Math 504, Fall 2013
HW 3

1. Let F = FF»(x) be the field of rational functions over the field of order 2. Show that

the extension K = F(x!/®) of F is equal to F(y/x,x!/3). Show that F(x'/3) is separable
over F. Show that F(+/x) is purely inseparable over F.

We first show that F(x!/6) = F(y/x, x1/3). Note that (x1/¢)3 = \/x and (x1/¢)? = x1/3, s0
F(y/x,xY/3) c F(x'/9). Since F(1/x,x/3) contains x'/3 and is a field, it contains x~1/3,
x1/2 x x71/3 = x1/6 50 x1/6 ¢ F(\/x,x'/3) so F(x1/%) c F(y/x,x'/3). We conclude that
F(x/0) = F(\/x,x/3).

We know that an extension is separable if every generator is, therefore it suffices to
show that the minimal polynomial of x!/3 is separable. Note that the minimal polyno-
mial of x1/3 over Fis f(y) = y® — x. This has f'(y) = 3y*> = y*> # 0. Because f' # 0 f is
separable. Because F(x!/?) is generated by separable elements it is a separable extension.

The minimal polynomial of x'/? over F is f(y) = y> — x. Then f'(y) = 2y = 0 so
x1/2 is not separable. Because it is a polynomial of degree two this implies that f has only
one root. Furthermore, because (x'/2)?2 = x € F(x), we can reduce any polynomial of
larger degree to a polynomial of degree 1 or 2, so no non-linear polynomial will split into
a product of linear factors in F(x!/2) so F(x!/2) is purely inseparable. [

COMMENTS: If one wants to be very precise, it’s worth to point out that although for
every element of F there’s only one square root, there are three sixth roots of x, and three
cube roots of x. Hence, if we denote by x!/¢ a sixth root of x, then (x!/6)? is one of the cube
roots of x. Therefore if we want the inclusion F(x'/3) C F(x!/¢) we need a “compatible”
choice of roots of x.

2. Find the degree of the splitting field over Q for the following polynomials: x* —
Lx* 41, x* +2, x* + 4.

Let L denote the splitting field of the given polynomial f(x) € Q[x].

L fix) =x*—1 = (x=1)(x+1)(x?+1) = ®(x)Dy(x)Py(x). This polynomial
already has two of its roots in Q, the only ones remaining are the roots from the
irreducible (rational roots) quadratic x> + 1. Actually we know the splitting field of
this is the fourth roots of unity +i,+1. The extension L = Q(i) is thus of degree
two.



2. f(x) = x* + 1. Using complex arithmetic, we find the roots of f(x) are

{ein/4, e3i7r/4, 65171/4, 6717'(/4}’

and by Euler’s formula, the roots turn out to be {:l:\% + 1%} The field Q(e'™/4) D
L, since powers of elmt/4 generate the other three roots of x* + 1, and we also have
i,v/2 € L by adding and subtracting the roots. But Q(e'™*) = Q(i,+/2) since
(e™/4)2 = i and (/%)% = —\% + \% imply i,4/2 € Q(e™/#). But then we may
conclude Q(7, \/E) C L by minimality since i, V2 € L. Now since [Q(i, \/E) :
Q] = [Q(,v2) : Q(v2)][Q(v2) : Q] and since Q(v/2) is contained in R but
Q(i,+/2) is not, we conclude that both the extensions have degree 2 and therefore
[Q(i,v2) : Q] = 4. Tt follows that [L : Q] = 4.

3. f(x) = x*+ 2. First, this polynomial is irreducible by Eisenstein at p = 2. Again

by Euler’s formula, the roots are g% (£1+1). Clearly L > Q(i, v'2), whence [L :
Q] < 8 because [Q(v/2) : Q] = 4 and this field is real, so [Q(i, v2) : Q] = 8 (see
problem 4 for more details). But since g%(l + i) € L, we have Q(v/2) C L (since
(23/4)3 = 4+/2), thus [L : Q] > 4, since L contains a purely real quartic extension.
By the tower property, we must divide 8, and thus we have [L : Q] = 8, as desired.

4. We note that f(x) = x* + 4 factors over Q, since x* +4 = (x% 4+ 2x +2)(x?> — 2x +2),
and by the quadratic formula, the roots are £1+1i,so [L : Q] = 2.

3. Find the degree of the splitting field for x® + 1 over Q and TF,.

Over Q:
Let w = ¢™/®. Then the roots of x° 4 1 are obviously +i, +w, +w?, so the splitting
field of x° + 1 over Q is Q(i, w, w®) = Q(i, w).
In Cartesian form, we have:
_ VB+i

2
Consequently, Q(i,w) = Q(i,2w — i) = Q(i,v/3).

Now, [Q(v/3) : Q] = 2 because /3 is not rational and has minimal polynomial x> — 3
(irreducible by Eisenstein). Furthermore, Q(\/§) is a real extension of O, so it does not
contain i. Thus, [Q(v/3,i) : Q(v/3)] > 1, and [Q(+/3,i1)Q(v/3)] < 2 because x*> + 1 €
Q(V/3)[x] is satisfied by i, so [Q(V/3,i) : Q(v/3)] = 2. Finally, [Q(i,w) : Q] = 4 by
multiplicativity of degrees.

Over IFp:

First, note that x® + 1 = (x® + 1), so it is sufficient to find a splitting field for x> + 1.
Furthermore, x> + 1 = (x + 1)(x? — x + 1). The polynomial x?> — x + 1 is irreducible over

w



F,, because 0? —0+1=12-1+1=1 # 0, which shows it has no roots in IF,. Let « be a
root of x?> + x + 1 in some field extension of IF,. Compute that:

(a+1)P2—(a+D)+1=a’+1—a—-1+1=a’>—a+1=0

Thus, it’s clear that:
B r1=(x-1)*(x—a)(x —a—1)°

so a splitting field for x® + 1 is IF»[a], which has degree 2.

4. Show that the extension of Q generated by a root of x* — 2 is not normal. Deduce
that a normal extension of a normal extension need not be normal.

First, note that:
¥t =2 = (4 V2)(x* = V2) = (x +iV2) (x —iV2)(x + V2)(x — V2)
Next, note that:
K =Q(£V2, +iv2) = Q(V2,iv2) = Q(V2,i)

K is clearly the splitting field of x* — 2 over Q, because it is generated by the four roots of
x* — 2. The equalities in the display obviously hold because i € Q(+v/2,iv/2) and iv/2 €
Q(V/2,).

Now, clearly [Q(v/2) : Q] = 4, because v/2 is a root of x* — 2, which is irreducible
by Eisenstein (p = 2). Furthermore, this is a purely real extension, so i ¢ Q(+/2). Thus,
[K : Q(v/2)] > 1 because we need to adjoin i, and i satisfies x> 4+ 1, so [K : Q(v/2)] = 2
and [K: Q] = 8.

If « is a root of x* — 2, then [Q(«) : Q] = 4 because x* — 2 is irreducible, so Q(«) # K.

Thus, we conclude that a normal extension of a normal extension need not be normal.
The extension Q(\/i) /Q is certainly normal, because it is the splitting field of x2 — 2. Fur-
thermore, Q((‘/ﬁ) / Q(\/E) is normal, because it is the splitting field of x2 — v/2. However,
Q(+/2)/Q is not normal by the proof above.

5. If a field of characteristic p has n distinct n" roots of unity show that p does not
divide n.

Suppose that k is a field of characteristic p that has n distinct n-th roots of unity. Then, the
polynomial f(x) = x" — 1 has n distinct roots, hence f(x) has no repeated roots, meaning
that f'(x) # 0. So,

f(x) =nx"1#£0

If p did divide n, we would have n = 0 and f’(x) = 0, contradicting the above. Hence, p
does not divide n. .



6. Let K be a perfect field, and G be the group of all automorphisms of K. Show that
the invarient subfield K is perfect.

We can assume char K = p > 0, otherwise it’s trivial. Since K is perfect, every element of
K is a pth power, so the Frobenius endomorphism

Frob,: x xP

is surjective on K, so it is an automorphism.

Then K© is pointwise fixed by Frob,, so for any y € KC, y? = y so y is a pth power.
Thus K© is perfect. It's worth to observe that K© consists of the roots of x” — x, hence it
coincides with the prime subfield IF. n

7. Let x be trancendental over a field k. Show that k(x) is a degree 6 extension of k(x)®
where G is the group generated by the automorphisms x — x~! and x — 1 — x. Show
that (x> — x +1)3/(x? — x)?isin k(x)®. and use that to compute the minimal polynomial
of x over k(x)©.

Letp : x — 1/xand ¢ : x — 1 — x be the automorphisms of k(x) that generate G. Let

z= (x(i;%)lz)?’ € k(x). We have

2 _ -1 3
¢(z) = (x(x_z _T_ X—T)i)
(1—x+x2)3 x7©
T (—x+x2)2 x6
=z

and

X — X 3
o= (CA200)
= z.

Therefore z is fixed under the action of G, so z € k(x)®. Now consider the degree 6
polynomial in k(x)©[t] given by
p(t) = (2 —t+1)°+ (2 — 1)z

Clearly p(x) = 0, so [k(x) : k(x)®] < 6.
On the other hand, the orbit of x under G has at least 6 distinct elements (we actually
have that G is isomorphic to Sz but this will not be needed in the proof). In particular,

1
Px =, Ypx=1-x, o¢px=

X x—x_1 idex = x
_1/ lpq) - x 7 G - .

1—x

Yoypx =

X



Now suppose q(t) € k(x)C[t] is an irreducible polynomial satisfying g(x) = 0, in k(x).
Then for any u € G we must have that u(q(x)) = g(u(x)) = 0. Therefore g has at least
6 roots in k(x) which means the degree of g is at least 6. Therefore the polynomial p(t) is
the miminal polynomial of x over k(x)© and in particular [k(x) : k(x)®] = 6. u

8. Show that Q(v/2,2!/3) = Q(v/2 +21/3).

We would like to show that the fields Q(\/E, \3/5) and Q(\/§ + \3/5) are equal. First
note that Q(1/2, v/2) is equal to Q(v/2). The former is contained in the latter because
V2 = (v/2)% and v/2 = (v/2)2. But also (v/2)>v/2 = 27/¢, s0 v/2 is in Q(v/2, ¥/2) and the
tields are equal. Since x® — 2 is irreducible by Eisenstein’s criterion, Q(f/i) is a degree 6

extension of Q.
It's immediate that Q(\/E + \3/5) is a subfield of Q(\/E, \3/5), so the degree of the ex-

tension Q(\/§ + \3/5) over Q is either 2, 3, or 6 (it must divide 6). Our result will then
be proved if we can show that it is not a degree 2 or 3 extension, as this implies that
Q(v/2,V/2) is a degree 1 extension of Q(+/2 + v/2).

A basis for Q(v/2) as a Q-vector space is given by the powers of v/2 ranging from 0
to 5 (this is a result of problem (5) from the last homework). Now look at the powers of

V2 + V2
(V2+ V2)2 =2+2vV2V2 + (V2)? =2+ 2(V2)° + (V4)*
(V2+V2)° =24 6(V2) +6(V2)* +2(V2)°

These powers of v/2 imply that the minimal polynomial for /2 + v/2 cannot be a quadratic
or a cubic; such a polynomial would provide a linear dependence among the powers of
v/2, since the power (v/2)® would occur only in the (/2 + v/2)? term while the power v/2
would occur only in the (v/2 + v/2)3 term. In short, any Q-linear combinations of these
cannot be zero unless all of the coefficients are zero. Hence, Q(\/§ + \3/5) is a degree 6
extension of Q and it must be equal to Q(v/2, v/2). U

9. Find the smallest normal extension of Q that contains sin(7t/5).

V5

We seek the smallest normal extension of Q containing sin Z = /3 — 2. If we denote
the right-hand side by ¢, then 82 = 5 — /5, whence (8> — 5)? — 5 = 64t* — 80t> 420 = 0.
Therefore m;q(x) | f(x) := x* — 2x2 + 2, but this polynomial is irreducible over Q as
one can easily wee by clearing the denominators and then using Eisenstein’s criterion.
By the quadratic formula (viewing this as a polynomial in x? then solving for x by

square roots), the zeros are found to be :l:% %(5 + 1/5). If we consider the normal ex-

tension of Q obtained by as a splitting field of the polynomial x* — 3x% + 15—6 over Q, we
generate, what we proceed to show, a degree 4 extension of Q containing sin(7t/5). By the
preceding paragraph, [Q(sin(7r/5)) : Q] = 4, and this extension generates at least two
of the zeros of f(x). If we let the roots be denoted by +« and + (where sin(77/5) = «,



say), then we have so far that [Q(«) : Q] = 4. But note that af = \/Tg and further note
a2 = (5 —/5), whence v/5 € Q(a) and thus B € Q(a). Thus Q(a) = Q(, B) is a degree
four normal extension of Q. Any other extension containing # = sin(7r/5) must neces-
sarily have degree at least 4, since m, o(x) = f(x), a degree four polynomial. Thus this is
indeed the smallest normal extension of Q containing sin(7t/5). .

10. Give an algebraic proof that every angle can be bisected by using a ruler and com-
pass.

To do this, we will situate that angle in C = IR?, then this is equivalent to the following

task: given the point e = (cos 8, sin #), construct e? = (cos g, sin g) We know that if we
can individually construct (cos §,sin §) from (cos 6, sin 8), then this will be sufficient.

By the double-angle formula, we have that cos 6 = 2 cos? g —1,0rcosf +1 = 2cos? g.

Since we can construct the cos 6, we can construct %. To take the square root, given

a segment of length a, we can construct a segment of length /4, and hence this gives us

cosg as required. For sin g, we know that sinf = 2 cos g sin g, and we know sinf and

Ccos g, hence we can construct sin g.

Therefore, we can bisect any angle with a ruler and compass.



