
Math 504, Fall 2013
HW 3

1. Let F = F2(x) be the field of rational functions over the field of order 2. Show that
the extension K = F(x1/6) of F is equal to F(

√
x, x1/3). Show that F(x1/3) is separable

over F. Show that F(
√

x) is purely inseparable over F.

We first show that F(x1/6) = F(
√

x, x1/3). Note that (x1/6)3 =
√

x and (x1/6)2 = x1/3, so
F(
√

x, x1/3) ⊂ F(x1/6). Since F(
√

x, x1/3) contains x1/3 and is a field, it contains x−1/3.
x1/2 × x−1/3 = x1/6, so x1/6 ∈ F(

√
x, x1/3) so F(x1/6) ⊂ F(

√
x, x1/3). We conclude that

F(x1/6) = F(
√

x, x1/3).

We know that an extension is separable if every generator is, therefore it suffices to
show that the minimal polynomial of x1/3 is separable. Note that the minimal polyno-
mial of x1/3 over F is f (y) = y3 − x. This has f ′(y) = 3y2 = y2 6= 0. Because f ′ 6= 0 f is
separable. Because F(x1/3) is generated by separable elements it is a separable extension.

The minimal polynomial of x1/2 over F is f (y) = y2 − x. Then f ′(y) = 2y = 0 so
x1/2 is not separable. Because it is a polynomial of degree two this implies that f has only
one root. Furthermore, because (x1/2)2 = x ∈ F(x), we can reduce any polynomial of
larger degree to a polynomial of degree 1 or 2, so no non-linear polynomial will split into
a product of linear factors in F(x1/2) so F(x1/2) is purely inseparable. �

COMMENTS: If one wants to be very precise, it’s worth to point out that although for
every element of F there’s only one square root, there are three sixth roots of x, and three
cube roots of x. Hence, if we denote by x1/6 a sixth root of x, then (x1/6)2 is one of the cube
roots of x. Therefore if we want the inclusion F(x1/3) ⊆ F(x1/6) we need a “compatible”
choice of roots of x.

2. Find the degree of the splitting field over Q for the following polynomials: x4 −
1, x4 + 1, x4 + 2, x4 + 4.

Let L denote the splitting field of the given polynomial f (x) ∈ Q[x].

1. f (x) = x4 − 1 = (x − 1)(x + 1)(x2 + 1) = Φ1(x)Φ2(x)Φ4(x). This polynomial
already has two of its roots in Q, the only ones remaining are the roots from the
irreducible (rational roots) quadratic x2 + 1. Actually we know the splitting field of
this is the fourth roots of unity ±i,±1. The extension L = Q(i) is thus of degree
two.

1



2. f (x) = x4 + 1. Using complex arithmetic, we find the roots of f (x) are

{eiπ/4, e3iπ/4, e5iπ/4, e7iπ/4},

and by Euler’s formula, the roots turn out to be {± 1√
2
± i 1√

2
}. The field Q(eiπ/4) ⊃

L, since powers of eiπ/4 generate the other three roots of x4 + 1, and we also have
i,
√

2 ∈ L by adding and subtracting the roots. But Q(eiπ/4) = Q(i,
√

2) since
(eiπ/4)2 = i and (eiπ/4)3 = − 1√

2
+ i√

2
imply i,

√
2 ∈ Q(eiπ/4). But then we may

conclude Q(i,
√

2) ⊂ L by minimality since i,
√

2 ∈ L. Now since [Q(i,
√

2) :
Q] = [Q(i,

√
2) : Q(

√
2)][Q(

√
2) : Q] and since Q(

√
2) is contained in R but

Q(i,
√

2) is not, we conclude that both the extensions have degree 2 and therefore
[Q(i,

√
2) : Q] = 4. It follows that [L : Q] = 4.

3. f (x) = x4 + 2. First, this polynomial is irreducible by Eisenstein at p = 2. Again
by Euler’s formula, the roots are 1

4√2
(±1± i). Clearly L ⊃ Q(i, 4

√
2), whence [L :

Q] ≤ 8 because [Q( 4
√

2) : Q] = 4 and this field is real, so [Q(i, 4
√

2) : Q] = 8 (see
problem 4 for more details). But since 1

4√2
(1± i) ∈ L, we have Q( 4

√
2) ⊂ L (since

(23/4)3 = 4 4
√

2), thus [L : Q] > 4, since L contains a purely real quartic extension.
By the tower property, we must divide 8, and thus we have [L : Q] = 8, as desired.

4. We note that f (x) = x4 + 4 factors over Q, since x4 + 4 = (x2 + 2x + 2)(x2− 2x + 2),
and by the quadratic formula, the roots are ±1± i, so [L : Q] = 2.

�

3. Find the degree of the splitting field for x6 + 1 over Q and F2.

Over Q:
Let ω = eπi/6. Then the roots of x6 + 1 are obviously ±i,±ω,±ω5, so the splitting

field of x6 + 1 over Q is Q(i, ω, ω5) = Q(i, ω).
In Cartesian form, we have:

ω =

√
3 + i
2

Consequently, Q(i, ω) = Q(i, 2ω− i) = Q(i,
√

3).
Now, [Q(

√
3) : Q] = 2 because

√
3 is not rational and has minimal polynomial x2 − 3

(irreducible by Eisenstein). Furthermore, Q(
√

3) is a real extension of Q, so it does not
contain i. Thus, [Q(

√
3, i) : Q(

√
3)] > 1, and [Q(

√
3, i)Q(

√
3)] ≤ 2 because x2 + 1 ∈

Q(
√

3)[x] is satisfied by i, so [Q(
√

3, i) : Q(
√

3)] = 2. Finally, [Q(i, ω) : Q] = 4 by
multiplicativity of degrees.

Over F2:
First, note that x6 + 1 = (x3 + 1)2, so it is sufficient to find a splitting field for x3 + 1.

Furthermore, x3 + 1 = (x + 1)(x2 − x + 1). The polynomial x2 − x + 1 is irreducible over
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F2, because 02− 0 + 1 = 12− 1 + 1 = 1 6= 0, which shows it has no roots in F2. Let α be a
root of x2 + x + 1 in some field extension of F2. Compute that:

(α + 1)2 − (α + 1) + 1 = α2 + 1− α− 1 + 1 = α2 − α + 1 = 0

Thus, it’s clear that:
x6 + 1 = (x− 1)2(x− α)2(x− α− 1)2

so a splitting field for x6 + 1 is F2[α], which has degree 2.
�

4. Show that the extension of Q generated by a root of x4 − 2 is not normal. Deduce
that a normal extension of a normal extension need not be normal.

First, note that:

x4 − 2 = (x2 +
√

2)(x2 −
√

2) = (x + i 4
√

2)(x− i 4
√

2)(x +
4
√

2)(x− 4
√

2)

Next, note that:

K = Q(± 4
√

2,±i 4
√

2) = Q(
4
√

2, i 4
√

2) = Q(
4
√

2, i)

K is clearly the splitting field of x4 − 2 over Q, because it is generated by the four roots of
x4 − 2. The equalities in the display obviously hold because i ∈ Q( 4

√
2, i 4
√

2) and i 4
√

2 ∈
Q( 4
√

2, i).
Now, clearly [Q( 4

√
2) : Q] = 4, because 4

√
2 is a root of x4 − 2, which is irreducible

by Eisenstein (p = 2). Furthermore, this is a purely real extension, so i /∈ Q( 4
√

2). Thus,
[K : Q( 4

√
2)] > 1 because we need to adjoin i, and i satisfies x2 + 1, so [K : Q( 4

√
2)] = 2

and [K : Q] = 8.
If α is a root of x4 − 2, then [Q(α) : Q] = 4 because x4 − 2 is irreducible, so Q(α) 6= K.
Thus, we conclude that a normal extension of a normal extension need not be normal.

The extension Q(
√

2)/Q is certainly normal, because it is the splitting field of x2− 2. Fur-
thermore, Q( 4

√
2)/Q(

√
2) is normal, because it is the splitting field of x2 −

√
2. However,

Q( 4
√

2)/Q is not normal by the proof above.
�

5. If a field of characteristic p has n distinct nth roots of unity show that p does not
divide n.

Suppose that k is a field of characteristic p that has n distinct n-th roots of unity. Then, the
polynomial f (x) = xn− 1 has n distinct roots, hence f (x) has no repeated roots, meaning
that f ′(x) 6= 0. So,

f ′(x) = nxn−1 6= 0

If p did divide n, we would have n = 0 and f ′(x) = 0, contradicting the above. Hence, p
does not divide n. �
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6. Let K be a perfect field, and G be the group of all automorphisms of K. Show that
the invarient subfield KG is perfect.

We can assume char K = p > 0, otherwise it’s trivial. Since K is perfect, every element of
K is a pth power, so the Frobenius endomorphism

Frobp : x 7→ xp

is surjective on K, so it is an automorphism.
Then KG is pointwise fixed by Frobp, so for any y ∈ KG, yp = y so y is a pth power.

Thus KG is perfect. It’s worth to observe that KG consists of the roots of xp − x, hence it
coincides with the prime subfield Fp. �

7. Let x be trancendental over a field k. Show that k(x) is a degree 6 extension of k(x)G

where G is the group generated by the automorphisms x → x−1 and x → 1− x. Show
that (x2− x+ 1)3/(x2− x)2 is in k(x)G. and use that to compute the minimal polynomial
of x over k(x)G.

Let ϕ : x 7→ 1/x and ψ : x 7→ 1− x be the automorphisms of k(x) that generate G. Let

z = (x2−x+1)3

(x2−x)2 ∈ k(x). We have

ϕ(z) =
(x−2 − x−1 + 1)3

(x−2 + x−1)2

=
(1− x + x2)3

(−x + x2)2 ·
x−6

x−6

= z

and

ψ(z) = ψ

(
(x(1− x) + 1)3

x2(1− x)2

)
= z.

Therefore z is fixed under the action of G, so z ∈ k(x)G. Now consider the degree 6
polynomial in k(x)G[t] given by

p(t) = (t2 − t + 1)3 + (t2 − t)2z.

Clearly p(x) = 0, so [k(x) : k(x)G] ≤ 6.
On the other hand, the orbit of x under G has at least 6 distinct elements (we actually

have that G is isomorphic to S3 but this will not be needed in the proof). In particular,

ϕx =
1
x

, ψx = 1− x, ϕψx =
1

1− x

ψϕψx =
x

x− 1
, ψϕx =

x− 1
x

, idGx = x.
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Now suppose q(t) ∈ k(x)G[t] is an irreducible polynomial satisfying q(x) = 0, in k(x).
Then for any µ ∈ G we must have that µ(q(x)) = q(µ(x)) = 0. Therefore q has at least
6 roots in k(x) which means the degree of q is at least 6. Therefore the polynomial p(t) is
the miminal polynomial of x over k(x)G and in particular [k(x) : k(x)G] = 6. �

8. Show that Q(
√

2, 21/3) = Q(
√

2 + 21/3).

We would like to show that the fields Q(
√

2, 3
√

2) and Q(
√

2 + 3
√

2) are equal. First
note that Q(

√
2, 3
√

2) is equal to Q( 6
√

2). The former is contained in the latter because√
2 = ( 6

√
2)3 and 3

√
2 = ( 6

√
2)2. But also ( 3

√
2)2
√

2 = 27/6, so 6
√

2 is in Q(
√

2, 3
√

2) and the
fields are equal. Since x6 − 2 is irreducible by Eisenstein’s criterion, Q( 6

√
2) is a degree 6

extension of Q.
It’s immediate that Q(

√
2 + 3
√

2) is a subfield of Q(
√

2, 3
√

2), so the degree of the ex-
tension Q(

√
2 + 3
√

2) over Q is either 2, 3, or 6 (it must divide 6). Our result will then
be proved if we can show that it is not a degree 2 or 3 extension, as this implies that
Q(
√

2, 3
√

2) is a degree 1 extension of Q(
√

2 + 3
√

2).
A basis for Q( 6

√
2) as a Q-vector space is given by the powers of 6

√
2 ranging from 0

to 5 (this is a result of problem (5) from the last homework). Now look at the powers of√
2 + 3
√

2:
(
√

2 + 3
√

2)2 = 2 + 2
√

2 3
√

2 + (
3
√

2)2 = 2 + 2( 6
√

2)5 + (
6
√

4)4

(
√

2 + 3
√

2)3 = 2 + 6( 6
√

2) + 6( 6
√

2)2 + 2( 6
√

2)3

These powers of 6
√

2 imply that the minimal polynomial for
√

2+ 3
√

2 cannot be a quadratic
or a cubic; such a polynomial would provide a linear dependence among the powers of
6
√

2, since the power ( 6
√

2)5 would occur only in the (
√

2+ 3
√

2)2 term while the power 6
√

2
would occur only in the (

√
2 + 3
√

2)3 term. In short, any Q-linear combinations of these
cannot be zero unless all of the coefficients are zero. Hence, Q(

√
2 + 3
√

2) is a degree 6
extension of Q and it must be equal to Q(

√
2, 3
√

2). �

9. Find the smallest normal extension of Q that contains sin(π/5).

We seek the smallest normal extension of Q containing sin π
5 =

√
5
8 −

√
5

8 . If we denote
the right-hand side by t, then 8t2 = 5−

√
5, whence (8t2− 5)2− 5 = 64t4− 80t2 + 20 = 0.

Therefore mt,Q(x) | f (x) := x4 − 5
4 x2 + 5

16 , but this polynomial is irreducible over Q as
one can easily wee by clearing the denominators and then using Eisenstein’s criterion.

By the quadratic formula (viewing this as a polynomial in x2 then solving for x by

square roots), the zeros are found to be ±1
2

√
1
2(5±

√
5). If we consider the normal ex-

tension of Q obtained by as a splitting field of the polynomial x4 − 5
4 x2 + 5

16 over Q, we
generate, what we proceed to show, a degree 4 extension of Q containing sin(π/5). By the
preceding paragraph, [Q(sin(π/5)) : Q] = 4, and this extension generates at least two
of the zeros of f (x). If we let the roots be denoted by ±α and ±β (where sin(π/5) = α,
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say), then we have so far that [Q(α) : Q] = 4. But note that αβ =
√

5
4 and further note

α2 = 1
8(5−

√
5), whence

√
5 ∈ Q(α) and thus β ∈ Q(α). Thus Q(α) = Q(α, β) is a degree

four normal extension of Q. Any other extension containing α = sin(π/5) must neces-
sarily have degree at least 4, since mα,Q(x) = f (x), a degree four polynomial. Thus this is
indeed the smallest normal extension of Q containing sin(π/5). �

10. Give an algebraic proof that every angle can be bisected by using a ruler and com-
pass.

To do this, we will situate that angle in C ∼= R2, then this is equivalent to the following
task: given the point eiθ = (cos θ, sin θ), construct e

iθ
2 = (cos θ

2 , sin θ
2). We know that if we

can individually construct (cos θ
2 , sin θ

2) from (cos θ, sin θ), then this will be sufficient.
By the double-angle formula, we have that cos θ = 2 cos2 θ

2 − 1, or cos θ + 1 = 2 cos2 θ
2 .

Since we can construct the cos θ, we can construct cos θ+1
2 . To take the square root, given

a segment of length a, we can construct a segment of length
√

a, and hence this gives us
cos θ

2 as required. For sin θ
2 , we know that sin θ = 2 cos θ

2 sin θ
2 , and we know sin θ and

cos θ
2 , hence we can construct sin θ

2 .
Therefore, we can bisect any angle with a ruler and compass.

�
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