
Math 504, Fall 2013
HW 2

1. Show that the fields Q(
√

5) and Q(
√

7) are not isomorphic.

Suppose ϕ : Q(
√

5) → Q(
√

7) is a field isomorphism. Then it’s easy to see that ϕ fixes
Q pointwise, so 5 = ϕ(5) = ϕ(

√
5
√

5) = ϕ(
√

5)2, showing
√

5 ∈ Q(
√

7) = {a + b
√

7 :
a, b ∈ Q}. Thus √

5 = a + b
√

7 (1)

for some rational a and b, and squaring yields

5 = a2 + 7b2 + 2ab
√

7 or
5− a2 − 7b2

2
= ab

√
7.

Thus either a = 0 or b = 0, because otherwise
√

7 ∈ Q. If a = 0 then (1) says that
√

5 is
a rational multiple of

√
7, which is not the case. If b = 0 then

√
5 ∈ Q according to (1).

Either alternative is absurd, so there is no such isomorphism.
�

2. Let F11 be the field with 11 elements. Let K = F11(α) where α is a root of x2 − 2.
Let L = F11(β) where β is a root of x2 − 4x + 2. Show that there is an isomorphism
Φ : K → L that is the identity in F11.

Let p(x) = x2 − 2, q(x) = x2 − 4x + 2. Since both polynomials are irreducible in F11[x],
then we have

K = F11[x]/(p(x)), L = F11[x]/(q(x))

Consider the automorphism f of F11[x] given by x 7→ x− 2, and let F be the composi-
tion of f with the projection F11[x]→ L. Since

F(p(x)) = (x− 2)2 − 2 = q(x) = 0

then F factors through a morphism Φ : K → L. This is a morphism of fields, hence
injective. Since both K, L are finite fields, then it has to be bijective, hence it’s the desired
isomorphism. Moreover, since it’s a composition of F11-linear maps, and since Φ(1) = 1,
then Φ is the identity on F11. �

3. Let K/k a degree-two field extension. If char(k) 6= 2, show that K = k(α) where α is
a root of a polynomial x2 − d for some d ∈ k. Show this fails in characteristic two.
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Complete the set {1} to a basis {1, β}: clearly β /∈ k and also

β2 = −aβ− b

for some a, b ∈ k. Moreover, the extension k(β) has degree at least two, and since k(β) ⊆ K
and K/k has degree 2, then k(β) = K and K can be obtained by adding a root of f (x) =
x2 + ax + b to k.

Our reasoning up to now holds in any characteristic, but now assume char(k) 6= 2.
The idea is to use the quadratic formula to see that what we need to add to k to get K is
indeed a square root.

Let α be a root of x2 − (a2/4− b). Then a straightforward computation shows that
f (α − 2) = 0, so k(α − 2) = k(β). Since clearly k(α − 2) = k(α), then by letting d =
a2/4− b we have found what we were looking for.

This doesn’t work in characteristic 2 because of the following example. Consider k =
F2 and K = k[x]/(x2 − x− 1), whence K = {0, 1, α, α + 1} where α is a root of x2 − x− 1.
The only polynomials of the form x2 − d for d ∈ k are x2 and x2 + 1. Substituting α in to
these polynomials yields α + 1 and α, respectively. Since neither vanishes, α can not be a
root of any polynomial of the form x2 − d.

�

4. Let K/k be a degree-two field extension and suppose that char(k) = 2. Show that
K = k(β) where β is a root of a polynomial x2 + x + d or x2 − d for some d ∈ k.

From the previous Exercise, we have K = k(α) where α2 = k1α + k2. If k1 = 0, then α
satisfies x2 − k2 = 0, which is the second polynomial.

Otherwise, k1 6= 0. Since k is a field, we have β = α/k1 ∈ k. Moreover,

(k1β)2 = k2
1β + k2 = 0

=⇒ β2 = β + k2k−2
1 = 0

=⇒ β2 + β + d = 0

where d = k2k−2
1 ∈ k. Clearly K = k(β) and β satisfies x2 + x + d = 0. �

5. Let f be a polynomial of degree n in k[x]. Show that the images of 1, x, . . . xn−1 in
k[x]/( f ) form a basis for k[x]/( f ).

To show that B := {xi}n−1
i=0 is a basis, we’ll start by showing it is linearly independent in

R = k[x]/( f ). Indeed, suppose for some ai ∈ k, we had

n−1

∑
i=0

(ai + ( f ))(xi + ( f )) = 0 + ( f )
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Then we would have

f | g :=
n−1

∑
i=0

aixi

But deg( f ) = n > n− 1 ≥ deg(g), so g = 0. This means each ∑ aixi = 0 in k[x], and this
forces ai = 0. So we have shown linear independence.

Now, pick any (nonzero) coset p + ( f ) ∈ R. By polynomial division, we can write
p = a f + b, where deg(b) < deg( f ) = n. So we may write b = ∑n−1

i=0 aixi. But then

p + ( f ) = (a f + b) + ( f ) = b + ( f ) =
n−1

∑
i=0

(ai + ( f ))(xi + ( f ))

so we have shown B spans R, therefore it’s a basis over k for R. �

6. Find the minimal polynomial of
√

3 +
√

5 over the fields Q, Q(
√

3), Q(
√

10), and
Q(
√

15).

We compute the minimal polynomial of t =
√

3+
√

5 over different fields K ⊃ Q. We use
the fact that [K(t) : K] = deg mt,K(x)

1. K = Q.
Since t2 = 8 + 2

√
15, we have t2 − 8 = 2

√
15 and squaring both sides we obtain

(t2 − 8)2 − 60 = 0. Therefore deg mt,K(x) ≤ 4. But since t2 = 8 + 2
√

15, it follows
Q(
√

15) ⊂ K(t), and since [Q(
√

15) : Q] = 2, we have [K(t) : Q] is even. But
since

√
15t− 3t = 3

√
5 + 5

√
3− 3(

√
3 +
√

5) = 2
√

3, we must have Q(
√

3) ⊂ K(t).
Finally, since the equation

√
3 = a + b

√
15 cannot be solved for a, b ∈ Q (which can

be seen by squaring the equation), it follows
√

3 6∈ Q(
√

15), whence [K(t) : Q] ≥ 4,
and we deduce [K(t) : Q] = 4 = deg mt,K. Since (t2 − 8)2 − 15 is a degree four
polynomial in K[x], it follows by the division algorithm and the equality of degrees
that mt,K(x) and (x2− 8)2− 15 are associates in K[x]. Since they are both monic, the
constant must be one, and the result follows.

2. K = Q(
√

3)
Since (t−

√
3) = 5, we have x2− 2

√
3x− 2 ∈ K[x] has t as a root. Hence deg mt,K(x) ≤

2. If the degree was 1, we would have t ∈ K. But if t ∈ K, then t−
√

3 =
√

5 ∈ K.
Since

√
5 = a + b

√
3 cannot be solved with a, b ∈ Q (again seen most readily by

squaring the equation), it follows [K(t) : K] ≥ 2. By the same argument as in part
(a), we obtain mt,K(x) = x2 − 2

√
3x− 2.

3. K = Q(
√

10).
Since t2 = 8 + 2

√
15, we have t2 − 8 = 2

√
15 and squaring both sides we obtain

(t2 − 8)2 − 60 = 0. Therefore deg mt,K(x) ≤ 4. But since t2 = 8 + 2
√

15, it follows√
15 ∈ K(t). But by checking whether

√
15 = a + b

√
10 for rational a, b, we find

[K(
√

15) : K] = 2, so that [K(t) : K] is even. If [K(t) : K] = 2, the equation

[K(t) : Q] = [K(t) : K][K : Q] = 4
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tells us the degree of K(t)/Q. However, since t =
√

3 +
√

5, the inverse t−1, which
can be computed by rationalizing the denominator, is t−1 = −1

2 (
√

3−
√

5). There-
fore we can linearly combine t and its inverse and we obtain

√
3 and

√
5 are both

in K(t). Since Q(
√

10,
√

5,
√

3) is the smallest field containing all three, and since√
2 =

√
10/
√

5, we see Q(
√

2,
√

3,
√

5) ⊂ K(t) again by minimality. But this is a
degree 8 extension since the minimal polynomials are m√2,Q = x2 − 2, m√3,Q(

√
2) =

x2 − 3, m√5,Q(
√

2,
√

3) = x2 − 5 (each is irreducible by basically the same argument

of trying to write
√

5 = a + b
√

2 + c
√

3 + d
√

6, squaring and moving the rationals
to one side and concluding at least one of the coefficients must be zero... and then
doing it again). Therefore we finally conclude mt,Q(

√
10) = (x2 − 8)2 − 60.

4. K = Q(
√

15).
Since t2 = 8 + 2

√
15, we have x2 − 8 −

√
15 ∈ K[x] has t has a zero. Therefore

deg mt,K(x) ≤ 2. If it were strictly less, then t ∈ K. But if t ∈ K, then
√

15t =

3
√

5 + 15 ∈ K whence
√

5 ∈ K. But since
√

5 = a + b
√

15 has no solutions for
a, b ∈ Q, we obtain [K(t) : K] ≥ 2, whence, mimicking the arguments in the previous
parts, mt,K(x) = x2 − 8−

√
15.

�

7. Let f and g be non-zero polynomials in k[x] and write z for f (x)/g(x) which is an
element in the field k(x). Compute [k(x) : k(z)].

First of all, note that we can assume that f , g are coprime in k[x]. Let n = deg f , m = deg g.
Let us begin by examining the case z ∈ k, that is n = m = 0. Then we have to compute
the degree of the extension k(x)/k. Since x is transcendental over k, this degree is ∞.

Assume now that at least one of n, m is nonzero: then z is transcendental over K (other-
wise x would be algebraic over k), and let L = k(z). It’s immediate to see that L(x) = k(x),
so in order to compute the degree of the extension L(x)/L we can try to find the minimal
polynomial of x over L.

A natural candidate is p(t) := zg(t)− f (t) ∈ L[t]. The not-so-natural part consists in
proving that p is irreducible in L[t]. Note that since f , g are coprime then p is primitive as a
polynomial in k[z][t]. Hence by Gauss’s lemma p(t) is irreducible in L[t] iff it’s irreducible
in k[z, t] iff it’s irreducible in k(t)[z]. But in this last ring, p has degree one as a polynomial
in z, hence it’s irreducible. Awesome! We found the minimal polynomial of x over L. It’s
easy to see that its degree (in t) is the maximum of n, m. Therefore, if z /∈ k,

[k(x) : k(z)] = max{deg g, deg f }

�
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8. Let α = 1+
√

5
2 denote the Golden Ratio. You are used to writing number to base 10,

or other integer bases. This problem is about base α. Let an, an−1, an−2 . . . be an infinite
sequence of numbers in {0, 1} with the property that aiai+1 is never equal to 11. We will
write

β = an . . . a1a0 • a−1a−2 . . .

for

β =
∞

∑
j=−n

a−jα
−j

and call this the α-expansion for β.

1. Find the α-expansions for 2, 3, 4, 5.

2. What is the number with α-expansion 0.101010 . . . ?

3. What is the number with α-expansion 0.100100100 . . . ?

Note that α2 = α+ 1. By induction, we see that αn = Fnα+ Fn−1 where Fn are the Fibonacci
numbers.

1. Since 2 = α + α−2, we have 2 = 10 · 01. Adding 1 = α2 − α shows 3 = α2 + α−2 =
100 · 01. Incrementing gives 4 = 101 · 01. To represent 5 is a little harder, but if we
calculate

α3 + α−1 + α−4 = 2α + 1 + α−1 + α−4 = 3α + (5− 3α) = 5

so 5 = 1000 · 1001.

2. Let S be the mystery number. Then

αS =
∞

∑
n=0

α−2n =
1

1− α−2

Hence, S = 1
α−α−1 = 1.

3. Let T be the mystery number. Then

αT =
∞

∑
n=0

α−3n =
1

1− α−3

Hence,

T =
1

α− α−2 =
1

α− (2− α)
=

α

2
=

1 +
√

5
4

since 2α(α− 1) = 2

�
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9. Let ω = e
2πi

5 . Find the minimal polynomial for ψ := ω2 + ω3 over Q and the degree
of Q(ξ) over Q.

Since ω5 − 1 = 0 and ω 6= 1 then 1 + ω + . . . + ω4 = 0. Then it’s quite easy to check that

ψ2 + ψ− 1 = 0

so ψ is a root of p(x) := x2 + x− 1. Since p is irreducible over the rationals (there are no
roots in Q) then it’s the minimal polynomial for ψ. �

10. A complex number is algebraic if it is the root of an irreducible polynomial with
coefficients in Q. If α and β are algebraic, show that α + β and αβ are also algebraic.

We’ll use repeatedly the fact that the simple extension k(ξ)/k is algebraic iff it’s finite.
Since α is algebraic over Q, then it’s also algebraic over Q(β): indeed, if p(α) = 0 for

some irreducible p in Q, then p′(α) = 0 for some irreducible factor of p in Q(β)[x]. In
particular, Q(β)(α)/Q(β) is a finite extension.

Consider now the extension Q(α, β)/Q: we have that

[Q(α, β) : Q] = [Q(α, β) : Q(α)][Q(α) : Q]

and since the factors on the right hand side are finite, the extension Q(α, β)/Q is finite,
hence algebraic.

Since both α + β, and αβ lie in Q(α, β), then they’re algebraic. �
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