1. Let $F = \mathbb{F}_2(x)$ be the field of rational functions over the field of order 2. Show that the extension $K = F(x^{1/6})$ of F is equal to $F(\sqrt[6]{x}, x^{1/3})$. Show that $F(x^{1/3})$ is separable over F. Show that $F(\sqrt{x})$ is purely inseparable over F.

We first show that $F(x^{1/6}) = F(\sqrt[6]{x}, x^{1/3})$. Note that $(x^{1/6})^3 = \sqrt[6]{x}$ and $(x^{1/6})^2 = x^{1/3}$, so $F(\sqrt[6]{x}, x^{1/3}) \subset F(x^{1/6})$. Since $F(\sqrt[6]{x}, x^{1/3})$ contains $x^{1/3}$ and is a field, it contains $x^{-1/3}$. $x^{1/2} \times x^{-1/3} = x^{1/6}$, so $x^{1/6} \in F(\sqrt[6]{x}, x^{1/3})$ so $F(x^{1/6}) \subset F(\sqrt[6]{x}, x^{1/3})$. We conclude that $F(x^{1/6}) = F(\sqrt[6]{x}, x^{1/3})$.

We know that an extension is separable if every generator is, therefore it suffices to show that the minimal polynomial of $x^{1/3}$ is separable. Note that the minimal polynomial of $x^{1/3}$ over F is $f(y) = y^3 - x$. This has $f'(y) = 3y^2 = y^2 \neq 0$. Because $f' \neq 0$ f is separable. Because $F(x^{1/3})$ is generated by separable elements it is a separable extension.

The minimal polynomial of $x^{1/2}$ over F is $f(y) = y^2 - x$. Then $f'(y) = 2y = 0$ so $x^{1/2}$ is not separable. Because it is a polynomial of degree two this implies that f has only one root. Furthermore, because $(x^{1/2})^2 = x \in F(x)$, we can reduce any polynomial of larger degree to a polynomial of degree 1 or 2, so no non-linear polynomial will split into a product of linear factors in $F(x^{1/2})$ so $F(x^{1/2})$ is purely inseparable.

\textbf{Comments:} If one wants to be very precise, it’s worth to point out that although for every element of F there’s only one square root, there are three sixth roots of x, and three cube roots of x. Hence, if we denote by $x^{1/6}$ a sixth root of x, then $(x^{1/6})^2$ is one of the cube roots of x. Therefore if we want the inclusion $F(x^{1/3}) \subseteq F(x^{1/6})$ we need a “compatible” choice of roots of x.

2. Find the degree of the splitting field over \mathbb{Q} for the following polynomials: $x^4 - 1$, $x^4 + 1$, $x^4 + 2$, $x^4 + 4$.

Let L denote the splitting field of the given polynomial $f(x) \in \mathbb{Q}[x]$.

1. $f(x) = x^4 - 1 = (x - 1)(x + 1)(x^2 + 1) = \Phi_1(x)\Phi_2(x)\Phi_4(x)$. This polynomial already has two of its roots in \mathbb{Q}, the only ones remaining are the roots from the irreducible (rational roots) quadratic $x^2 + 1$. Actually we know the splitting field of this is the fourth roots of unity $\pm i, \pm 1$. The extension $L = \mathbb{Q}(i)$ is thus of degree two.
2. \(f(x) = x^4 + 1 \). Using complex arithmetic, we find the roots of \(f(x) \) are
\[\{ e^{i\pi/4}, e^{3i\pi/4}, e^{5i\pi/4}, e^{7i\pi/4} \}, \]
and by Euler’s formula, the roots turn out to be \(\{ \pm \frac{1}{\sqrt{2}} \pm i \frac{1}{\sqrt{2}} \} \). The field \(\mathbb{Q}(e^{i\pi/4}) \supset L \), since powers of \(e^{i\pi/4} \) generate the other three roots of \(x^4 + 1 \), and we also have \(i, \sqrt{2} \in L \) by adding and subtracting the roots. But \(\mathbb{Q}(e^{i\pi/4}) = \mathbb{Q}(i, \sqrt{2}) \) since \((e^{i\pi/4})^2 = i \) and \((e^{i\pi/4})^3 = -\frac{1}{\sqrt{2}} + i \frac{1}{\sqrt{2}} \) imply \(i, \sqrt{2} \in \mathbb{Q}(e^{i\pi/4}) \). But then we may conclude \(\mathbb{Q}(i, \sqrt{2}) \subset L \) by minimality since \(i, \sqrt{2} \in L \). Now since \([\mathbb{Q}(i, \sqrt{2}) : \mathbb{Q}] = [\mathbb{Q}(i, \sqrt{2}) : \mathbb{Q}(\sqrt{2})][\mathbb{Q}(\sqrt{2}) : \mathbb{Q}] \) and since \(\mathbb{Q}(\sqrt{2}) \) is contained in \(\mathbb{R} \) but \(\mathbb{Q}(i, \sqrt{2}) \) is not, we conclude that both the extensions have degree 2 and therefore \([\mathbb{Q}(i, \sqrt{2}) : \mathbb{Q}] = 4 \). It follows that \([L : \mathbb{Q}] = 4 \).

3. \(f(x) = x^4 + 2 \). First, this polynomial is irreducible by Eisenstein at \(p = 2 \). Again by Euler’s formula, the roots are \(\frac{1}{\sqrt{2}} (\pm 1 \pm i) \). Clearly \(L \supset \mathbb{Q}(i, \sqrt{2}) \), whence \([L : \mathbb{Q}] \leq 8 \) because \([\mathbb{Q}(\sqrt{2}) : \mathbb{Q}] = 4 \) and this field is real, so \([\mathbb{Q}(i, \sqrt{2}) : \mathbb{Q}] = 8 \) (see problem 4 for more details). But since \(\frac{1}{\sqrt{2}} (1 \pm i) \in L \), we have \(\mathbb{Q}(\sqrt{2}) \subset L \) since \((2^{3/4})^3 = 4 \sqrt{2} \), thus \([L : \mathbb{Q}] > 4 \), since \(L \) contains a purely real quartic extension. By the tower property, we must divide 8, and thus we have \([L : \mathbb{Q}] = 8 \), as desired.

4. We note that \(f(x) = x^4 + 4 \) factors over \(\mathbb{Q} \), since \(x^4 + 4 = (x^2 + 2x + 2)(x^2 - 2x + 2) \), and by the quadratic formula, the roots are \(\pm 1 \pm i \), so \([L : \mathbb{Q}] = 2 \).

\[\begin{array}{|c|}
\hline
3. \text{ Find the degree of the splitting field for } x^6 + 1 \text{ over } \mathbb{Q} \text{ and } \mathbb{F}_2. \\
\hline
\end{array} \]

Over \(\mathbb{Q} \):

Let \(\omega = e^{\pi i/6} \). Then the roots of \(x^6 + 1 \) are obviously \(\pm i, \pm \omega, \pm \omega^5 \), so the splitting field of \(x^6 + 1 \) over \(\mathbb{Q} \) is \(\mathbb{Q}(i, \omega, \omega^5) = \mathbb{Q}(i, \omega) \).

In Cartesian form, we have:
\[\omega = \frac{\sqrt{3} + i}{2} \]

Consequently, \(\mathbb{Q}(i, \omega) = \mathbb{Q}(i, 2\omega - i) = \mathbb{Q}(i, \sqrt{3}) \).

Now, \([\mathbb{Q}(\sqrt{3}) : \mathbb{Q}] = 2 \) because \(\sqrt{3} \) is not rational and has minimal polynomial \(x^2 - 3 \) (irreducible by Eisenstein). Furthermore, \(\mathbb{Q}(\sqrt{3}) \) is a real extension of \(\mathbb{Q} \), so it does not contain \(i \). Thus, \([\mathbb{Q}(\sqrt{3}, i) : \mathbb{Q}(\sqrt{3})] > 1 \), and \([\mathbb{Q}(\sqrt{3}, i) : \mathbb{Q}(\sqrt{3})] \leq 2 \) because \(x^2 + 1 \in \mathbb{Q}(\sqrt{3})[x] \) is satisfied by \(i \), so \([\mathbb{Q}(\sqrt{3}, i) : \mathbb{Q}(\sqrt{3})] = 2 \). Finally, \([\mathbb{Q}(i, \omega) : \mathbb{Q}] = 4 \) by multiplicativity of degrees.

Over \(\mathbb{F}_2 \):

First, note that \(x^6 + 1 = (x^3 + 1)^2 \), so it is sufficient to find a splitting field for \(x^3 + 1 \). Furthermore, \(x^3 + 1 = (x + 1)(x^2 - x + 1) \). The polynomial \(x^2 - x + 1 \) is irreducible over
\(\mathbb{F}_2 \), because \(0^2 - 0 + 1 = 1^2 - 1 + 1 = 1 \neq 0 \), which shows it has no roots in \(\mathbb{F}_2 \). Let \(\alpha \) be a root of \(x^2 + x + 1 \) in some field extension of \(\mathbb{F}_2 \). Compute that:
\[
(\alpha + 1)^2 - (\alpha + 1) + 1 = \alpha^2 + 1 - \alpha - 1 + 1 = \alpha^2 - \alpha + 1 = 0
\]
Thus, it’s clear that:
\[
x^6 + 1 = (x - 1)^2(x - \alpha)^2(x - \alpha - 1)^2
\]
so a splitting field for \(x^6 + 1 \) is \(\mathbb{F}_2[\alpha] \), which has degree 2.

4. Show that the extension of \(\mathbb{Q} \) generated by a root of \(x^4 - 2 \) is not normal. Deduce that a normal extension of a normal extension need not be normal.

First, note that:
\[
x^4 - 2 = (x^2 + \sqrt{2})(x^2 - \sqrt{2}) = (x + i\sqrt{2})(x - i\sqrt{2})(x + \sqrt{2})(x - \sqrt{2})
\]
Next, note that:
\[
K = \mathbb{Q}(\pm \sqrt{2}, \pm i\sqrt{2}) = \mathbb{Q}(\sqrt{2}, i\sqrt{2}) = \mathbb{Q}(\sqrt{2}, i)
\]
\(K \) is clearly the splitting field of \(x^4 - 2 \) over \(\mathbb{Q} \), because it is generated by the four roots of \(x^4 - 2 \). The equalities in the display obviously hold because \(i \in \mathbb{Q}(\sqrt{2}, i\sqrt{2}) \) and \(i\sqrt{2} \in \mathbb{Q}(\sqrt{2}, i) \).

Now, clearly \([\mathbb{Q}(\sqrt{2}) : \mathbb{Q}] = 4 \), because \(\sqrt{2} \) is a root of \(x^4 - 2 \), which is irreducible by Eisenstein \((p = 2)\). Furthermore, this is a purely real extension, so \(i \notin \mathbb{Q}(\sqrt{2}) \). Thus, \([K : \mathbb{Q}(\sqrt{2})] > 1 \) because we need to adjoin \(i \), and \(i \) satisfies \(x^2 + 1 \), so \([K : \mathbb{Q}(\sqrt{2})] = 2 \) and \([K : \mathbb{Q}] = 8 \).

If \(\alpha \) is a root of \(x^4 - 2 \), then \([\mathbb{Q}(\alpha) : \mathbb{Q}] = 4 \) because \(x^4 - 2 \) is irreducible, so \(\mathbb{Q}(\alpha) \neq K \).
Thus, we conclude that a normal extension of a normal extension need not be normal. The extension \(\mathbb{Q}(\sqrt{2})/\mathbb{Q} \) is certainly normal, because it is the splitting field of \(x^2 - 2 \). Furthermore, \(\mathbb{Q}(\sqrt{2})/\mathbb{Q}(\sqrt{2}) \) is normal, because it is the splitting field of \(x^2 - \sqrt{2} \). However, \(\mathbb{Q}(\sqrt{2})/\mathbb{Q} \) is not normal by the proof above.

5. If a field of characteristic \(p \) has \(n \) distinct \(n^{th} \) roots of unity show that \(p \) does not divide \(n \).

Suppose that \(k \) is a field of characteristic \(p \) that has \(n \) distinct \(n \)-th roots of unity. Then, the polynomial \(f(x) = x^n - 1 \) has \(n \) distinct roots, hence \(f(x) \) has no repeated roots, meaning that \(f'(x) \neq 0 \). So,
\[
f'(x) = nx^{n-1} \neq 0
\]
If \(p \) did divide \(n \), we would have \(n = 0 \) and \(f'(x) = 0 \), contradicting the above. Hence, \(p \) does not divide \(n \).
6. Let K be a perfect field, and G be the group of all automorphisms of K. Show that the invariant subfield K^G is perfect.

We can assume $\text{char } K = p > 0$, otherwise it's trivial. Since K is perfect, every element of K is a pth power, so the Frobenius endomorphism

$$\text{Frob}_p : x \mapsto x^p$$

is surjective on K, so it is an automorphism.

Then K^G is pointwise fixed by Frob_p, so for any $y \in K^G$, $y^p = y$ so y is a pth power. Thus K^G is perfect. It's worth to observe that K^G consists of the roots of $x^p - x$, hence it coincides with the prime subfield \mathbb{F}_p. ■

7. Let x be transcendental over a field k. Show that $k(x)$ is a degree 6 extension of $k(x)^G$ where G is the group generated by the automorphisms $x \mapsto x^{-1}$ and $x \mapsto 1 - x$. Show that $(x^2 - x + 1)^3 / (x^2 - x)^2$ is in $k(x)^G$, and use that to compute the minimal polynomial of x over $k(x)^G$.

Let $\varphi : x \mapsto 1/x$ and $\psi : x \mapsto 1 - x$ be the automorphisms of $k(x)$ that generate G. Let $z = \frac{(x^2 - x + 1)^3}{(x^2 - x)^2} \in k(x)$. We have

$$\varphi(z) = \frac{(x^{-2} - x^{-1} + 1)^3}{(x^{-2} + x^{-1})^2} = \frac{(1-x+x^2)^3}{(-x+x^2)^2} \cdot \frac{x^{-6}}{x^{-6}} = z$$

and

$$\psi(z) = \psi \left(\frac{(x(1-x) + 1)^3}{x^2(1-x)^2} \right) = z.$$

Therefore z is fixed under the action of G, so $z \in k(x)^G$. Now consider the degree 6 polynomial in $k(x)^G[t]$ given by

$$p(t) = (t^2 - t + 1)^3 + (t^2 - t)^2 z.$$

Clearly $p(x) = 0$, so $[k(x) : k(x)^G] \leq 6$.

On the other hand, the orbit of x under G has at least 6 distinct elements (we actually have that G is isomorphic to S_3 but this will not be needed in the proof). In particular,

$$\varphi x = \frac{1}{x}, \quad \psi x = 1 - x, \quad \varphi \psi x = \frac{1}{1-x}$$

$$\psi \varphi \psi x = \frac{x}{x-1}, \quad \psi \varphi x = \frac{x-1}{x}, \quad \text{id}_G x = x.$$
Now suppose
\[q(t) \in k(x)^G[t] \]

is an irreducible polynomial satisfying \(q(x) = 0 \), in \(k(x) \). Then for any \(\mu \in G \) we must have that \(\mu(q(x)) = q(\mu(x)) = 0 \). Therefore \(q \) has at least 6 roots in \(k(x) \) which means the degree of \(q \) is at least 6. Therefore the polynomial \(p(t) \) is the minimal polynomial of \(x \) over \(k(x)^G \) and in particular \([k(x) : k(x)^G] = 6 \).

\[\square \]

8. Show that \(Q(\sqrt{2}, 2^{1/3}) = Q(\sqrt{2} + 2^{1/3}) \).

We would like to show that the fields \(Q(\sqrt{2}, \sqrt[3]{2}) \) and \(Q(\sqrt{2} + \sqrt[3]{2}) \) are equal. First note that \(Q(\sqrt{2}, \sqrt[3]{2}) \) is equal to \(Q(\sqrt[6]{2}) \). The former is contained in the latter because \(\sqrt{2} = (\sqrt[6]{2})^3 \) and \(\sqrt[3]{2} = (\sqrt[6]{2})^2 \). But also \((\sqrt[6]{2})^2 \sqrt[3]{2} = 2^{7/6} \), so \(\sqrt[6]{2} \) is in \(Q(\sqrt{2}, \sqrt[3]{2}) \) and the fields are equal. Since \(x^6 - 2 \) is irreducible by Eisenstein’s criterion, \(Q(\sqrt[6]{2}) \) is a degree 6 extension of \(Q \).

It’s immediate that \(Q(\sqrt{2} + \sqrt[3]{2}) \) is a subfield of \(Q(\sqrt{2}, \sqrt[3]{2}) \), so the degree of the extension \(Q(\sqrt{2} + \sqrt[3]{2}) \) over \(Q \) is either 2, 3, or 6 (it must divide 6). Our result will then be proved if we can show that it is not a degree 2 or 3 extension, as this implies that \(Q(\sqrt{2}, \sqrt[3]{2}) \) is a degree 1 extension of \(Q(\sqrt{2} + \sqrt[3]{2}) \).

A basis for \(Q(\sqrt[6]{2}) \) as a \(Q \)-vector space is given by the powers of \(\sqrt[6]{2} \) ranging from 0 to 5 (this is a result of problem (5) from the last homework). Now look at the powers of \(\sqrt{2} + \sqrt[3]{2} \):

\[
(\sqrt{2} + \sqrt[3]{2})^2 = 2 + 2\sqrt{2}\sqrt[3]{2} + (\sqrt[3]{2})^2 = 2 + 2\sqrt[6]{2}^5 + (\sqrt[6]{4})^4
\]

\[
(\sqrt{2} + \sqrt[3]{2})^3 = 2 + 6\sqrt[6]{2} + 6(\sqrt[6]{2})^2 + 2(\sqrt[6]{2})^3
\]

These powers of \(\sqrt{2} + \sqrt[3]{2} \) imply that the minimal polynomial for \(\sqrt{2} + \sqrt[3]{2} \) cannot be a quadratic or a cubic; such a polynomial would provide a linear dependence among the powers of \(\sqrt{2} + \sqrt[3]{2} \), since the power \((\sqrt[6]{2})^5 \) would occur only in the \((\sqrt{2} + \sqrt[3]{2})^2 \) term while the power \(\sqrt{2} \) would occur only in the \((\sqrt{2} + \sqrt[3]{2})^3 \) term. In short, any \(Q \)-linear combinations of these cannot be zero unless all of the coefficients are zero. Hence, \(Q(\sqrt{2} + \sqrt[3]{2}) \) is a degree 6 extension of \(Q \) and it must be equal to \(Q(\sqrt{2}, \sqrt[3]{2}) \).

\[\square \]

9. Find the smallest normal extension of \(Q \) that contains \(\sin(\pi/5) \).

We seek the smallest normal extension of \(Q \) containing \(\frac{\sqrt{5}}{2} = \sqrt{\frac{5}{8} - \frac{\sqrt{5}}{8}} \). If we denote the right-hand side by \(t \), then \(8t^2 = 5 - \sqrt{5} \), whence \((8t^2 - 5)^2 - 5 = 64t^4 - 80t^2 + 20 = 0 \). Therefore \(m_{t,Q}(x) | f(x) := x^4 - \frac{5}{4}x^2 + \frac{5}{16} \), but this polynomial is irreducible over \(Q \) as one can easily see by clearing the denominators and then using Eisenstein’s criterion.

By the quadratic formula (viewing this as a polynomial in \(x^2 \) then solving for \(x \) by square roots), the zeros are found to be \(\pm \frac{1}{2} \sqrt{\frac{1}{2}(5 \pm \sqrt{5})} \). If we consider the normal extension of \(Q \) obtained by as a splitting field of the polynomial \(x^4 - \frac{5}{4}x^2 + \frac{5}{16} \) over \(Q \), we generate, what we proceed to show, a degree 4 extension of \(Q \) containing \(\sin(\pi/5) \). By the preceding paragraph, \([Q(\sin(\pi/5)) : Q] = 4 \), and this extension generates at least two of the zeros of \(f(x) \). If we let the roots be denoted by \(\pm \alpha \) and \(\pm \beta \) (where \(\sin(\pi/5) = \alpha \),
say), then we have so far that \([Q(\alpha) : Q] = 4\). But note that \(\alpha \beta = \frac{\sqrt{5}}{4}\) and further note \(\alpha^2 = \frac{1}{8}(5 - \sqrt{5})\), whence \(\sqrt{5} \in Q(\alpha)\) and thus \(\beta \in Q(\alpha)\). Thus \(Q(\alpha) = Q(\alpha, \beta)\) is a degree four normal extension of \(Q\). Any other extension containing \(\alpha = \sin(\pi/5)\) must necessarily have degree at least 4, since \(m_{\alpha, Q}(x) = f(x)\), a degree four polynomial. Thus this is indeed the smallest normal extension of \(Q\) containing \(\sin(\pi/5)\).

\(\blacksquare\)

10. Give an algebraic proof that every angle can be bisected by using a ruler and compass.

To do this, we will situate that angle in \(C \cong \mathbb{R}^2\), then this is equivalent to the following task: given the point \(e^{i\theta} = (\cos \theta, \sin \theta)\), construct \(e^{i\theta/2} = (\cos \frac{\theta}{2}, \sin \frac{\theta}{2})\). We know that if we can individually construct \((\cos \frac{\theta}{2}, \sin \frac{\theta}{2})\) from \((\cos \theta, \sin \theta)\), then this will be sufficient.

By the double-angle formula, we have that \(\cos \theta = 2 \cos^2 \frac{\theta}{2} - 1\), or \(\cos \theta + 1 = 2 \cos^2 \frac{\theta}{2}\). Since we can construct the \(\cos \theta\), we can construct \(\frac{\cos \theta + 1}{2}\). To take the square root, given a segment of length \(a\), we can construct a segment of length \(\sqrt{a}\), and hence this gives us \(\cos \frac{\theta}{2}\) as required. For \(\sin \frac{\theta}{2}\), we know that \(\sin \theta = 2 \cos \frac{\theta}{2} \sin \frac{\theta}{2}\), and we know \(\sin \theta\) and \(\cos \frac{\theta}{2}\), hence we can construct \(\sin \frac{\theta}{2}\).

Therefore, we can bisect any angle with a ruler and compass.

\(\blacksquare\)