = e^{2\pi i/p}$ and $K = \mathbb{Q}(\xi)$. Show there is a group homomorphism $\Phi : \operatorname{Gal}(K/\mathbb{Q}) \to (R^{\times}, \odot)$ and hence an isomorphism $\operatorname{Gal}(K/\mathbb{Q}) \cong \mathbb{F}_p^{\times}$. Deduce that $\operatorname{Gal}(K/\mathbb{Q})$ is the cyclic group of order p-1.
- (4) Let p be an odd prime and $\xi_p = e^{2\pi i/p}$. Explain why there is a field F such that $\mathbb{Q} \subset F \subset \mathbb{Q}(\xi_p)$ and $[F : \mathbb{Q}] = 2$. Why is $F = \mathbb{Q}(\sqrt{d})$ for some d? Find d.
- (5) Take p = 17 above. Find all fields F such that $\mathbb{Q} \subset F \subset \mathbb{Q}(\xi_p)$. Each intermediate field is of the form $\mathbb{Q}(\alpha)$ for some α . Can you find a nice α for each F?
- (6) [Knapp, Ex. 29, p. 537] Let K/Q be the splitting field of an irreducible polynomial of degree 3 and suppose that Gal(K/Q) is the symmetric group S₃. Does K contain the three cube roots of 1? Explain.
- (7) Show that $\mathbb{F}_{16} = \mathbb{F}_4(\alpha)$ where α is a primitive 5th root of 1 over \mathbb{F}_2 . It might be helpful to write $\mathbb{F}_4 = \mathbb{F}_2(\beta)$ where $\beta \in \mathbb{F}_4 \mathbb{F}_2$.
- (8) If $\mathbb{F}_{16} = \mathbb{F}_4(\alpha)$ where α is a primitive 5th root of 1 over \mathbb{F}_2 is there an element $\sigma \in \text{Gal}(\mathbb{F}_16/\mathbb{F}_4)$ such that $\sigma(\alpha) = \alpha^2$? What about $\sigma(\alpha) = \alpha^3$?
- (9) A question to think about. Is there a generalization of question 2? If so what? Give some explanation.
- (10) Which questions were the most/least interesting? Can you think of an interesting question I could have asked but did not? Feel free to consult any books that might have an interesting question.

Homework 5

 $\mathbf{5}$

- (1) Let G be a group and N a normal subgroup. Show that G is solvable if and only if N and G/N are solvable.
- (2) Compute the Galois group of x⁶ − 2x³ − 1 over Q.
 (3) Solve the equation x⁶ − x⁵ + x⁴ − x³ + x² − x + 1 = 0 by radicals. Hint: Think about $t = x + x^{-1}$.
- (4) Let k be a subfield of \mathbb{C} and let $K = k(\alpha, \beta)$ where $\alpha^2 = a \in k$ and $\beta^2 = b \in k$ k and none of a, b, or ab, is a square in k. Prove that $\operatorname{Gal}(K/k) \cong \mathbb{Z}_2 \times \mathbb{Z}_2$.
- (5) Let $f \in k[x]$ be an irreducible polynomial where k is a subfield of \mathbb{C} . Suppose f has at least one root that is expressible in radicals. Show that all roots of f can be written in terms of radicals.
- (6) Give an example of an extension K/k such that [K:k] = n and a positive integer d dividing n such that there is no intermediate field $k \subset L \subset K$ with [L:k] = d.
- (7) Let K/k be a Galois extension of degree n with Galois group G. Define the norm and trace maps $N_{K/k}: K \to k$ and $T_{K/k}: K \to k$ by

$$N(a) = \prod_{\sigma \in G} \sigma(a)$$
 and $T(a) = \sum_{\sigma \in G} \sigma(a).$

Suppose that the minimal polynomial of $a \in K$ is $\sum_{i=0}^{r} c_i x^i \in k[x]$. Show that

- (a) the norm and trace do take values in k, and
- (b) $N(a) = (-1)^n c_0^{n/r}$ and $T(a) = -\frac{n}{r} c_{r-1}$, and (c) $N(a) = \det(F)$ and $T(a) = \operatorname{Trace}(F)$ where $F: K \to K$ is the k-linear map F(b) := ab. (Hint: companion matrix of the minimal polynomial.)

Homework 6

- (1) Let p be a prime number and G a non-abelian group with p^3 elements.

 - (a) Show that Z(G) ≅ Z_p and that G/Z(G) ≅ Z_p × Z_p.
 (b) Show that every subgroup of G having p² elements contains Z(G) and is a normal subgroup of G.
 - (c) Show that G has a normal subgroup isomorphic to $\mathbb{Z}_p \times \mathbb{Z}_p$ if $x^p = 1$ for all $p \in G$.
- (2) Knapp's book, Chapter IV, problems 42, 43, 44, on p.202. You can assume the results in questions 40 and 41.
- (3) Knapp's book, Chapter IV, problems 50, 51, 53, 54 on p.203.

Math 504