Math 504, Fall 2013
HW 1

1. Let R be the ring of continuous functions [0,1] — R with point-wise addition and
multiplication. Prove that the set of functions vanishing at a point x € [0, 1] is a maximal
ideal in R, we denote it by my. If m is a maximal ideal of R that is not equal to m, for
any x € [0,1], show that there are a finite set of elements fi,... f, in m that have no
common zero on [0, 1]; by considering fg + -4 f,%, show that there in no such m; i.e,
the maximal ideal in R are the ideal m,, x € [0,1].

Let ey be the ring homomorphism R — R, f +— f(x). It’s surjective since R contains all
the constant functions, and by definition ker e, = m,. Since R is a field, it follows that m,
is a maximal ideal of IR.

Suppose now M is a maximal ideal different from all the m,’s. In particular, M ¢ m,
for any x, i.e. for any x there is fy € M such that fi(x) # 0. By continuity, we can
assume fy # 0 in an open neighborhood Uy of x. Since the U,’s form an open cover of
the compact set [0, 1], there is a finite subcover Uj, ..., Uy, corresponding to the elements
fi,oo, fn. Let g := f2 +...4 f2 € M. Since the f;’s have no common zeroes, g is never
zero, hence invertible in R. This implies that M = R, hence every maximal ideal is of the
form m, for some x. n

2. Factor x® — 1 and x> — 1in Q[x].

B—1=Gx-1)x+D)x*+1D)(*+1)

2 1=(x-DE+D)E2+x+ D)2+ (x> —x+1)(x* —x2+1)

That equality holds above over Q is just computation, and that x — 1 and x + 1 are irre-
ducible over Q|x] is immediate. What remains is to show the irreducibility of the quadrat-
ics and quartics. We note that we are implicitly using the fact quadratics in Q[x] are re-
ducible if and only if they have linear terms, a fact which follows immediately by the
division algorithm. For quartics, they could have a linear factor or be the product of ir-
reducible quadratics. By the rational roots test, the only possible rational roots for all
polynomials are £1. A computation yields that neither 1 nor —1 are zeros of any of the
quadratics, so they are all irreducible in Q[x]. If the quartic x* + 1 is the product of irre-
ducible quadratics, then x* +1 = (x? + bx + ¢)(x? + dx + ¢) (we can take both leading
coefficients to be 1), which furnishes the system of equations

d+b=0
e+c+db=0
dc+be =0
ec =1,



and d = —b implies the third equation becomes —b(c + ¢) = 0. If ¢ = —e, then the fourth
equation cannot be solved since —¢2 = 1 has no solutions in Q. If b = 0, thend = 0,
then the second equation gives e = —c again, which is impossible. Thus x* + 1 is not the
product of quadratics and is hence irreducible over Q[x]. We now seek a representation
of x* — x2 +1 = (x® + bx + ¢)(x* + dx + ¢), which furnishes a similar system of equations

d+b=0
e+c+db=—1
dc+be=0
ec = 1.

If d = —D, the third equation again becomes —b(c +¢) = 0. If c = —e, then the fourth
equation cannot be solved since —c?> = 1 has no solutions in Q. If b = 0, then d = 0 and
the second equation reads e + ¢ = —1. If e = ¢ + 1, then ¢(c + 1) = 1 has no solutions
over Q (quadratic formula), so we conclude this quartic is irreducible. n

3. Ifd and e are greatest common divisors of {a1, ...4a,} in a domain R, show that d and
e are associates, i.e. unit multiples of one another.

Since they are both greatest common divisors, d | e and e | d. Therefore, e = xd and d = ye
for some x,y € R. Therefore, e = xd = x(ye) = (xy)e and it follows that 1 = xy since R is
a domain, hence e and d are associates. n

4. Let k[x,y] be the polynomial ring on two variables with coefficients in the field k.
Show that the ideal | = k[x,y|>, = span{x'y/ | i+ j > n} can be generated by n + 1
elements, but not by n elements. (Hint: Think of degree).

First of all, it’s clear that | can be generated as an ideal by the # 4+ 1 monomials x", x—1 Y, ..
We’ll show that it can’t be generated by less than n + 1 elements.

Let G be any finite generating set for J, and let Gy be the set consisting of the degree
n part of the polynomials in G. We claim that ] = (Gp). Since one containment is clear, it
will suffice to show that x'y" ' € (Gp) for all i < n.

Indeed, we know that

Ay" =3 pi(xy)gi(xy)  withg; € G
If we write pj(x,y) = p;(0,0) + p; and g; = &; + g; where §; is the degree n part of g;.

Then the only degree n term in the product p;(x,y)g;(x,y) is pj(0,0)g;, and since in the
above sum the terms of degree > n cancel, we have

Xyt =Y "p;i(0,0)8;

This shows that the monomials x'y"~ are in the k span of Gy.
Assume now has at most n elements: then we would have that the k span of Gy,
contains an 7 + 1-dimensional subspace, impossible.
| |

T



5. Show that the ring of Gaussian Integers, Z[i] = Z[v/—1], is a Euclidean domain with
respect to the functions ¢ : Z[i] — Z defined by é(x) := xX, where ¥ denote the complex
conjugate of x.

Let f,g € Z][i], with ¢ # 0: we have to define a way to divide f by g. We know that
f/g € C. Since in C a point can never be further than a distance of V/2/2 from a lattice
point, then there must be g € Z[i] at a distance less than or equal to v/2/2 from f/g. Thus
f/g = q+rg with |rg| < +/2/2. This implies that f = qg + rog with rog = f — q¢ € Z][i].
Call rog = r. Then 6(r) = 5(gro) = grogro = 97070 = 6(g)(|r0])? < 8(g)/2 < 6(g). So
f =4qg+rwithd(r) < 6(g) that is what we wanted to prove.

6. Factor 2,3 and 5 in Z[i] as products of primes.

We claim that2 = (1+41i)(1—1i),3 = 3,and 5 = (2 +1)(2 — i) are prime factorizations in
Z][i].
First, suppose 1 + i|(a + bi)(c + di). But

(a+bi)(c+di)=(a—b)(c—d)+ (1+1i)(bc+da—+ (i —1)bd)

so (1+1i)|(a—b)(c—d). Thismeans (1+1i)(e+if) = (a—Db)(c —d). Comparing i coeffi-
cients, wesee e + f = 0,so in facte(1+1i)(1 — i) =2¢ = (a — b)(c — d). Suppose without
loss of generality that 2|a — b. Then (1 +1i)|2|a —b. Buta + bi = a — b+ b(1 + 1) so in fact
1+ i]a+ bi. Hence 1 + i is prime. By symmetry, 1 — i is prime as well.

To show 3 is prime in Z[i], suppose 3|(a + bi)(c + di). Then 3|(a® + b?)(c? + d?) after
multiplying by conjugates. So without loss of generality, 3|a® + b?. In [F3, the only solution
toa? +b*> =0isa = b = 0. So 3|a, b hence 3|a + bi. So 3 is prime.

Lastly, 2 + i is prime for the same reason 1 + i is prime, but we repeat the proof for
completeness. Suppose 2 + i|(a + bi)(c + di). But

(a+bi)(c+di)=(a—2b)(c—2d)+ (24 1i)(bc+da+ (i —2)bd))

so (2+1)|(a —2b)(c —2d). This means (2 +i)(e+if) = (a — 2b)(c —2d). Comparing i
coefficients, we see e + 2f = 0, so in facte(2 +i)(2 — i) = 5e = (a — 2b)(c — 2d). Suppose
without loss of generality that 5|a — 2b. Then (2+1)|5|a — 2b. Buta+bi = a —2b+b(2+1)
so in fact 2 + i|a + bi. Hence 2 + i is prime. By symmetry, 2 — i is prime as well.
In conclusion, 2 = (1+1i)(1 —i),3 = 3,and 5 = (2+1)(2 — i) are the corresponding
prime factorizations.
One can also also argue that Euclidean domains are UFDs, so prime is equivalent to
irreducible, and use the norm of problem 9 to show that 1 47,3 and 2 + i are irreducible.
]

’ 7. Prove that a Euclidean domain is a PID. \




Let R be a Euclidean domain with respect to the function § : R — Z. Let I C R be an
ideal that is not 0. Choose s € I such thats # 0 and 6(s) = min{é(r) : r € I}; such an
element is guaranteed to exist because J(r) > 0 for all r € R.

Choose any other r € I. By definition, there exists 41,42 € R such that r = g15 4+ g2
with g = 0 or 6(g2) < é(s). Since I is an ideal, g1s € I and r — g15 = go € I. We choose
s to be of minimal norm among elements in I, so it must be that g, = 0. Then for all
r € I, there exists g4 € R such that r = sq. Thatis, I C (s). It's already true that (s) C I,
so (s) = I and I is a principal ideal. R and I were arbitrary, so this shows that every
Euclidean domain is a PID. n

8. Let A = k[x, x~1] be the subring of k(x) generated by x, x~! and k. Is k[x, x 1] a PID?
Why?

Let I be an ideal of A, and let | := I Nk[x]. Then ] is an ideal of k[x], hence it’s principal,
say ] = (p). We claim that [ = (p) in A, thus showing that every ideal in A is principal.
Clearly, (p) C I. Conversely, let f € I. Then we can write f = x" f/(x) where f’(x) €
k[x] and n € Z. Since f' = x "fisalsoin I, then f’ € ] so f’ is a multiple of p in k[x]. It
follows that f is a multiple of p, so I = (p) as claimed. n

9. Letd be a square-free positive integer. Define the norm function N : Z[\/—d| — Z
given

N(a+bvV—d) = a® + b*d?
1. Establish some important properties of N.

2. Show that u is a unit in Z[v/—d] if and only if N(u) = 1.
3. Show that the only units in Z[i] are +1 and =+i.

4. If d > 1, show that the only units in Z[v/—d] are 1.

1. The fundamental property of the norm is that N(a)N(b) = N(ab), as a simple cal-
culation shows. Also, it’s clear from the definition that N has values in IN.

2. Suppose that u is a unit in Z[v/—d| and let u be its inverse. By part (1) be know that
N is multiplicative, so N(u)N(u~!) = N(1) = 1. As each of N(u) and N(u~!) are
in IN, both must be 1.

Conversely, if N(u) = uui = 1, then since u € Z[v/—d| we have that u is a unit.

3. It’s easy to see that the only elements whose norm is 1 are +1, +i, and by part (2)
they are the only units.

4. As above, if d > 1 the only elements with norm one are £1.



10. Find an element in R = C[x,y,z]/(xy — z?) that is irreducible but not prime.

Since in R we have xy = z2, then x|zz. We’ll show that x does not divide z, thus implying
that x is not prime.
Suppose z = xp in R for some p. Then this means that

z=2xp+q(xy —z?) forsomegq

where this is an equality in Clx, y, z].

Now write p = ) p; and g = ) ¢; as the sum of their homogeneous components.
Every term of q(xy — z°) has degree at least 2, and they have to cancel with the terms of
x(p1+ p2+...). It follows that z = xpg, absurd.

We now claim that x is irreducible. First of all, observe that the automorphism z — —z
of C[x,y,z] descends to an automorphism ¢ of R. Define N : R — R as N(p) = p¢(p),
much like the norm in problem 9. For any other element in R, note that it can be written
uniquely as p(x,y) + zq(x,y), thus N(p(x,v) +zq(x,y)) = p> — xyq*. We can then regard
N as having values in C[x, y]. As in problem 9, the units are characterized by the fact that
their norm is invertible in C[x, y|, and one can check directly that N(ab) = N(a)N(b).

We have that N(x) = x? and if x = af were not irreducible then N(x) = N(a)N(B).
If we can prove we can’t have N(a) = x, then this would force N(a) = x? so that N(B)
would be invertible, hence g would be a unit in R.

If N(a) = x, then

x = p* —xyq’

for some polynomials p, g. Since x|p?, then x|p hence we can divide by x to get

1=x(p")* — yq*

Evaluating at x = y = 0 yields a contradiction.
This means that x is irreducible but not prime.



