12.1.7 Let \(q \) be the natural projection from \(\mathcal{A} \to \mathcal{B}(X/\mathcal{B}) \), defined compositionwise. Then \(\ker q \) clearly contains \(\mathcal{B} \). Take a \(\mathcal{B}_1 \in \mathcal{B} \), assume \(q\mathcal{B}_1 = 0 \), then \(\mathcal{B}_1 \) is the \(\mathcal{B} \)-subspace that has to be in \(\mathcal{B} \), hence \(\mathcal{B} \mathcal{B}_1 \). Since \(q \mathcal{B}_1 \subseteq \ker q \) and \(\mathcal{B}\mathcal{A} / \mathcal{B}\mathcal{B}_1 = \mathcal{B}(\mathcal{A})(\mathcal{B}_1) \).

12.1.8 Take \(\mathcal{B}_1 \mathcal{B}_2 \), with \(\mathcal{B}_2 \mathcal{B}_1 \). If \(h \in \ker \mathcal{B}_2 \), then \(h\mathcal{B}_2 = 0 \). Consider the ideal \((h, p) \mathcal{B} \), \(B, B_2 = B_1, \) with \((h, p) = \mathcal{B}_1 \), hence \(h \), with \(g \neq 0 \).

If \(g \), a unit, then \(q\mathcal{B}_1 = 0 = \mathcal{B}_2 = 0 \). So \(q \mathcal{B}_1 \) unit, hence \(\mathcal{B}_1 \) unit.

And \(h \mathcal{B}_2 (h) = (h, p) \mathcal{B}_2 = 0 \), so \(\ker (\mathcal{B}_2) \subseteq (p) \).

12.1.10 Define \(N_p = \ker (\mathcal{B}_1 \mathcal{B}_2) \). If \(\mathcal{B}_1 \mathcal{B}_2 = 0 \), then \(\exists \mathcal{B}_2, p = 0, p \mathcal{B}_1 = 0 \). Then \(p \mathcal{B}_1 (p + p_1) = 0 \) so \(\mathcal{B}_1 \mathcal{B}_2 \) is a submodule.

Claim: \(N_p = \mathcal{B}_1 \mathcal{B}_2 \). Then \(\mathcal{B}_1 \mathcal{B}_2 \mathcal{B}_2 = 0 \) is a submodule.

For each \(\mathcal{B}_1 \mathcal{B}_2 \), define \(S_k = \mathcal{B}_1 \mathcal{B}_2 / \mathcal{B}_1 \mathcal{B}_2 \mathcal{B}_2 \). Then \((\mathcal{B}_1, \mathcal{B}_2, \ldots, \mathcal{B}_k) = 0 \) so \(S_k \mathcal{B}_1 \) with \(1 = \mathcal{B}_1 \mathcal{B}_2 \).

Then \(S_1 \mathcal{B}_1 \mathcal{B}_2 = \mathcal{B}_1, \mathcal{B}_2 \mathcal{B}_2 \). Then \(\mathcal{B}_1 \mathcal{B}_2 \mathcal{B}_2 = 0 \) and \(\mathcal{B}_1 \mathcal{B}_2 \mathcal{B}_2 \neq 0 \). Now suppose \(\mathcal{B}_1 \mathcal{B}_2 = 0 \). Then \(\mathcal{B}_1 \mathcal{B}_2 \mathcal{B}_2 = 0 \), with \(S_1 \) and \(p \mathcal{B}_1 = 0 \). Again define \(S_k = \mathcal{B}_1 \mathcal{B}_2 / \mathcal{B}_1 \mathcal{B}_2 \mathcal{B}_2 \). Multiply both sides of \(\mathcal{B}_1 \mathcal{B}_2 = 0 \) with \(S_1 \), we get \(S_1 \mathcal{B}_1 = 0 \), hence \((\mathcal{B}_1, \mathcal{B}_2) \mathcal{B}_1 = \ker (\mathcal{B}_1) \). But \((\mathcal{B}_1, \mathcal{B}_2) \mathcal{B}_1 = 0 \), \(\mathcal{B}_1 = 0 \). The sum \(N = \mathcal{B}_1 \mathcal{B}_2 \mathcal{B}_2 \mathcal{B}_2 \) is unique and \(N = \mathcal{B}_1 \mathcal{B}_2 \).
12.1.1. Let \(p^k \mid a \), \(p^{k+1} \mid a \). \(p^k M = p^k R/a \sum (p^k + a)/(a) \)

If \(k < n \), \((a)/(p^k) \subseteq (p^k)/(a) \), so \((p^k)/(a) = (p^k)/(a) \) and \(p^k M/p^k M \subseteq \)

\((p^k)/(a) \) \(\subseteq (p^k)/(a) \) so \((p^k)/(a) = 0 \)

12.1.2. a) \(M/p^k \text{ is a free \(R/(p^k) \)-module} \)

\(\Rightarrow \frac{M}{p^k M} \cong \frac{R}{(p^k)} \cong \frac{p^k M}{p^k M} \)

\(\cong \bigoplus \frac{p^k M/p^k M}{p^k M/p^k M} \)

\(\cong \bigoplus \frac{p^k R/(p^k)}{p^k R/(p^k)} \)

From 12.1.1, \(p^k R/(p^k) \cong \frac{R}{(p^k)} \) if \(p^k R/(p^k) \cong \frac{R}{(p^k)} \)

\(\cong \frac{R}{(p^k)} \) otherwise, hence \(p^k M/p^k M \cong (R/(p^k))^k \)

b) \(M_1 \cong M_2 \Rightarrow F \cong \frac{M_1}{p^k M_1} = \frac{M_2}{p^k M_2} = \frac{M_1}{p^k M_1} \cong \frac{M_2}{p^k M_2} \)

where \(F = R/(p^k) \) is a field \(\Rightarrow M_1 = M_2 \) \(\forall p, k \).

Hence \(M_1 \) and \(M_2 \) have the same set of elementary divisors.

As \# of copies of \(R/(p^k) \) in the direct sum \(M \)

is \(N_{p^k} = N_{p^k} \). And hence the same \# for \(M_1 \) and \(M_2 \).
8.3.2. Take \(a, b \in \mathbb{R} \). Let \(I = (a, b) \), then \(I \) is an ideal of \(\mathbb{R} \), hence \(I = (1) \). And \(\langle c \rangle \) is a least common multiple of \(a \) and \(b \).
\(c | a \Rightarrow a | c \), \(c | b \Rightarrow b | c \). Spec \(c \) is another element of \(\mathbb{R} \) with \(a \) and \(b \) divisible by \(c \), then \((d) \subset (a) \), \((d) \subset (b) \) \(\Rightarrow \)
\((d) \subset (c) = (a, b) \Rightarrow (d) \subset I \).

8.3.4. Let \(I \subset \mathbb{R} \) be an ideal. We will show \(I \) is principle. Assume \(I \) is principle.
Pick \(a, b \in I \), \((a, b) \in \), hence by assumption \(\exists x \in I \setminus \{0\} \), \(x = a \).
\(a | 1 \Rightarrow a | \frac{1}{x} \Rightarrow x | \frac{1}{a} \). Since \(a - \frac{a}{x} = b \),
\(a(x) < (a, x) \Rightarrow (a) = (x, a) \), \((a) = I \), hence we can pick \(y \in I \setminus \{0\} \) and define \((a) = y(1, x, 0, 0, \ldots) \). Continue this process we arrive at a sequence \((a) \) with \(a_{i+1} | a_i \), \((a_{i+1}) \supset (a_i) \). Contradict \(\exists I \). So assumption false and \(I \) is principle.

8.3.5(a). Spec \((a) = (2, 1 + \sqrt{5}) \), then \(2 = (\sqrt{5} - 1) (2, 1 + \sqrt{5}) \).

and \(1 + \sqrt{5} = (1 + \sqrt{5}) \left(\frac{3}{2} - 1 + \sqrt{5} \right) \). With all coefficients \(\neq 2 \).

Apply complex norm to both sides we get \(4 = (1 + \sqrt{5}) \left(3 - 2 \sqrt{5} \right) \),
\(2 + 2 \sqrt{5} = 3 + 5 \sqrt{5} \). \(\Rightarrow \alpha + \sqrt{5} \beta = 2 + \sqrt{5} \). \(\Rightarrow a = \alpha, \beta = 0 \).
\(\Rightarrow a = 2 \), but by a similar norm argument, \((a) \neq (2, 1 + \sqrt{5}) \) so \((2, 1 + \sqrt{5}) \) is not principle.

b). \(\mathbb{I}^2(2) = (1 + \sqrt{5}) (1 - \sqrt{5}) - 2 \subset \mathbb{I}^2, \) so \(\mathbb{I}^2 \) \(\subset \mathbb{I}^2 \). On the other hand,
\(2, 2 + (1 + \sqrt{5}) \subset (2, 1 + \sqrt{5}) \) \(\subset \mathbb{I}^2 \) and they generate \(\mathbb{I}^2 \), hence \((2) = \mathbb{I}^2 \).