Math 504, Fall 2013 HW 3

1. Using only the fact that \mathbb{F}_{p^n} is the splitting field of $x^{p^n} - x$, show that \mathbb{F}_{p^m} is a subfield of \mathbb{F}_{p^n} whenever *m* divides *n*.

Suppose n = mk for some $k \in \mathbb{N}$. We know that \mathbb{F}_{p^m} is the splitting field of $x^{p^m} - x$ and thus every $\alpha \in \mathbb{F}_{p^m}$ satisfies $\alpha^{p^m} = \alpha$. Thus to show \mathbb{F}_{p^m} is a subfield of $\mathbb{F}_{p^{mk}}$, it suffices to show that every $\alpha \in \mathbb{F}_{p^m}$ also satisfies

$$\alpha^{p^{mk}} = \alpha. \tag{1}$$

In terms of the Frobenius automorphism $\sigma(\beta) := \beta^p$, (1) says that $\sigma^{mk}(\alpha) = \alpha$ for all $\alpha \in \mathbb{F}_{p^m}$. We prove this holds for any $k \in \mathbb{N}$ by induction. We already saw above that the case k = 1 holds. Let $\ell \in \mathbb{N}$ and suppose $\sigma^{m\ell}(\alpha) = \alpha$ for all $\alpha \in \mathbb{F}_{p^m}$. Then for any $\alpha \in \mathbb{F}_{p^m}$,

$$\sigma^{m(\ell+1)}(\alpha) = \sigma^m(\sigma^{m\ell}(\alpha)) = \sigma^m(\alpha) = \alpha^{p^m} = \alpha,$$

proving the claim. Thus \mathbb{F}_{p^m} is a subfield of $\mathbb{F}_{p^{mk}}$ for all $k \in \mathbb{N}$.

2. Let
$$\xi = \xi_p$$
. Let $R = {\xi^i \mid i \in \mathbb{Z}}$. Show that R is a ring with the operations
 $\xi^i \oplus \xi^j = \xi^{i+j}$ and $\xi^i \odot \xi^j = \xi^{ij}$.
Show that $R \cong \mathbb{F}_p$.

We first show that *R* is a ring. We go through the details, even though it is somewhat obvious that *R* inherits the ring structure of \mathbb{Z} .

Clearly \oplus is commutative and for any $n \in \mathbb{Z}$, $\xi^n \oplus \xi^0 = \xi^{n+0} = \xi^n$, and so ξ^0 is the additive identity. Also, $\xi^n \oplus \xi^{-n} = \xi^0$, and so *R* is an abelian group under \oplus .

If ℓ , $m, n \in \mathbb{Z}$, then using the associativity of multiplication in \mathbb{Z} , we find

$$(\xi^{\ell} \odot \xi^{m}) \odot \xi^{n} = \xi^{\ell m} \odot \xi^{n} = \xi^{\ell m n} = \xi^{\ell} \odot \xi^{m n} = \xi^{\ell} \odot (\xi^{m} \odot \xi^{n}),$$

and so multiplication is associative (as well as clearly being commutative). Furthermore,

$$\begin{split} \xi^{\ell} \odot (\xi^m \oplus \xi^n) \; = \; \xi^{\ell} \odot \xi^{m+n} \; = \; \xi^{\ell(m+n)} \; = \; \xi^{\ell m+\ell n} \\ & = \; \xi^{\ell m} \oplus \xi^{\ell n} \; = \; (\xi^{\ell} \odot \xi^m) \oplus (\xi^{\ell} \odot \xi^n). \end{split}$$

Distribution from the right also follows from right distribution among the integers.

3. Let *p* be a prime number. Let $\xi_p = e^{2\pi i/p}$ and $K = \mathbb{Q}(\xi)$. Show there is a group homomorphism Φ : Gal $(K/\mathbb{Q}) \to \operatorname{Aut}(R)$, the automorphism group of *R*. Deduce that Gal $(K/\mathbb{Q}) \cong \mathbb{F}_p^{\times}$, the multiplicative group of p^{th} roots of unity. Deduce that Gal (K/\mathbb{Q}) is the cyclic group of order p - 1.

Let *p* be prime with $\xi = \xi_p$ and $K = \mathbb{Q}(\xi)$. Then *K* is the splitting field of the *p*th cyclotomic polynomial $\Phi_p(x)$ (of degree p-1) over \mathbb{Q} , hence K/\mathbb{Q} is a Galois extension. Elements of $G = \text{Gal}(K/\mathbb{Q})$ are automorphisms of *K* that fix \mathbb{Q} , hence they are completely determined by where they send ξ . The Galois group permutes the roots of $\Phi_p(x)$, so the distinct possibilities are ξ^i for $1 \le i \le p-1$. Since $[K/\mathbb{Q}] = p-1$, each one of these is an element of the Galois group. We will label the elements of Gal ($K\mathbb{Q}$) as σ_i , where $\sigma_i(\xi) = \xi^i$.

Now we consider group automorphisms under \oplus of the group *R* above. We see that the element ξ generates *R* under the \oplus operation. Each automorphism must fix the identity element $\xi_0 = 1$ and is then completely determined by the image of ξ . In order to be an automorphism, the image of ξ must also generate *R* under \oplus ; the generators are ξ^i for $1 \le i \le p - 1$, so each of these gives a valid and distinct automorphism. Denote by τ_i the automorphism defined by $\tau_i(\xi) = \xi^i$.

Now we'll write a map Ψ : Gal $(K/\mathbb{Q}) \rightarrow$ Aut (R) defined by $\Psi(\sigma_i) = \tau_i$. The operation of composition clearly carries through Ψ , so this is a group homomorphism. The identity automorphism τ_1 is uniquely the image of σ_1 , the identity automorphism of *G*. Hence, Ψ is injective. Each τ_i is the image of σ_i because the range of *i* is the same in both cases. Hence, we have an isomorphism between Gal (K/\mathbb{Q}) and Aut (R).

From the result of problem (2), we also conclude that Gal (K/\mathbb{Q}) is isomorphic to the group of automorphisms of \mathbb{F}_p under addition. This is the same of the automorphisms of \mathbb{Z}_p . For a general $n \in \mathbb{Z}$, the automorphism group of \mathbb{Z}_n is isomorphic to the group of units \mathbb{Z}_n^{\times} . This group is isomorphic to $\mathbb{Z}_{\varphi(n)}$ where φ is Euler's totient function. Hence, in our case we have Gal $(K/\mathbb{Q}) \cong \mathbb{F}_p^{\times} \cong \mathbb{Z}_{p-1}$ and this tells us that Gal (K/\mathbb{Q}) is the cyclic group of order p-1.

4. Let *p* be an odd prime and $\xi_p = e^{2\pi i/p}$. Explain why there is a field *F* such that $\mathbb{Q} \subset F \subset \mathbb{Q}(\xi_p)$ and $[F:\mathbb{Q}] = 2$. Why is $F = \mathbb{Q}(\sqrt{d})$ for some *d*? Find *d*.

The field $\mathbb{Q}(\xi_p)$ is the splitting field of the *p*th cyclotomic polynomial $f(x) = x^{p-1} + x^{p-2} + \cdots + x + 1$. The roots of this polynomial are the primitive *p*th roots of unity ξ_p^k for $1 \le k \le p-1$. The discriminant $\Delta(f)$ of *f* is defined to be:

$$\Delta(f) = \prod_{1 \le i < j \le p-1} (\xi_p^i - \xi_p^j)^2$$

The Galois group $G = \text{Gal}(\mathbb{Q}(\xi_p)/\mathbb{Q})$ is a group of permutations that acts on the roots of *f*. If we permute the roots in the list of terms $(\xi_p^i - \xi_p^j)$, we end up with the same list except for a negative sign on some terms. If we are squaring every term, then we end

up with exactly the same value. Said another way, $\Delta(f)$ is fixed by every element in the Galois group. Since this is a Galois extension, $\Delta(f)$ must be an element of \mathbb{Q} .

Now consider the square root of the discriminant:

$$\sqrt{\Delta(f)} = \prod_{1 \le i < j \le p-1} (\xi_p^i - \xi_p^j)$$

This is an element of $\mathbb{Q}(\xi_p)$, certainly, but it may or may not be an element of \mathbb{Q} .

By the proof of Prop. 9.50 in the textbook we have

$$\Delta(f) = \det \begin{bmatrix} p-1 & a_1 & \dots & a_{p-2} \\ a_1 & a_2 & \dots & a_{p-1} \\ a_2 & a_3 & \dots & a_p \\ & & \vdots \\ a_{p-2} & a_{p-1} & \dots & a_{2p-4} \end{bmatrix}$$

Now $a_p = \sum_{i=1}^{p-1} \xi^{ip} = \sum_{i=1}^{p-1} 1^i = p-1$. The a_i go up to 2p - 4 < 2p, so every other index is relatively prime to p. For those a_j (those where $j \neq p$):

$$a_j = \sum_{i=1}^{p-1} \xi^{ij} = \sum_{i \in \mathbb{F}_p^{\times}} \xi^{ij} = \sum_{k=ij \in \mathbb{F}_p^{\times}} \xi^k = -1$$

That is, every other entry of the matrix is -1:

$$\Delta(f) = \det \begin{bmatrix} p-1 & -1 & \dots & -1 \\ -1 & -1 & \dots & -1 \\ -1 & -1 & \dots & p-1 \\ & \vdots & & \\ -1 & -1 & \dots & -1 \end{bmatrix} = \det \begin{bmatrix} p & 0 & 0 & \dots & 0 \\ -1 & -1 & -1 & \dots & -1 \\ 0 & 0 & 0 & \dots & p \\ & & \vdots & & \\ 0 & 0 & p & \dots & 0 \end{bmatrix}$$

Note that I subtracted the second row from every other row to get the equality. By the recursive definition of the determinant:

$$\Delta(f) = p \det \begin{bmatrix} -1 & -1 & \dots & -1 \\ 0 & 0 & \dots & p \\ & \vdots & \\ 0 & p & \dots & 0 \end{bmatrix} = -p \det \begin{bmatrix} 0 & 0 & \dots & p \\ & \vdots & \\ 0 & p & \dots & 0 \\ p & 0 & \dots & 0 \end{bmatrix}$$

Note that the matrix above is $(p-3) \times (p-3)$. The final determinant is p^{p-3} sgn((1, p-3)(2, p-4)...). There are exactly $\frac{p-3}{2}$ transpositions in that permutation, so the determinant of the most recent matrix is $(-1)^{\frac{p-3}{2}}p^{p-3}$, and overall, $\Delta(f) = (-1)^{\frac{p-1}{2}}p^{p-2}$.

If we again use the notation 2r + 1 = p, then

$$\sqrt{\Delta(f)} = \sqrt{(-1)^{\frac{p-1}{2}} p^{2(r-1)+1}} = p^{r-1} \sqrt{(-1)^{\frac{p-1}{2}} p^{r-1}}$$

Thus we see that $F = \mathbb{Q}(\sqrt{p})$ if $p \cong 1 \mod 4$, $F = \mathbb{Q}(\sqrt{-p})$ if $p \cong 3 \mod 4$.

5. Take p = 17 above. Find all fields *F* such that $\mathbb{Q} \subset F \subset \mathbb{Q}(\zeta_p)$. Each intermediate field is of the form $\mathbb{Q}(\alpha)$ for some α . Can you find a nice α for each *F*?

Let $\zeta = \zeta_{17}$. Let $K = \mathbb{Q}(\zeta)$, and let $G = \text{Gal}(K/\mathbb{Q})$. We have $\text{Gal}(K/\mathbb{Q}) \cong (\mathbb{Z}/17\mathbb{Z})^{\times} \cong C_{16}$, the cyclic group of 16 elements by problem 3. The elements $\{1, \zeta, \zeta^2, \dots, \zeta^{15}\}$ form a basis for K/\mathbb{Q} . But since $1 + \zeta + \dots + \zeta^{16} = 0$, the elements $\{\zeta, \zeta^2, \dots, \zeta^{15}, \zeta^{16}\}$ also form a \mathbb{Q} -basis for K. It follows that elements $\sigma \in G$ permute these basis elements, as these are the primitive 17th roots of unity. We may use the \mathbb{Q} -basis for K consisting of the elements

$$\mathcal{B} = \{\zeta, \zeta^2, \dots, \zeta^{16}\}$$

and any $\sigma \in G$ simply permutes these basis elements. Following page 597 of Dummit & Foote, if $H \leq G$ is a subgroup, then

$$\alpha_H = \sum_{\sigma \in H} \sigma(\zeta)$$

is the sum of the Galois conjugates of ζ as automorphisms range over H. For any $\tau \in H$, the elements $\tau\sigma$ run over the elements of H as σ runs through H, whence $\tau\alpha = \alpha$, so that $\alpha \in \mathbb{Q}^{H}$. However, if $\tau \notin H$, then $\tau\alpha$ is the sum of basis elements given above. If it were the case that $\tau\alpha = \alpha$ (so that $\alpha \in \mathbb{Q}$ as it is now fixed by all automorphisms), then since these elements are a basis, we must have $\tau(\zeta) = \sigma(\zeta)$ for one of the terms $\sigma\zeta$ appearing in the definition of α . But then then it would follow that $\tau\sigma^{-1} = 1$, the identity automorphism for this particular $\sigma \in H$, whence $\tau \in H$, a contradiction. This shows that α is not fixed by any automorphism not contained in H, so that $\mathbb{Q}(\alpha) = K^{H}$.

A generator for the cyclic subgroup $G \cong C_{16}$ is given by an automorphism σ mapping $\zeta \mapsto \zeta^3$, by order considerations. There are precisely three nontrivial subgroups of $C_{16} : C_2, C_4$, and C_8 , and we compute α for various subgroups $H = C_j, j = 2, 4, 8$, and in the notation of $G = \langle \sigma \rangle, C_j = \langle \sigma^{16/j} \rangle$.

$$\begin{aligned} \alpha_{2} &= \zeta + \sigma^{8}(\zeta) = \zeta + \zeta^{3^{8}} = \zeta + \zeta^{16} = \boxed{\zeta + \zeta^{-1}} \\ \alpha_{4} &= \zeta + \sigma^{4}(\zeta) + \sigma^{8}(\zeta) + \sigma^{12}(\zeta) = \zeta + \zeta^{3^{4}} + \zeta^{3^{8}} + \zeta^{3^{12}} = \boxed{\zeta + \zeta^{13} + \zeta^{-1} + \zeta^{4}} \\ \alpha_{8} &= \zeta + \sigma^{2}\zeta + \sigma^{4}\zeta + \sigma^{6}\zeta + \sigma^{8}\zeta + \sigma^{10}\zeta + \sigma^{12}\zeta + \sigma^{14}\zeta = \boxed{\zeta + \zeta^{9} + \zeta^{13} + \zeta^{15} + \zeta^{-1} + \zeta^{8} + \zeta^{4} + \zeta^{2}} \end{aligned}$$

6. Let K/\mathbb{Q} be the splitting field of an irreducible polynomial of degree 3 and suppose that Gal (K/\mathbb{Q}) is the symmetric group S_3 . Does K contain the three cube roots of 1? Explain.

Let K/\mathbb{Q} be the splitting field of an irreducible polynomial f(x) of degree 3 and suppose that Gal (K/\mathbb{Q}) is the symmetric group S_3 . Since the Galois group is not contained in the

alternating group A_n , the discriminant of f(x) is not a square in \mathbb{Q} and there is a nontrivial quadratic extension $\mathbb{Q}(\sqrt{D})/\mathbb{Q}$. This must be in correspondence with an index-2 subgroup of S_3 and there is only one such subgroup; namely, A_n .

If *K* contains all of the cube roots of unity, then *K* contains a subfield that is the splitting field of $x^2 + x + 1$ (the quadratic whose roots are the primitive cube roots of unity). This is a degree 2 extension, so we now see that if *K* contains all of the cube roots of unity, the fields $\mathbb{Q}(\sqrt{D})$ and $\mathbb{Q}(\xi_3)$ must be equal as the unique quadratic extension of \mathbb{Q} contained in *K*.

We will show that it is not true in general that *K* contains ξ_3 by providing a counterexample. Let $f(x) = x^3 + 2x + 2$. This is irreducible by Eisenstein's criterion. Its discriminant is $D = -4(2)^3 - 27(2)^2 = -140$. This is factored as -4(35), which is not a square in \mathbb{Q} . The only possible Galois groups of irreducible cubics are S_3 or A_3 , as these are the only transitive subgroups of S_3 . Since \sqrt{D} is not in \mathbb{Q} , the Galois group is not contained in A_3 and it must be all of S_3 . Hence, we are in the situation set out above.

The field $\mathbb{Q}(\xi_3)$ is realized as $\mathbb{Q}(\sqrt{-3})$, as $\xi_3 = \frac{1}{2} + i\sqrt{3}/2$. As proved before, if the splitting field of f(x) contains the cube roots of unity then it must be that $\mathbb{Q}(\sqrt{-3}) = \mathbb{Q}(\sqrt{-35})$. Suppose that this is the case; every element in the second field can be written in the form $p + q\sqrt{-35}$ for some $p, q \in \mathbb{Q}$. Then there exists p, q such that:

$$\sqrt{-3} = p + q\sqrt{-35}$$
$$(\sqrt{-3})^2 = (p + q\sqrt{-35})^2$$
$$-3 = p^2 - 35q^2 + 2pq\sqrt{-35}$$

This is a contradiction, as it implies that $\sqrt{-35}$ is an element of Q. Hence, it is not true in general that the splitting field of an irreducible polynomial with Galois group S_3 contains the cube roots of unity.

7. Show that $\mathbb{F}_{16} = \mathbb{F}_4(\alpha)$ where α is a primitive 5th root of 1 over \mathbb{F}_2 .

We have that the minimal polynomial of α in \mathbb{F}_2 is $p(x) = 1 + x + x^2 + x^3 + x^4$: irreducibility can be checked directly, since there are not many irreducible polynomials of small degree over \mathbb{F}_2 .

Moreover, we know that $p(x)|x^{16} - x$. Since \mathbb{F}_{16} is a splitting field for $x^{16} - x$, $\alpha \in \mathbb{F}_{16}$. Now, since $[\mathbb{F}_2(\alpha) : \mathbb{F}_2] = 4$ it follows that $\mathbb{F}_{16} = \mathbb{F}_2(\alpha)$. Since $\mathbb{F}_4/\mathbb{F}_2$ is a degree two extension, $\alpha \notin \mathbb{F}_4$, and the containment $\mathbb{F}_4 \subseteq \mathbb{F}_{16}$ gives us that $\mathbb{F}_{16} = \mathbb{F}_4(\alpha)$.

8. If $\mathbb{F}_{16} = \mathbb{F}_4(\alpha)$ where α is a primitive 5^{th} root of 1 over \mathbb{F}_2 is there an element $\sigma \in \text{Gal}(\mathbb{F}_16/\mathbb{F}_4)$ such that $\sigma(\alpha) = \alpha^2$? What about $\sigma(\alpha) = \alpha^3$?

The answer is no. The Frobenius automorphism $F : x \mapsto x^2$ is a generator of $G = \text{Gal}(\mathbb{F}_{16}/\mathbb{F}_2) \simeq \mathbb{Z}/4\mathbb{Z}$, as one can verify directly. Since \mathbb{F}_4 is the splitting field of $x^4 - x$, then $F^2(x) = x^4 = x$ for all $x \in \mathbb{F}_4$ one can see that F^2 fixes \mathbb{F}_4 hence Gal $(\mathbb{F}_{16}/\mathbb{F}_2)$ is cyclic of order two, generated by F^2 . Therefore the only Galois conjugates of α are α and $\alpha^4 = \alpha^{-1}$, and none of them is equal to α^2 or α^3 .