Math 504, Fall 2013 HW 2

1. Show that the fields $\mathbb{Q}(\sqrt{5})$ and $\mathbb{Q}(\sqrt{7})$ are not isomorphic.

Suppose $\varphi : \mathbb{Q}(\sqrt{5}) \to \mathbb{Q}(\sqrt{7})$ is a field isomorphism. Then it's easy to see that φ fixes \mathbb{Q} pointwise, so $5 = \varphi(5) = \varphi(\sqrt{5}\sqrt{5}) = \varphi(\sqrt{5})^2$, showing $\sqrt{5} \in \mathbb{Q}(\sqrt{7}) = \{a + b\sqrt{7} : a, b \in \mathbb{Q}\}$. Thus

$$\sqrt{5} = a + b\sqrt{7} \tag{1}$$

for some rational *a* and *b*, and squaring yields

$$5 = a^2 + 7b^2 + 2ab\sqrt{7}$$
 or $\frac{5 - a^2 - 7b^2}{2} = ab\sqrt{7}$

Thus either a = 0 or b = 0, because otherwise $\sqrt{7} \in \mathbb{Q}$. If a = 0 then (1) says that $\sqrt{5}$ is a rational multiple of $\sqrt{7}$, which is not the case. If b = 0 then $\sqrt{5} \in \mathbb{Q}$ according to (1). Either alternative is absurd, so there is no such isomorphism.

2. Let \mathbb{F}_{11} be the field with 11 elements. Let $K = F_{11}(\alpha)$ where α is a root of $x^2 - 2$. Let $L = \mathbb{F}_{11}(\beta)$ where β is a root of $x^2 - 4x + 2$. Show that there is an isomorphism $\Phi: K \to L$ that is the identity in F_{11} .

Let $p(x) = x^2 - 2$, $q(x) = x^2 - 4x + 2$. Since both polynomials are irreducible in $\mathbb{F}_{11}[x]$, then we have

$$K = \mathbb{F}_{11}[x]/(p(x)), \quad L = \mathbb{F}_{11}[x]/(q(x))$$

Consider the automorphism f of $\mathbb{F}_{11}[x]$ given by $x \mapsto x - 2$, and let F be the composition of f with the projection $\mathbb{F}_{11}[x] \to L$. Since

$$F(p(x)) = (x-2)^2 - 2 = q(x) = 0$$

then *F* factors through a morphism $\Phi : K \to L$. This is a morphism of fields, hence injective. Since both *K*, *L* are finite fields, then it has to be bijective, hence it's the desired isomorphism. Moreover, since it's a composition of \mathbb{F}_{11} -linear maps, and since $\Phi(1) = 1$, then Φ is the identity on \mathbb{F}_{11} .

3. Let K/k a degree-two field extension. If char $(k) \neq 2$, show that $K = k(\alpha)$ where α is a root of a polynomial $x^2 - d$ for some $d \in k$. Show this fails in characteristic two.

Complete the set {1} to a basis {1, β }: clearly $\beta \notin k$ and also

$$\beta^2 = -a\beta - b$$

for some $a, b \in k$. Moreover, the extension $k(\beta)$ has degree at least two, and since $k(\beta) \subseteq K$ and K/k has degree 2, then $k(\beta) = K$ and K can be obtained by adding a root of $f(x) = x^2 + ax + b$ to k.

Our reasoning up to now holds in any characteristic, but now assume $char(k) \neq 2$. The idea is to use the quadratic formula to see that what we need to add to *k* to get *K* is indeed a square root.

Let α be a root of $x^2 - (a^2/4 - b)$. Then a straightforward computation shows that $f(\alpha - 2) = 0$, so $k(\alpha - 2) = k(\beta)$. Since clearly $k(\alpha - 2) = k(\alpha)$, then by letting $d = a^2/4 - b$ we have found what we were looking for.

This doesn't work in characteristic 2 because of the following example. Consider $k = \mathbb{F}_2$ and $K = k[x]/(x^2 - x - 1)$, whence $K = \{0, 1, \alpha, \alpha + 1\}$ where α is a root of $x^2 - x - 1$. The only polynomials of the form $x^2 - d$ for $d \in k$ are x^2 and $x^2 + 1$. Substituting α in to these polynomials yields $\alpha + 1$ and α , respectively. Since neither vanishes, α can not be a root of any polynomial of the form $x^2 - d$.

4. Let K/k be a degree-two field extension and suppose that char(k) = 2. Show that $K = k(\beta)$ where β is a root of a polynomial $x^2 + x + d$ or $x^2 - d$ for some $d \in k$.

From the previous Exercise, we have $K = k(\alpha)$ where $\alpha^2 = k_1\alpha + k_2$. If $k_1 = 0$, then α satisfies $x^2 - k_2 = 0$, which is the second polynomial.

Otherwise, $k_1 \neq 0$. Since *k* is a field, we have $\beta = \alpha / k_1 \in k$. Moreover,

$$(k_1\beta)^2 = k_1^2\beta + k_2 = 0$$

$$\implies \beta^2 = \beta + k_2k_1^{-2} = 0$$

$$\implies \beta^2 + \beta + d = 0$$

where $d = k_2 k_1^{-2} \in k$. Clearly $K = k(\beta)$ and β satisfies $x^2 + x + d = 0$.

5. Let *f* be a polynomial of degree *n* in k[x]. Show that the images of $1, x, \ldots x^{n-1}$ in k[x]/(f) form a basis for k[x]/(f).

To show that $B := \{x^i\}_{i=0}^{n-1}$ is a basis, we'll start by showing it is linearly independent in R = k[x]/(f). Indeed, suppose for some $a_i \in k$, we had

$$\sum_{i=0}^{n-1} (a_i + (f))(x^i + (f)) = 0 + (f)$$

Then we would have

$$f \mid g := \sum_{i=0}^{n-1} a_i x^i$$

But deg(f) = $n > n - 1 \ge$ deg(g), so g = 0. This means each $\sum a_i x^i = 0$ in k[x], and this forces $a_i = 0$. So we have shown linear independence.

Now, pick any (nonzero) coset $p + (f) \in R$. By polynomial division, we can write p = af + b, where deg(b) < deg(f) = n. So we may write $b = \sum_{i=0}^{n-1} a_i x^i$. But then

$$p + (f) = (af + b) + (f) = b + (f) = \sum_{i=0}^{n-1} (a_i + (f))(x^i + (f))$$

so we have shown *B* spans *R*, therefore it's a basis over *k* for *R*.

6. Find the minimal polynomial of $\sqrt{3} + \sqrt{5}$ over the fields \mathbb{Q} , $\mathbb{Q}(\sqrt{3})$, $\mathbb{Q}(\sqrt{10})$, and $\mathbb{Q}(\sqrt{15})$.

We compute the minimal polynomial of $t = \sqrt{3} + \sqrt{5}$ over different fields $K \supset \mathbb{Q}$. We use the fact that $[K(t) : K] = \deg m_{t,K}(x)$

1. $K = \mathbb{Q}$.

Since $t^2 = 8 + 2\sqrt{15}$, we have $t^2 - 8 = 2\sqrt{15}$ and squaring both sides we obtain $(t^2 - 8)^2 - 60 = 0$. Therefore deg $m_{t,K}(x) \le 4$. But since $t^2 = 8 + 2\sqrt{15}$, it follows $\mathbb{Q}(\sqrt{15}) \subset K(t)$, and since $[\mathbb{Q}(\sqrt{15}) : \mathbb{Q}] = 2$, we have $[K(t) : \mathbb{Q}]$ is even. But since $\sqrt{15t} - 3t = 3\sqrt{5} + 5\sqrt{3} - 3(\sqrt{3} + \sqrt{5}) = 2\sqrt{3}$, we must have $\mathbb{Q}(\sqrt{3}) \subset K(t)$. Finally, since the equation $\sqrt{3} = a + b\sqrt{15}$ cannot be solved for $a, b \in \mathbb{Q}$ (which can be seen by squaring the equation), it follows $\sqrt{3} \notin \mathbb{Q}(\sqrt{15})$, whence $[K(t) : \mathbb{Q}] \ge 4$, and we deduce $[K(t) : \mathbb{Q}] = 4 = \deg m_{t,K}$. Since $(t^2 - 8)^2 - 15$ is a degree four polynomial in K[x], it follows by the division algorithm and the equality of degrees that $m_{t,K}(x)$ and $(x^2 - 8)^2 - 15$ are associates in K[x]. Since they are both monic, the constant must be one, and the result follows.

2. $K = \mathbb{Q}(\sqrt{3})$

Since $(t - \sqrt{3}) = 5$, we have $x^2 - 2\sqrt{3}x - 2 \in K[x]$ has *t* as a root. Hence deg $m_{t,K}(x) \le 2$. If the degree was 1, we would have $t \in K$. But if $t \in K$, then $t - \sqrt{3} = \sqrt{5} \in K$. Since $\sqrt{5} = a + b\sqrt{3}$ cannot be solved with $a, b \in \mathbb{Q}$ (again seen most readily by squaring the equation), it follows $[K(t) : K] \ge 2$. By the same argument as in part (a), we obtain $m_{t,K}(x) = x^2 - 2\sqrt{3}x - 2$.

3. $K = \mathbb{Q}(\sqrt{10}).$

Since $t^2 = 8 + 2\sqrt{15}$, we have $t^2 - 8 = 2\sqrt{15}$ and squaring both sides we obtain $(t^2 - 8)^2 - 60 = 0$. Therefore deg $m_{t,K}(x) \le 4$. But since $t^2 = 8 + 2\sqrt{15}$, it follows $\sqrt{15} \in K(t)$. But by checking whether $\sqrt{15} = a + b\sqrt{10}$ for rational *a*, *b*, we find $[K(\sqrt{15}): K] = 2$, so that [K(t): K] is even. If [K(t): K] = 2, the equation

$$[K(t):\mathbb{Q}] = [K(t):K][K:\mathbb{Q}] = 4$$

tells us the degree of K(t)/Q. However, since $t = \sqrt{3} + \sqrt{5}$, the inverse t^{-1} , which can be computed by rationalizing the denominator, is $t^{-1} = \frac{-1}{2}(\sqrt{3} - \sqrt{5})$. Therefore we can linearly combine t and its inverse and we obtain $\sqrt{3}$ and $\sqrt{5}$ are both in K(t). Since $Q(\sqrt{10}, \sqrt{5}, \sqrt{3})$ is the smallest field containing all three, and since $\sqrt{2} = \sqrt{10}/\sqrt{5}$, we see $Q(\sqrt{2}, \sqrt{3}, \sqrt{5}) \subset K(t)$ again by minimality. But this is a degree 8 extension since the minimal polynomials are $m_{\sqrt{2},Q} = x^2 - 2$, $m_{\sqrt{3},Q(\sqrt{2})} = x^2 - 3$, $m_{\sqrt{5},Q(\sqrt{2},\sqrt{3})} = x^2 - 5$ (each is irreducible by basically the same argument of trying to write $\sqrt{5} = a + b\sqrt{2} + c\sqrt{3} + d\sqrt{6}$, squaring and moving the rationals to one side and concluding at least one of the coefficients must be zero... and then doing it again). Therefore we finally conclude $m_{t,Q(\sqrt{10})} = (x^2 - 8)^2 - 60$.

4. $K = \mathbb{Q}(\sqrt{15}).$

Since $t^2 = 8 + 2\sqrt{15}$, we have $x^2 - 8 - \sqrt{15} \in K[x]$ has *t* has a zero. Therefore deg $m_{t,K}(x) \le 2$. If it were strictly less, then $t \in K$. But if $t \in K$, then $\sqrt{15}t = 3\sqrt{5} + 15 \in K$ whence $\sqrt{5} \in K$. But since $\sqrt{5} = a + b\sqrt{15}$ has no solutions for $a, b \in \mathbb{Q}$, we obtain $[K(t) : K] \ge 2$, whence, mimicking the arguments in the previous parts, $m_{t,K}(x) = x^2 - 8 - \sqrt{15}$.

7. Let *f* and *g* be non-zero polynomials in k[x] and write *z* for f(x)/g(x) which is an element in the field k(x). Compute [k(x) : k(z)].

First of all, note that we can assume that f, g are coprime in k[x]. Let $n = \deg f, m = \deg g$. Let us begin by examining the case $z \in k$, that is n = m = 0. Then we have to compute the degree of the extension k(x)/k. Since x is transcendental over k, this degree is ∞ .

Assume now that at least one of n, m is nonzero: then z is transcendental over K (otherwise x would be algebraic over k), and let L = k(z). It's immediate to see that L(x) = k(x), so in order to compute the degree of the extension L(x)/L we can try to find the minimal polynomial of x over L.

A natural candidate is $p(t) := zg(t) - f(t) \in L[t]$. The not-so-natural part consists in proving that p is irreducible in L[t]. Note that since f, g are coprime then p is primitive as a polynomial in k[z][t]. Hence by Gauss's lemma p(t) is irreducible in L[t] iff it's irreducible in k(z, t] iff it's irreducible in k(t)[z]. But in this last ring, p has degree one as a polynomial in z, hence it's irreducible. Awesome! We found the minimal polynomial of x over L. It's easy to see that its degree (in t) is the maximum of n, m. Therefore, if $z \notin k$,

 $[k(x):k(z)] = \max\{\deg g, \deg f\}$

4

8. Let $\alpha = \frac{1+\sqrt{5}}{2}$ denote the Golden Ratio. You are used to writing number to base 10, or other integer bases. This problem is about base α . Let $a_n, a_{n-1}, a_{n-2}...$ be an infinite sequence of numbers in $\{0, 1\}$ with the property that $a_i a_{i+1}$ is never equal to 11. We will write

$$\beta = a_n \dots a_1 a_0 \bullet a_{-1} a_{-2} \dots$$

for

$$\beta = \sum_{j=-n}^{\infty} a_{-j} \alpha^{-j}$$

and call this the α -expansion for β .

- 1. Find the α -expansions for 2, 3, 4, 5.
- 2. What is the number with α -expansion 0.101010...?
- 3. What is the number with α -expansion 0.100100100...?

Note that $\alpha^2 = \alpha + 1$. By induction, we see that $\alpha^n = F_n \alpha + F_{n-1}$ where F_n are the Fibonacci numbers.

1. Since $2 = \alpha + \alpha^{-2}$, we have $2 = 10 \cdot 01$. Adding $1 = \alpha^2 - \alpha$ shows $3 = \alpha^2 + \alpha^{-2} = 100 \cdot 01$. Incrementing gives $4 = 101 \cdot 01$. To represent 5 is a little harder, but if we calculate

$$\alpha^{3} + \alpha^{-1} + \alpha^{-4} = 2\alpha + 1 + \alpha^{-1} + \alpha^{-4} = 3\alpha + (5 - 3\alpha) = 5$$

so $5 = 1000 \cdot 1001$.

2. Let *S* be the mystery number. Then

$$\alpha S = \sum_{n=0}^{\infty} \alpha^{-2n} = \frac{1}{1 - \alpha^{-2}}$$

Hence, $S = \frac{1}{\alpha - \alpha^{-1}} = 1$.

3. Let *T* be the mystery number. Then

$$\alpha T = \sum_{n=0}^{\infty} \alpha^{-3n} = \frac{1}{1 - \alpha^{-3}}$$

Hence,

$$T = \frac{1}{\alpha - \alpha^{-2}} = \frac{1}{\alpha - (2 - \alpha)} = \frac{\alpha}{2} = \frac{1 + \sqrt{5}}{4}$$

since $2\alpha(\alpha - 1) = 2$

9. Let $\omega = e^{\frac{2\pi i}{5}}$. Find the minimal polynomial for $\psi := \omega^2 + \omega^3$ over Q and the degree of $\mathbb{Q}(\xi)$ over Q.

Since $\omega^5 - 1 = 0$ and $\omega \neq 1$ then $1 + \omega + \ldots + \omega^4 = 0$. Then it's quite easy to check that

 $\psi^2 + \psi - 1 = 0$

so ψ is a root of $p(x) := x^2 + x - 1$. Since p is irreducible over the rationals (there are no roots in Q) then it's the minimal polynomial for ψ .

10. A complex number is algebraic if it is the root of an irreducible polynomial with coefficients in \mathbb{Q} . If α and β are algebraic, show that $\alpha + \beta$ and $\alpha\beta$ are also algebraic.

We'll use repeatedly the fact that the simple extension $k(\xi)/k$ is algebraic iff it's finite.

Since α is algebraic over \mathbb{Q} , then it's also algebraic over $\mathbb{Q}(\beta)$: indeed, if $p(\alpha) = 0$ for some irreducible p in \mathbb{Q} , then $p'(\alpha) = 0$ for some irreducible factor of p in $\mathbb{Q}(\beta)[x]$. In particular, $\mathbb{Q}(\beta)(\alpha)/\mathbb{Q}(\beta)$ is a finite extension.

Consider now the extension $\mathbb{Q}(\alpha, \beta)/\mathbb{Q}$: we have that

$$[\mathbb{Q}(\alpha,\beta):\mathbb{Q}] = [\mathbb{Q}(\alpha,\beta):\mathbb{Q}(\alpha)][\mathbb{Q}(\alpha):\mathbb{Q}]$$

and since the factors on the right hand side are finite, the extension $\mathbb{Q}(\alpha, \beta)/\mathbb{Q}$ is finite, hence algebraic.

Since both $\alpha + \beta$, and $\alpha\beta$ lie in $\mathbb{Q}(\alpha, \beta)$, then they're algebraic.