
Math 504, Fall 2013
HW 1

1. Let R be the ring of continuous functions [0, 1] → R with point-wise addition and
multiplication. Prove that the set of functions vanishing at a point x ∈ [0, 1] is a maximal
ideal in R, we denote it by mx. If m is a maximal ideal of R that is not equal to mx for
any x ∈ [0, 1], show that there are a finite set of elements f1, . . . fn in m that have no
common zero on [0, 1]; by considering f 2

0 + · · ·+ f 2
n , show that there in no such m; i.e,

the maximal ideal in R are the ideal mx, x ∈ [0, 1].

Let ex be the ring homomorphism R → R, f 7→ f (x). It’s surjective since R contains all
the constant functions, and by definition ker ex = mx. Since R is a field, it follows that mx
is a maximal ideal of R.

Suppose now M is a maximal ideal different from all the mx’s. In particular, M * mx
for any x, i.e. for any x there is fx ∈ M such that fx(x) 6= 0. By continuity, we can
assume fx 6= 0 in an open neighborhood Ux of x. Since the Ux’s form an open cover of
the compact set [0, 1], there is a finite subcover U1, . . . , Un, corresponding to the elements
f1, . . . , fn. Let g := f 2

1 + . . . + f 2
n ∈ M. Since the fi’s have no common zeroes, g is never

zero, hence invertible in R. This implies that M = R, hence every maximal ideal is of the
form mx for some x. �

2. Factor x8 − 1 and x12 − 1 in Q[x].

x8 − 1 = (x− 1)(x + 1)(x2 + 1)(x4 + 1)
x12 − 1 = (x− 1)(x + 1)(x2 + x + 1)(x2 + 1)(x2 − x + 1)(x4 − x2 + 1)
That equality holds above over Q is just computation, and that x − 1 and x + 1 are irre-
ducible over Q[x] is immediate. What remains is to show the irreducibility of the quadrat-
ics and quartics. We note that we are implicitly using the fact quadratics in Q[x] are re-
ducible if and only if they have linear terms, a fact which follows immediately by the
division algorithm. For quartics, they could have a linear factor or be the product of ir-
reducible quadratics. By the rational roots test, the only possible rational roots for all
polynomials are ±1. A computation yields that neither 1 nor −1 are zeros of any of the
quadratics, so they are all irreducible in Q[x]. If the quartic x4 + 1 is the product of irre-
ducible quadratics, then x4 + 1 = (x2 + bx + c)(x2 + dx + e) (we can take both leading
coefficients to be 1), which furnishes the system of equations

d + b = 0
e + c + db = 0

dc + be = 0
ec = 1,
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and d = −b implies the third equation becomes −b(c + e) = 0. If c = −e, then the fourth
equation cannot be solved since −c2 = 1 has no solutions in Q. If b = 0, then d = 0,
then the second equation gives e = −c again, which is impossible. Thus x4 + 1 is not the
product of quadratics and is hence irreducible over Q[x]. We now seek a representation
of x4− x2 + 1 = (x2 + bx + c)(x2 + dx + e), which furnishes a similar system of equations

d + b = 0
e + c + db = −1

dc + be = 0
ec = 1.

If d = −b, the third equation again becomes −b(c + e) = 0. If c = −e, then the fourth
equation cannot be solved since −c2 = 1 has no solutions in Q. If b = 0, then d = 0 and
the second equation reads e + c = −1. If e = c + 1, then c(c + 1) = 1 has no solutions
over Q (quadratic formula), so we conclude this quartic is irreducible. �

3. If d and e are greatest common divisors of {a1, . . . an} in a domain R, show that d and
e are associates, i.e. unit multiples of one another.

Since they are both greatest common divisors, d | e and e | d. Therefore, e = xd and d = ye
for some x, y ∈ R. Therefore, e = xd = x(ye) = (xy)e and it follows that 1 = xy since R is
a domain, hence e and d are associates. �

4. Let k[x, y] be the polynomial ring on two variables with coefficients in the field k.
Show that the ideal J = k[x, y]≥n = span{xiyj | i + j ≥ n} can be generated by n + 1
elements, but not by n elements. (Hint: Think of degree).

First of all, it’s clear that J can be generated as an ideal by the n+ 1 monomials xn, xn−1y, . . . , yn.
We’ll show that it can’t be generated by less than n + 1 elements.

Let G be any finite generating set for J, and let G0 be the set consisting of the degree
n part of the polynomials in G. We claim that J = (G0). Since one containment is clear, it
will suffice to show that xiyn−i ∈ (G0) for all i ≤ n.

Indeed, we know that

xiyn−i = ∑ pj(x, y)gj(x, y) with gj ∈ G

If we write pj(x, y) = pj(0, 0) + p′j and gj = g̃j + g′j where g̃j is the degree n part of gj.
Then the only degree n term in the product pj(x, y)gj(x, y) is pj(0, 0)g̃j, and since in the
above sum the terms of degree > n cancel, we have

xiyn−i = ∑ pj(0, 0)g̃j

This shows that the monomials xiyn−i are in the k span of G0.
Assume now has at most n elements: then we would have that the k span of G0,

contains an n + 1-dimensional subspace, impossible.
�
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5. Show that the ring of Gaussian Integers, Z[i] = Z[
√
−1], is a Euclidean domain with

respect to the functions δ : Z[i]→ Z defined by δ(x) := xx̄, where x̄ denote the complex
conjugate of x.

Let f , g ∈ Z[i], with g 6= 0: we have to define a way to divide f by g. We know that
f /g ∈ C. Since in C a point can never be further than a distance of

√
2/2 from a lattice

point, then there must be q ∈ Z[i] at a distance less than or equal to
√

2/2 from f /g. Thus
f /g = q + r0 with |r0| ≤

√
2/2. This implies that f = qg + r0g with r0g = f − qg ∈ Z[i].

Call r0g = r. Then δ(r) = δ(gr0) = gr0gr0 = ggr0r0 = δ(g)(|r0|)2 ≤ δ(g)/2 < δ(g). So
f = qg + r with δ(r) < δ(g) that is what we wanted to prove.

�

6. Factor 2, 3 and 5 in Z[i] as products of primes.

We claim that 2 = (1 + i)(1− i), 3 = 3, and 5 = (2 + i)(2− i) are prime factorizations in
Z[i].

First, suppose 1 + i|(a + bi)(c + di). But

(a + bi)(c + di) = (a− b)(c− d) + (1 + i)(bc + da + (i− 1)bd)

so (1 + i)|(a− b)(c− d). This means (1 + i)(e + i f ) = (a− b)(c− d). Comparing i coeffi-
cients, we see e + f = 0, so in fact e(1 + i)(1− i) = 2e = (a− b)(c− d). Suppose without
loss of generality that 2|a− b. Then (1 + i)|2|a− b. But a + bi = a− b + b(1 + i) so in fact
1 + i|a + bi. Hence 1 + i is prime. By symmetry, 1− i is prime as well.

To show 3 is prime in Z[i], suppose 3|(a + bi)(c + di). Then 3|(a2 + b2)(c2 + d2) after
multiplying by conjugates. So without loss of generality, 3|a2 + b2. In F3, the only solution
to a2 + b2 = 0 is a = b = 0. So 3|a, b hence 3|a + bi. So 3 is prime.

Lastly, 2 + i is prime for the same reason 1 + i is prime, but we repeat the proof for
completeness. Suppose 2 + i|(a + bi)(c + di). But

(a + bi)(c + di) = (a− 2b)(c− 2d) + (2 + i)(bc + da + (i− 2)bd))

so (2 + i)|(a− 2b)(c− 2d). This means (2 + i)(e + i f ) = (a− 2b)(c− 2d). Comparing i
coefficients, we see e + 2 f = 0, so in fact e(2 + i)(2− i) = 5e = (a− 2b)(c− 2d). Suppose
without loss of generality that 5|a− 2b. Then (2+ i)|5|a− 2b. But a+ bi = a− 2b+ b(2+ i)
so in fact 2 + i|a + bi. Hence 2 + i is prime. By symmetry, 2− i is prime as well.

In conclusion, 2 = (1 + i)(1− i), 3 = 3, and 5 = (2 + i)(2− i) are the corresponding
prime factorizations.

One can also also argue that Euclidean domains are UFDs, so prime is equivalent to
irreducible, and use the norm of problem 9 to show that 1 + i, 3 and 2 + i are irreducible.

�

7. Prove that a Euclidean domain is a PID.
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Let R be a Euclidean domain with respect to the function δ : R → Z. Let I ⊂ R be an
ideal that is not 0. Choose s ∈ I such that s 6= 0 and δ(s) = min{δ(r) : r ∈ I}; such an
element is guaranteed to exist because δ(r) ≥ 0 for all r ∈ R.

Choose any other r ∈ I. By definition, there exists q1, q2 ∈ R such that r = q1s + q2
with q2 = 0 or δ(q2) < δ(s). Since I is an ideal, q1s ∈ I and r− q1s = q2 ∈ I. We choose
s to be of minimal norm among elements in I, so it must be that q2 = 0. Then for all
r ∈ I, there exists q ∈ R such that r = sq. That is, I ⊂ (s). It’s already true that (s) ⊂ I,
so (s) = I and I is a principal ideal. R and I were arbitrary, so this shows that every
Euclidean domain is a PID. �

8. Let A = k[x, x−1] be the subring of k(x) generated by x, x−1 and k. Is k[x, x−1] a PID?
Why?

Let I be an ideal of A, and let J := I ∩ k[x]. Then J is an ideal of k[x], hence it’s principal,
say J = (p). We claim that I = (p) in A, thus showing that every ideal in A is principal.

Clearly, (p) ⊆ I. Conversely, let f ∈ I. Then we can write f = xn f ′(x) where f ′(x) ∈
k[x] and n ∈ Z. Since f ′ = x−n f is also in I, then f ′ ∈ J so f ′ is a multiple of p in k[x]. It
follows that f is a multiple of p, so I = (p) as claimed. �

9. Let d be a square-free positive integer. Define the norm function N : Z[
√
−d] → Z

given
N(a + b

√
−d) = a2 + b2d2

1. Establish some important properties of N.

2. Show that u is a unit in Z[
√
−d] if and only if N(u) = 1.

3. Show that the only units in Z[i] are ±1 and ±i.

4. If d > 1, show that the only units in Z[
√
−d] are ±1.

1. The fundamental property of the norm is that N(a)N(b) = N(ab), as a simple cal-
culation shows. Also, it’s clear from the definition that N has values in N.

2. Suppose that u is a unit in Z[
√
−d] and let u be its inverse. By part (1) be know that

N is multiplicative, so N(u)N(u−1) = N(1) = 1. As each of N(u) and N(u−1) are
in N, both must be 1.

Conversely, if N(u) = uu = 1, then since u ∈ Z[
√
−d] we have that u is a unit.

3. It’s easy to see that the only elements whose norm is 1 are ±1,±i, and by part (2)
they are the only units.

4. As above, if d > 1 the only elements with norm one are ±1.
�
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10. Find an element in R = C[x, y, z]/(xy− z2) that is irreducible but not prime.

Since in R we have xy = z2, then x|z2. We’ll show that x does not divide z, thus implying
that x is not prime.

Suppose z = xp in R for some p. Then this means that

z = xp + q(xy− z2) for some q

where this is an equality in C[x, y, z].
Now write p = ∑ pi and q = ∑ qi as the sum of their homogeneous components.

Every term of q(xy− z2) has degree at least 2, and they have to cancel with the terms of
x(p1 + p2 + . . .). It follows that z = xp0, absurd.

We now claim that x is irreducible. First of all, observe that the automorphism z 7→ −z
of C[x, y, z] descends to an automorphism φ of R. Define N : R → R as N(p) = pφ(p),
much like the norm in problem 9. For any other element in R, note that it can be written
uniquely as p(x, y) + zq(x, y), thus N(p(x, y) + zq(x, y)) = p2− xyq2. We can then regard
N as having values in C[x, y]. As in problem 9, the units are characterized by the fact that
their norm is invertible in C[x, y], and one can check directly that N(ab) = N(a)N(b).

We have that N(x) = x2 and if x = αβ were not irreducible then N(x) = N(α)N(β).
If we can prove we can’t have N(α) = x, then this would force N(α) = x2 so that N(β)
would be invertible, hence β would be a unit in R.

If N(α) = x, then
x = p2 − xyq2

for some polynomials p, q. Since x|p2, then x|p hence we can divide by x to get

1 = x(p′)2 − yq2

Evaluating at x = y = 0 yields a contradiction.
This means that x is irreducible but not prime.

�
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