Math 504, Fall 2013
HW 2

1. Show that the fields Q(+/5) and Q(+/7) are not isomorphic.

Suppose ¢ : Q(v/5) — Q(1/7) is a field isomorphism. Then it’s easy to see that ¢ fixes
Q pointwise, so 5 = ¢(5) = ¢(v/5v5) = ¢(1/5)?, showing /5 € Q(v7) = {a + b7 :

a,b € Q}. Thus
V5 = a+bV7 (1)
for some rational 2 and b, and squaring yields

_ 2_7 2
5 = a2+7b2—|—2abﬁ or # = abﬁ.

Thus either 2 = 0 or b = 0, because otherwise v/7 € Q. If 4 = 0 then (1) says that V5 is
a rational multiple of V7, which is not the case. If b = 0 then v/5 € Q according to (1).
Either alternative is absurd, so there is no such isomorphism.

| |

2. Let FFy; be the field with 11 elements. Let K = F;;(a) where « is a root of x> — 2.
Let L = IFy1(B) where B is a root of x> — 4x + 2. Show that there is an isomorphism
® : K — L that is the identity in Fy;.

Let p(x) = x> —2,q9(x) = x> — 4x + 2. Since both polynomials are irreducible in IF1; [x],
then we have

K =TFu[x]/(p(x)), L =TFu[x]/(q(x))

Consider the automorphism f of [F11[x| given by x — x — 2, and let F be the composi-
tion of f with the projection IFq;[x] — L. Since

F(p(x)) = (x=2)* =2 =¢(x) =0

then F factors through a morphism ® : K — L. This is a morphism of fields, hence
injective. Since both K, L are finite fields, then it has to be bijective, hence it’s the desired
isomorphism. Moreover, since it’s a composition of F1;-linear maps, and since ®(1) = 1,
then @ is the identity on [Fy;. n

3. Let K/k a degree-two field extension. If char(k) # 2, show that K = k(«) where « is
a root of a polynomial x> — d for some d € k. Show this fails in characteristic two.
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Complete the set {1} to a basis {1, 8}: clearly § ¢ k and also
B = —ap b

for some a, b € k. Moreover, the extension k() has degree at least two, and since k() C K
and K/k has degree 2, then k(f) = K and K can be obtained by adding a root of f(x) =
x> +ax+btok.

Our reasoning up to now holds in any characteristic, but now assume char(k) # 2.
The idea is to use the quadratic formula to see that what we need to add to k to get K is
indeed a square root.

Let a be a root of x> — (a?/4 — b). Then a straightforward computation shows that
flae —2) =0, so k(e —2) = k(B). Since clearly k(a« —2) = k(«), then by letting d =
a® /4 — b we have found what we were looking for.

This doesn’t work in characteristic 2 because of the following example. Consider k =
IFp and K = k[x]/(x*> — x — 1), whence K = {0,1,a,a + 1} where a is a root of x> — x — 1.
The only polynomials of the form x? — d for d € k are x> and x? + 1. Substituting « in to
these polynomials yields « + 1 and &, respectively. Since neither vanishes, a can not be a
root of any polynomial of the form x> — d.

n

4. Let K/k be a degree-two field extension and suppose that char(k) = 2. Show that
K = k(B) where B is a root of a polynomial x> + x + d or x> — d for some d € k.

From the previous Exercise, we have K = k(a) where a®> = kja + ky. If k; = 0, then a
satisfies x> — ko = 0, which is the second polynomial.
Otherwise, k1 # 0. Since k is a field, we have = a/k; € k. Moreover,
(kiB)2 =K +k, = 0
= B =B+kk?=0
— B+ B+d=0

where d = kok; % € k. Clearly K = k(B) and B satisfies x> + x +d = 0. u

5. Let f be a polynomial of degree n in k[x]. Show that the images of 1,x,...x" " in
k[x]/(f) form a basis for k[x]/(f).

To show that B := {x'}!" | is a basis, we’ll start by showing it is linearly independent in
R = k[x]/(f). Indeed, suppose for some 4; € k, we had

n—1

Y (@i + () +(F) =0+ (f)

i=0



Then we would have .
n_ .
flg:= Z a;x'

i=0

But deg(f) =n > n—1 > deg(g), so ¢ = 0. This means each }_a;x' = 0 in k[x], and this
forces a; = 0. So we have shown linear independence.

Now, pick any (nonzero) coset p + (f) € R. By polynomial division, we can write
p = af + b, where deg(b) < deg(f) = n. So we may write b = Y} a;x’. But then

n—1

p+(f)=(af +b)+(f) =b+(f) = }_(ar+ () +(f))

i=0

so we have shown B spans R, therefore it’s a basis over k for R. n

6. Find the minimal polynomial of V3 + /5 over the fields Q, Q(\/g),Q(\/ﬁ), and
Q(V15).

We compute the minimal polynomial of t = /3 + /5 over different fields K O Q. We use
the fact that [K(¢) : K] = deg m; g (x)

1. K=0Q.

Since t> = 8 + 2+/15, we have t> — 8 = 21/15 and squaring both sides we obtain
(t* — 8)% — 60 = 0. Therefore deg m; x(x) < 4. But since t?> = 8 + 2/15, it follows
Q(Vv/15) C K(t), and since [Q(+/15) : Q] = 2, we have [K(t) : Q] is even. But
since v/15t — 3t = 3v/5 + 5v/3 — 3(v/3 + v/5) = 21/3, we must have Q(v/3) C K(t).
Finally, since the equation \/3 = a + b\/15 cannot be solved for a,b € Q (which can
be seen by squaring the equation), it follows V3 ¢ Q(\/ﬁ), whence [K(t) : Q] > 4,
and we deduce [K(t) : Q] = 4 = degm; . Since (t> — 8)? — 15 is a degree four
polynomial in K|x], it follows by the division algorithm and the equality of degrees
that m; (x) and (x? — 8)2 — 15 are associates in K[x]. Since they are both monic, the
constant must be one, and the result follows.

2. K = Q(v/3)
Since (t —+/3) = 5, we have x2 —21/3x — 2 € K[x] has t as a root. Hence deg m; x(x) <
2. If the degree was 1, we would have t € K. Butif t € K, then t — V3 =45 € K.
Since v/5 = a + by/3 cannot be solved with a,b € Q (again seen most readily by
squaring the equation), it follows [K(f) : K] > 2. By the same argument as in part
(a), we obtain m; g (x) = x* — 2/3x — 2.

3. K=Q(v10).
Since t> = 8 + 2+/15, we have t> — 8 = 21/15 and squaring both sides we obtain
(t* — 8)% — 60 = 0. Therefore degm; g (x) < 4. But since t?> = 8 + 2/15, it follows
V15 € K(t). But by checking whether v/15 = a + b\/10 for rational a, b, we find
[K(v/15) : K] = 2, so that [K(t) : K] is even. If [K(t) : K] = 2, the equation

[K(t) : Q] = [K(t) : K][K: Q] = 4
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tells us the degree of K(t)/Q. However, since t = V3 + /5, the inverse t !, which
can be computed by rationalizing the denominator, is t =1 = =} (1/3 — 1/5). There-
fore we can linearly combine ¢ and its inverse and we obtain V3 and /5 are both
in K(t). Since Q(\/l_O, V5, \/5) is the smallest field containing all three, and since
V2 = 1/10//5, we see Q(+/2,v/3,v/5) C K(t) again by minimality. But this is a
degree 8 extension since the minimal polynomials are m_ ;5 = x> —2,m V30(3) =
x% —3,m NN R x?> — 5 (each is irreducible by basically the same argument

of trying to write V5 = a+bv2+cV3+dVe, squaring and moving the rationals
to one side and concluding at least one of the coefficients must be zero... and then

doing it again). Therefore we finally conclude m, ¢, 75, = (x* —8)% — 60.

4. K =Q(V15).
Since t2 = 8 + 2/15, we have x2 — 8 — /15 € K [x] has t has a zero. Therefore
degm; x(x) < 2. If it were strictly less, then t € K. But if t € K, then /15t =
3v/5 + 15 € K whence /5 € K. But since /5 = a + b+/15 has no solutions for
a,b € Q,weobtain [K(t) : K] > 2, whence, mimicking the arguments in the previous
parts, m; x(x) = x% — 8 — \/15.

7. Let f and g be non-zero polynomials in k[x] and write z for f(x)/g(x) which is an
element in the field k(x). Compute [k(x) : k(z)].

First of all, note that we can assume that f, g are coprime in k[x]. Letn = deg f,m = degg.
Let us begin by examining the case z € k, thatis n = m = 0. Then we have to compute
the degree of the extension k(x) /k. Since x is transcendental over k, this degree is cc.

Assume now that at least one of 1, m is nonzero: then z is transcendental over K (other-
wise x would be algebraic over k), and let L = k(z). It's immediate to see that L(x) = k(x),
so in order to compute the degree of the extension L(x)/L we can try to find the minimal
polynomial of x over L.

A natural candidate is p(t) := zg(t) — f(t) € L[t]. The not-so-natural part consists in
proving that p is irreducible in L[t]. Note that since f, g are coprime then p is primitive as a
polynomial in k[z][t]. Hence by Gauss’s lemma p(t) is irreducible in L|#] iff it’s irreducible
in k[z, t] iff it's irreducible in k(#) [z]. But in this last ring, p has degree one as a polynomial
in z, hence it’s irreducible. Awesome! We found the minimal polynomial of x over L. It’s
easy to see that its degree (in t) is the maximum of n, m. Therefore, if z ¢ k,

[k(x) : k(z)] = max{degg, deg [}



8. Leta = HT\@ denote the Golden Ratio. You are used to writing number to base 10,
or other integer bases. This problem is about base «. Let a,,a,_1,4,—2 ... be an infinite
sequence of numbers in {0, 1} with the property that a;a; 1 is never equal to 11. We will
write

B=ay...aqa00a_1a_5...

for

p= i a_ju)

j=—n

and call this the x-expansion for f.

1. Find the a-expansions for 2,3, 4, 5.

2. What is the number with x-expansion 0.101010...7

3. What is the number with a-expansion 0.100100100.. .7

Note thata? = a + 1. By induction, we see that a” = F,a + F,_1 where F, are the Fibonacci
numbers.

1. Since 2 = a + a~2, we have 2 = 10- 01. Adding 1 = > — x shows3 = a? +a 2 =
100 - 01. Incrementing gives 4 = 101 - 01. To represent 5 is a little harder, but if we
calculate

WCra ot =20 +1+at+at=3a+(5-3a)=5
so 5 = 1000 - 1001.

2. Let S be the mystery number. Then

Hence, S = —— =1.
N—n

3. Let T be the mystery number. Then

> 1
aT:Zoc_3”: —
n=0 1—a™?
Hence,
r__ 1 1 _a_ 1+45
S a—a? a—(2-a) 2 4

since 2a(a — 1) =2



9. Letw = ¢35 Find the minimal polynomial for ¢ := w? + w?® over Q and the degree

of Q(&) over Q.

Since w® —1=0and w # 1then 1+ w + ...+ w* = 0. Then it’s quite easy to check that
Py —1=0

so ¥ is a root of p(x) := x% + x — 1. Since p is irreducible over the rationals (there are no
roots in Q) then it’s the minimal polynomial for . [

10. A complex number is algebraic if it is the root of an irreducible polynomial with
coefficients in Q. If « and B are algebraic, show that a 4  and a8 are also algebraic.

We'll use repeatedly the fact that the simple extension k(¢)/k is algebraic iff it’s finite.
Since « is algebraic over Q, then it’s also algebraic over Q(p): indeed, if p(a) = 0 for
some irreducible p in Q, then p’(x) = 0 for some irreducible factor of p in Q(B)[x]. In
particular, Q(B)(«)/Q(p) is a finite extension.
Consider now the extension Q(«, 8)/Q: we have that

[Q(a, ) : Q] = [Q(a, B) : Q()][Q(w) : Q]

and since the factors on the right hand side are finite, the extension Q(«, 8)/Q is finite,
hence algebraic.
Since both a + B, and ap lie in Q(«, B), then they’re algebraic. n



