
1. Origins of Modern Algebra

Modern algebra was developed to solve equations.
The phrase “modern algebra” is a little vague, but it is commonly used to de-

scribe the material that appeared in van der Waerden’s book Moderne Algebra that
first appeared in 1930. Van der Waerden first encountered this material when he
arrived at Göttingen in 1924. Among the primary developers of this material were
Dedekind, Weber, Hilbert, Lasker, Macaulay, Steinitz, Noether, Artin, Krull, and
Wedderburn, (on rings, ideals, and modules), Schur, Frobenius, Burnside, Schreier,
and Galois (on groups and their representations). Van der Waerden had the advan-
tage of attending lectures courses on algebra by Noether at Göttingen and Artin
at Hamburg.

Van der Waerden’s book is a marvel, as fresh today as when it was written. None
of the hundreds of books covering similar ground written since casts the original
into shadow.

The two basic structures of modern algebra are groups and rings.

2. From N to Z to Q to Q, R and C

I disagree with the following quotation:
Die ganze Zahl schuf der liebe Gott, alles Übrige ist Menschenwerk.

God created the integers, all else is the work of man.
Kronecker

Even the integers are the work of man. No doubt the first mathematical achieve-
ment of man was to recognize when two non-empty sets had the same cardinality.
Then came the abstraction, picking a single label, one, two, three, et cetera, to
name/describe sets having the appropriate cardinality. Thus arose the natural
numbers 1, 2, 3, . . . .

There have been a number of primitive cultures which had no numbers beyond
one, two, and three. Even cultures with more extended numbering systems have
not always had a notion of zero.

The creation of the natural numbers, indeed, of all mathematics, was motivated
by man’s desire to understand and manipulate the world. Mathematics is a practical
art.

Many equations can be solved within the integers. One can postulate simple
arithmetic problems arising from everyday life that can be solved within the inte-
gers. A typical example might be find an integer x such that x + 27 = 30. At a
slightly more sophisticated level, one can imagine simple division problems, such
as find x such that 3x = 60, that can also be solved within the positive integers.
However, a mild modification, such as 3x = 67, leads to the idea of division with
remainder, and suggests how mankind was led to the rational numbers.

One can also imagine the forces that prompted the notion of negative integers.
The construction of the rationals Q from the integers Z can be formalized in such

a way that a similar process applied to any domain produces its field of fractions
(see section ??). The next result summarizes the utility of the rational numbers in
terms of solving certain kinds of equations. Notice that the result holds true if any
field is substituted for the rationals.

Theorem 2.1. If a, b, c are rational numbers with a 6= 0, then there is a unique
rational number x such that ax+ b = c.
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After linear equations come quadratics.
One of the great historical events concerning quadratics is Euclid’s famous proof

that
√

2 is not rational.

Theorem 2.2. There is no rational number whose square is two.

Proof. Suppose to the contrary that x is a rational number such that x2 = 2. Write
x = a/b where a and b are integers. By cancelling common factors, we may assume
that a and b have no common factor. Now, 2b2 = a2, so 2 divides a2. Hence 2
divides a, and we may write a = 2c. Hence 2b2 = 4c2, and b2 = 2c2. It follows that
b2, and hence b, is even. Thus a and b are both divisible by 2. This contradicts the
fact that a and b are relatively prime, so we conclude that 2 cannot be a square in
Q. �

This result was no doubt motivated by the problem of computing the length of
the hypotenuese of the isoceles right triangle with sides of length one.

Let’s focus on the proof of this result. The key point is that every non-zero
element of Q can be written as a/b with a and b relatively prime. This fact is
a consequence of a still more elementary fact, which we summarize in the next
theorem.

Theorem 2.3. Every non-zero integer can be written in an essentially unique way
as a product of primes,

pi1
1 · · · pin

n

where p1, . . . , pn are primes.

By a prime we mean an integer p such that its only divisors are ±1 and ±p. Thus,
the primes are {±2,±3,±5, · · · }. When we say “essentially unique” we mean that
factorizations 6 = 2.3 = 3.2 = (−3).(−1).2 = 1.(−2).3.(−1) are to be viewed as the
same; they differ only by order and the inclusion of the terms ±1.

Two integers are relatively prime if the only numbers that divide both of them
are ±1.

This theme, the unique factorization of integers and their relatives, reappeared
often in the early development of modern algebra, and it remains a staple of intro-
ductory algebra courses.

That the Greek’s view of numbers and algebra was intimately connected to
geometry is well documented. They had no problem accepting the existence of
numbers of the form

√
d with d rational because Pythagoras’s theorem showed that

right-angle triangles in which the lengths of two sides were rational numbers led to
the conclusion that the length of the third side was of the form

√
d. Accepting such

numbers on an (almost) equal footing with the rationals allowed the solution of a
range of quadratic equations with rational coefficients.

Thus, in modern parlance, the Greeks were quite happy computing in fields such
as Q(

√
d) when d is a positive rational number.

Of course it is obvious that the equation x2 = −1 has no solution in Q, but the
reason that it has no solution is quite different than the reason that x2 = 2 has
no solution. One can imagine that the fact that x2 = −1 has no rational solution
did not worry people much. It probably seemed a foolish waste of time to even
consider that a problem. However, it is less apparent that an equation such as
x2 + 2x+ 2 = 0 has no rational solution, and the discovery of this fact must surely
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have been intimately related to the discovery of the general solution to a quadratic
equation. Several ancient cultures independently discovered the result that

x =
−b±

√
b2 − 4ac

2a
gives the two solutions to the quadratic equation ax2 + bx + c = 0. This formula
gives a criterion that the quadratic has no solution (within the reals) if b2−4ac < 0.

This, after many centuries, led to the invention/discovery of
√
−1 and eventually

to the notion of complex numbers. This in turn leads to the following question: if
f(x) a polynomial with coefficients in a field k, is there a field K containing k in
which f has a zero? We take up this question in section 6.

Having discovered the above formula for the roots of a quadratic polynomial
attention turned to the question of whether there are analogous formulas for the
solutions to higher degree polynomials. Eventually, Galois gave a comprehensive
solution to this problem, and we will encounter Galois theory later in this course.

Once the ancients had realized that one could pass beyond the rationals Q to
include roots of rational numbers and more complicated expressions built from such
roots, it was natural to ask if this gave “all” numbers. This question is crystallized
by asking whether π is the zero of a polynomial with rational coefficients. More
generally, this leads the distinction between algebraic and transcendental elements
over an arbitrary field.

3. Rings

Definition 3.1. A ring is a non-empty set R endowed with two operations, addi-
tion (denoted by +) and multiplication,(denoted by × or · or juxtaposition), and
satisfying for all a, b, c ∈ R:

(1) a+ b ∈ R;
(2) a+ (b+ c) = (a+ b) + c;
(3) a+ b = b+ a;
(4) R has a zero element, denoted 0, with the property that 0 + a = a+ 0 = a;
(5) the equation a+ x = 0 has a solution x ∈ R; we write −a for x and call it

the negative of a;
(6) ab ∈ R;
(7) a(bc) = (ab)c;
(8) a(b+ c) = ab+ bc and (b+ c)a = ba+ ca.

♦

Conditions (1)-(5) say that (R,+) is an abelian group with identity 0. Notice
we do not call 0 the identity element, but the zero element, of R. Condition (8)
connects the two different operations + and ×. Conditions (6) and (7) are analogues
of conditions (1) and (2), but there are no analogues of conditions 3, 4, and 5, for
multiplication. Rings in which analogues of those conditions hold are given special
names.

The smallest ring is that consisting of just one element 0; we call it the trivial
ring.

One can use the distributive law to show that 0.0 = 0 and, more generally, that
a.0 = 0 for all a ∈ R.

Definition 3.2. We say that R is a ring with identity if there is an element 1 ∈ R
such that 1.a = a.1 = a for all a ∈ R. We call 1 the identity element. ♦
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It is easy to show that a ring can have at most one identity element.
If R is not the trivial ring and has an identity, then 1 6= 0; it might be easier to

show that if R has an identity and 1 = 0, then R is trivial. We will often assume
that 1 6= 0; this simply means that R 6= {0}.

Convention. All the rings in this course will have an identity element. Most
rings one encounters in algebra do have an identity. This is not so in analysis; if X
is a non-compact Hausdorff space, the ring of continuous R-valued functions on X
that vanish at infinity does not have an identity.

Definition 3.3. A ring R is commutative if ab = ba for all a, b ∈ R. ♦

The rings you are most familiar with, namely Z,Q,R, and C, are commutative
and have an identity. As the next example shows, many important rings are not
commutative.

Example 3.4. Let S be a ring. We define Mn(S), the ring of n× n matrices with
entries in S as follows. As a set it consists of all matrices

s11 s12 . . . s1n

s21 s22 . . . s2n

...
...

sn1 sn2 . . . snn


where the individual entries sij are elements of S.

The addition on Mn(S) is induced by that on S. If a = (sij) and b = (tij) are
in Mn(S), we define

a+ b := (sij + tij),
the matrix whose ijth entry is sij + tij , the sum of the ijth entries of a and b.

You should check that this makes Mn(S) an abelian group. Indeed, as a group,
Mn(S) is isomorphic to S × · · · × S, the product of n2 copies of S.

The multiplication in Mn(S), called matrix multiplication, is defined by

(sij).(tij) =
( n∑

k=1

siktkj

)
.

That is, the ijth entry in ab is the dot product of the ith row of a with the jth

column of b.
It is rather tedious to show that this multiplication makes Mn(S) a ring. The

zero element in Mn(S) is the matrix with all its entries equal to zero.
If S has an identity and S 6= 0, then Mn(S) is not commutative for n ≥ 2; for

example, if

a =
(

0 1
0 0

)
, b =

(
1 0
0 0

)
then ab = 0 6= ba. ♦

Convention. All the rings in this course will be commutative. I will therefore
make definitions that are appropriate for commutative rings. Whenever I say “ring”
I mean “commutative ring”.

Definition 3.5. Let R be a commutative ring with identity. An element a ∈ R is
called a unit if the equation ax = 1 has a solution in R. Such a solution is unique
and is called the inverse of a and is denoted by a−1. ♦
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Let’s check that the inverse is indeed unique: if ab = ac = 1, then

b = b.1 = b(ac) = (ba)c = (ab)c = 1.c = c.

Example 3.6. Let V be an infinite dimensional vector space. There are linear
maps u : V → V and v : V → V such that uv = 1, but vu 6= 1. Here 1 denotes the
identity map. ♦

Definition 3.7. A non-zero element a in a ring R is a zero-divisor if there is a non-
zero element b such that ab = 0. A ring without zero-divisors is called a domain.
♦

In other words, a ring is a domain if and only if every product of non-zero
elements in non-zero.

Lemma 3.8. Let R be a commutative ring. Then R is a domain if and only if we
can cancel in the following sense: whenever 0 6= a ∈ R and ab = ac, then b = c.

Proof. �

Recall that for any group G and any element g ∈ G, there is a unique group
homomorphism φ : Z → G such that φ(1) = g.

In particular, if R is a ring with identity, there is a unique group homomorphism
φ : Z → (R,+) such that φ(1) = 1. Warning: the two 1s in this equation are
different—the first is the 1 ∈ Z and the second is the 1 ∈ R.

We will write n for φ(n), but of course you must then be careful when you see n
to know which n you mean!

Subrings. A subring of a ring R is a subset S which is closed under addition
and subtraction and multiplication, and contains 1R.

Example 3.9. Let d be an integer that is not a square. We define

Z[
√
d] = {a+ b

√
d | a, b ∈ Z}.

This is a subset of C and is closed under multiplication, addition, and subtraction,
meaning that the product, sum, and difference, of two elements in Z[

√
d] belongs

to Z[
√
d]. Hence Z[

√
d] is a ring, a subring of C. ♦

The product R× S of two rings. The Cartesian product

R× S := {(r, s) | r ∈ R, s ∈ S}
of rings R and S can be given the structure of a ring by declaring

(r, s) + (r′, s′) := (r + r′, s+ s′)

(r, s).(r′, s′) := (rr′, ss′).

We leave the reader to check the details. Of course, you already checked in Math
402 that (R×S,+) is an abelian group. The zero element is (0, 0), and the identity
is (1, 1).

Some Exercises.
In all these exercises, the elements a, b, c . . . belong to a commutative ring R.
(1) Use the distributive law to show that a.0 = 0 for all a ∈ R.
(2) Show that a ring can have at most one identity element.
(3) Let R be a ring with identity. Show that R is the trivial ring (i.e., consists

only of 0) if and only if 1 = 0.
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(4) Let R be a ring. In the abelian group (R,+) we denote the inverse of a
by −a; thus a + (−a) = (−a) + a = 0. Of course we write b − a to mean
b+ (−a). Show that this minus sign has the following properties:
(a) a.(−b) = (−b).a = −(ab);
(b) (−a).(−b) = ab;
(c) (−1).a = −a.

(5) Show that a finite commutative domain is a field.
(6) Let φ : Z → (R,+) be the group homomorphism defined by φ(1) = 1.

Show that φ(nm) = φ(n)φ(m) for all n,m ∈ Z. Be careful when n or m is
negative.

(7) Let n be a positive integer. Show that n.a, the product in R of n, the image
of 1 ∈ Z under the homomorphism φ : Z → (R,+) defined by φ(1) = 1, is
equal to a+ · · ·+ a, the sum of a with itself n times.

(8) The rings Zp with p prime are NOT the only finite fields. For example,
there is a field with 4 elements. Write out the addition and multiplication
tables for a field with 4 elements. Denote the field by F . It must contain 0
and 1 and some element, say α, that is not equal to zero and 1. It follows
that F = {0, 1, α, α+1}—why? Write down the addition and multiplication
tables, explaining how you get the entries.

4. Finite fields

Finite fields play a central role in number theory, and in applications of algebra
to communications, coding theory, and several other computer-related areas.

The cyclic groups Zn = Z/nZ may be given the structure of a ring. Just as the
addition on Z induced the addition on Zn, so does the multiplication on Z induce
a multiplication on Zn.

Lemma 4.1. Let n be an integer and Zn = Z/nZ the quotient group. Then Zn

becomes a commutative ring with identity [1] under the multiplication defined by

[a] · [b] := [ab].

Proof. �

We will tend to write a, or ā, for [a], hoping that the context will always make
the notation unambiguous.

Recall that the map φ : Z → Zn, φ(a) = ā, is a group homomorphism. It
also satisfies φ(ab) = φ(a)φ(b); i.e., φ ‘respects’, or is ‘compatible with’, both
the additive and multiplicative structures in Z and Zn; this says that φ is a ring
homomorphism (see Definition 7.1 below).

Lemma 4.2. Let a and n be integers. Then (a, n) = 1 if and only if the equation
ax = 1 has a solution in Zn.

Proof. �

Theorem 4.3. Zn is a field if and only if n is prime.

Proof. (⇐) If n is prime and 0 6= [a] ∈ Zn, then n does not divide a, so (a, n) = 1.
By Lemma 4.2, there is an element x ∈ Zn such that ax = 1. Hence Zn is a field.

(⇒) We will prove this by contradiction. Suppose n is not prime. Then n = ab
with {a, b} ∩ {1,−1} = φ. In particular, n does not divide a, so a is a non-zero
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element of Zn. If a had an inverse, say xa = 1, in Zn, then we would have the
following in Zn:

b = 1.b = (xa)b = x(ab) = 0.
But this implies that n divides b, whence a must be ±1; this is a contradiction, so
we conclude that a cannot have an inverse in Zn. �

Notation. If p is a positive prime integer, we write Fp for the field with p
elements. In other words, Fp = Zp. Later on we shall see that there is a finite field
with pn elements and we will denote this by Fpn . These are all the finite fields.

Inverses in Fp. Consider the problem of explicitly finding the inverse of an
element in Fp. For example, what is the inverse of 13 in F19? Since 19 is prime,
the greatest common divisor of 13 and 19 is 1, and there are integers a and b such
that 1 = 13a+ 19b. The image of a in F19 is the inverse of 13. To find a and b we
apply the Euclidean algorithm to get

19 = 1× 13 + 6, 13 = 2× 6 + 1,

so
1 = 13− 2× 6 = 13− 2× (19− 13) = 3× 13− 2× 19.

Hence 13−1 = 3 in F19. Check that 13× 3 = 39 = 2× 19 + 1.

5. Other Fields

It would be foolish to develop a theory of fields if those in Theorem 4.3 were the
only examples. Fields abound. The simplest examples beyond those you already
know are those in the next example.

Example 5.1. Let d be a rational number that it is not a square in Q. The subset

Q(
√
d) := {a+ b

√
d | a, b ∈ Q}

of C is closed under multiplication and addition, meaning that the product and
sum of two in Q(

√
d) belong to Q(

√
d), so is a subring of C. The inverse (in C) of

a non-zero element of Q(
√
d) belongs to Q(

√
d), namely(

a+ b
√
d
)−1 =

a

a2 − b2d
− b

a2 − b2d

√
d;

the denominator is non-zero because d is not a square in Q. Thus Q(
√
d) is a field.

♦

Exercise. Let n be a positive integer and ζ = e2πi/n. Show that

Q(ζ) := {a0 + a1ζ + · · ·+ an−1ζ
n−1 | a0, . . . , an−1 ∈ Q}

is a subfield of C.
Exercise. Think of six interesting questions about the fields Fp, Q(

√
d), and

Q(ζ).
Later, we will examine fields in some detail, but for now we simply introduce

them as a necessary preliminary for our discussion of polynomials. Fields provide
the coefficients for polynomials.

The letter k is often used to denote a field because German mathematicians, who
were the first to examine fields in some detail, called a field ein körper (körper=body,
cf. “corpse”). Despite this nomenclature, the study of fields remains a lively topic.
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There are finite fields Fpn with pn elements for every prime p and every integer
n ≥ 1. Here, for example, is how to construct F4 with your bare hands.

Construction of F4. First, F4 contains a zero and an identity and, because it
has four elements, an element different from both zero and one that we will call α.

We can add in F4, so F4 contains an element α + 1. We will now show that
α+1 /∈ {0, 1, α}. To do this we first show that 1+1 = 0 in F4. To see this, observe
that (F4,+) is a group with four elements, so every element in it has order dividing
4; in particular,

0 = 1 + 1 + 1 + 1 = (1 + 1).(1 + 1) = (1 + 1)2,

but F4 is a field, so 1 + 1 = 0. We can also write this as −1 = 1 in F4.
If α + 1 = 0, then adding 1 to both sides gives α = 1, a contradiction; if

α + 1 = 1, then adding 1 to both sides gives α = 0, a contradiction; if α + 1 = α,
then subtracting α from both sides gives 1 = 0, a contradiction. We conclude that
α+ 1 /∈ {0, 1, α}, and hence

F4 = {0, 1, α, α+ 1}.
We have already done most of the work to construct the addition table; the only
other calculation that needs to be done is

α+ α = 1.α+ 1.α = (1 + 1).α = 0.α = 0.

The essential calculation needed to construct the multiplication table for F4 is
to determine α2. Since F4 is a field α2 6= 0. If α2 = 1, then

0 = α2 − 1 = (α+ 1)(α− 1) = (α+ 1)(α+ 1),

and this cannot happen because F4 is a domain and α + 1 is not zero. If α2 = α,
then

0 = α2 − α = α(α− 1) = α(α+ 1),
and this cannot happen because F4 is a domain. The only possibility is that a2 =
α+ 1. It is now easy to write out the multiplication table.

6. The polynomial ring in one variable

Throughout this section k denotes a field.
Let R be a commutative ring. To begin with you might think of R being the

integers, or the rationals, the reals, or some other field you know and love. Poly-
nomials in one variable, say x, with coefficients in R can be added and multiplied
in the obvious way to produce another polynomial with coefficients in R.

We write R[x] for the set of all polynomials in x with coefficients in R. An
element of R[x] is an expression

anx
n + an−1x

n−1 + · · ·+ a1x+ a0

where the coefficients ai belong to R. Addition and multiplication are defined in
the obvious way. Two polynomials are considered to be the same only if all their
coefficients are the same. In this way R[x] becomes a ring, with zero element the
zero polynomial 0, and identity element the constant polynomial 1.

Definition 6.1. Let R be a ring. The polynomial ring with coefficients in R, which
we denote by R[x], consists of all formal expressions

α0 + α1x+ α2x
2 + . . .+ αnx

n
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where α0, . . . , αn ∈ R, and this is made into a ring by defining the sum and product
of two polynomials by ∑

αix
i +

∑
βix

i :=
∑

(αi + βi)xi

and (∑
αix

i

)(∑
βix

i

)
:=

∑
n

( n∑
j=0

(αjβn−j

)
xn.

We call α0, . . . , αn the coefficients of
∑n

i=0 αix
i. We say that two polynomials are

equal if and only if they have the same coefficients.
We call x an indeterminate. ♦

We leave it to the reader to check that R[x] is a ring.

We are particularly interested in the case when R is a field.
The ring of polynomials in one variable with coefficients in a field behaves in

many respects like the ring of integers. We will see this when we consider questions
of division and factorization.

Recall that if a and b are integers with b non-zero, then there are integers q and
r such that a = bq+ r and 0 ≤ r < |b|. We usually call r the remainder. This result
plays a key role in arithmetic. To show that there is an analogous result for k[x]
we need a notion of “size” to replace absolute value.

The degree of a non-zero element f = anx
n + · · ·+a1x+a0 in R[x] is n provided

that an 6= 0. In that case we call an the leading coefficient of f . If f = 0 it is
convenient to define its degree to be −∞. It is a trivial observation that the units
in k[x] are precisely the polynomials of degree zero.

Lemma 6.2. Let R be a domain and let f, g ∈ R[x]. Then
(1) deg(f + g) ≤ max{deg f,deg g};
(2) deg(fg) = deg f + deg g;
(3) R[x] is a domain.

More variables. It is clear that we can jazz up this definition and define for
any positive integer n the polynomial ring in n variables, k[x1, . . . , xn]. The rings
k[x, y] and k[x, y, z], or perhaps R[x, y] and R[x, y, z], should not cause too much
fear. Just add and multiply polynomials in the way you have been doing for years.

7. Ring homomorphisms and ideals

As with any collection of mathematical objects, we must specify the allowable
maps R → S between two rings. These are the ring homomorphisms. Roughly,
a ring homomorphism is a map between rings that “respects” the addition and
multiplication operations in them. We also have a notion of kernel (those elements
sent to zero) and image; the kernel of a homomorphism has certain properties
which lead to the definition of a two-sided ideal—the kernel is a two-sided ideal.
The image of a homomorphism f : R→ S is itself a ring, a subring of S, and there
is an isomorphism R/ ker f ∼= im(f). We have the notion of an ideal “generated”
by a set of elements (the smallest ideal containing those elements, and this makes
sense because an intersection of ideals is an ideal); and we also have the notion of
the subring generated by a set of elements, which is the smallest subring containing
them.
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Definition 7.1. A homomorphism f : R → S of rings is a map such that f(xy) =
f(x)f(y) and f(x + y) = f(x) + f(y) for all x, y ∈ R, and f(1R) = 1S . If f is a
bijective ring homomorphism we call it an isomorphism, and say that R is isomorphic
to S, and denote this by R ∼= S. In this case f−1 is a ring homomorphism too. ♦

The image of a ring homomorphism φ : R→ S is a subring of S.
If R is a subring of a ring S the inclusion R → S is a ring homomorphism. For

example, the inclusions Z → Q → R → C → C[x] are all ring homomorphisms.
A composition of ring homomorphisms is a ring homomorphism.

Example 7.2. If R is any ring with identity there is a unique ring homomorphism
φ : Z → R. We must have φ(1) = 1 because that is a requirement of every ring
homomorphism; it follows that if n is a positive integer, then

φ(n) = φ(1 + · · ·+ 1) = φ(1) + · · ·+ φ(1) = 1 + · · ·+ 1 = n,

where there are n terms in each of these sums, and 0 = φ(n−n) = φ(n)+φ(−n) =
n+ φ(−n), so φ(−n) = −n. Notice that we have taken the liberty of writing n for
the element in R that is the sum of 1R with itself n times. Hopefully, this will not
cause confusion! Of course, φ sends −n to (−1)+ (−1)+ · · ·+(−1), the sum of −1
taken n times. Hence if x ∈ R and n ∈ Z we often write nx for x+ · · ·+x, the sum
of x taken n times (if n ≥ 0); this is the product of x and n, where n is viewed as
an element of R via φ. ♦

You have been working with polynomials for many years: when you plug a value
into a polynomial you are applying a homomorphism.

Example 7.3. Let k be a field and R a larger commutative ring containing k.
Fix some element λ ∈ R. Then each polynomial in k[x] can be evaluated at λ, by
plugging in λ; that is, every time you see x replace it by λ and then evaluate the
resulting expression in R to get an element f(λ) in R.

The rule ε : k[x] → R defined by

ε(f) = f(λ)

is a ring homomorphism. Explicitly, if f(x) = α0 + α1x+ · · ·+ αnx
n, then

ε(f) = f(λ) = α0 + α1λ+ · · ·+ αnλ
n.

You should check that ε is a ring homomorphism: this is very easy because it simply
says something you have known for may years, namely (f+g)(λ) = f(λ)+g(λ) and
(fg)(λ) = f(λ)g(λ). All this is no accident; evaluating polynomials had been going
on for many centuries before the abstract notions of rings and homomorphisms were
introduced, and those notions were introduced so as to formalize and make precise
what had long been going on. ♦

The image of the homomorphism ε : k[x] → R is denoted by k[λ].

Example 7.4. Complex conjugation, z 7→ z̄, is an isomorphism φ : C → C.
When you first met complex conjugation you will have checked that wz = w̄z̄ and
w + z = w̄ + z̄. In other words, you checked then that complex conjugation is a
ring homomorphism. ♦

Example 7.5. The map φ : F4 → F4 defined by φ(α) = α+ 1 is a ring homomor-
phism. You should check this by using the addition and multiplication tables for
F4. ♦
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Remark. When defining a ring homomorphism φ : R → S, we are often lazy:
we don’t always give an explicit formula for φ(r) for every r ∈ R. For example, we
might define φ : Q[x] → R by saying that φ is the ring homomorphism defined by
φ(x) =

√
7. What we are really saying is that there is a unique ring homomorphism

φ : Q[x] → R such that φ(x) =
√

7, and that it is then routine to figure out what
φ(f) is for every f ∈ Q[x].

Because φ is a ring homomorphism, φ(α0 + α1x+ · · ·+ αnx
n) must equal

φ(α0) + φ(α1)φ(x) + · · ·+ φ(αn)φ(x)n.

Now, φ(x)i = (
√

7)i, so we only need to know what φ(α) is for α ∈ Q. The
restriction of φ to Z ⊂ Q ⊂ Q[x] is a ring homomorphism Z → R; but, as discussed
in Example 7.2, there is only one ring homomorphism Z → R, and this is the
inclusion. Thus φ(n) = n for all n ∈ Z. If n is a non-zero integer, then

1 = φ(1) = φ(n.n−1) = n.φ(n−1),

so φ(n−1) = n−1, and φ(m/n) = φ(m)φ(n−1) = mn−1, so

φ(α0 + α1x+ · · ·+ αnx
n) = α0 + α1

√
7 + · · ·+ αn(

√
7)n.

The same sort of laziness is employed in defining the homomorphism φ in Ex-
ample 7.4.

Example 7.6. If m and n are relatively prime positive integers, there is an iso-
morphism of rings

Zmn
∼= Zm × Zn.

To see this, define φ : Zmn → Zm × Zn by

φ[a+ (mn)] =
(
[a+ (m)], [a+ (n)]

)
.

First, φ is well-defined because if [a+(mn)] = [b+(mn)], then a− b is a multiple of
mn, hence a multiple of bothm and n, so [a+(m)] = [b+(m)] and [a+(n)] = [b+(n)].
It is easy to check that φ is a ring homomorphism (you should do it even/especially
if I don’t). We now claim that φ is an isomorphism; to check this we must show it is
bijective. Both Zmn and Zm×Zn have mn elements, so it suffices to show that φ is
injective. If φ[a+(mn)] = φ[b+(mn)], then a− b is divisible by both m and n, and
hence by their product because gcd(m,n) = 1; it follows that [a+(m)] = [b+(m)],
thus showing that φ is injective and hence an isomorphism. ♦

7.1. Ideals.

Definition 7.7. An ideal of a ring R is a subset I which is a subgroup under +, and
contains ar whenever r ∈ R and a ∈ I.

If A is a subset of R we define the ideal, generated by A as the smallest ideal
containing A. ♦

Notation. Let a ∈ R. The ideal generated by a is

Ra := {ra | r ∈ R}.
We call Ra the principal ideal generated by a, and sometimes denote it by (a).

It is easy to verify that the ideal generated by a1, · · · , an ∈ R is

Ra1 + · · ·+Ran := {r1a1 + · · ·+ rnan | r1, . . . , rn ∈ R}.
We sometimes denote this ideal by (a1, . . . , an).

Basic results. The ring R itself is an ideal, and so is 0 = {0}.
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If an ideal I contains a unit, say u, then I = R because if r ∈ R, then r = u.u−1r
is a multiple of an element in I so belongs to I. It follows that the only ideals of
a field are the zero ideal and the field itself. The converse is also true: if R has no
ideals other than zero and itself and 0 6= u ∈ R, then uR is an ideal so must equal
R, whence 1 = uv for some v ∈ R, so u is a unit.

You should check that if I and J are ideals, so is their intersection I ∩ J , and
their sum

I + J := {i+ j | i ∈ I, j ∈ J},
and their product

IJ := {i1j1 + · · ·+ injn | i1, . . . , in ∈ I, j1, . . . , jn ∈ J}.

Definition 7.8. Let φ : R→ S be a ring homomorphism. The kernel of φ is

kerφ := {a ∈ R | φ(a) = 0}.
♦

Proposition 7.9. The kernel of a ring homomorphism φ : R → S is an ideal of
R.

Proof. Since φ is a group homomorphism (R,+) → (S,+), kerφ is certainly a
subgroup of (R,+). Moreover if a ∈ kerφ and r ∈ R, then φ(ar) = φ(a)φ(r) and
this is zero because φ(a) = 0. �

Exercise: A ring homomorphism φ : R → S is injective if and only if kerφ =
{0}.

The quotient by an ideal. If I is a two-sided ideal of R, we write R/I for the
set of cosets

[x+ I] := {x+ a | a ∈ I}.
Thus R/I has the same meaning as it did in group theory, and R/I becomes an
abelian group under the induced addition. In fact, R/I can be given the structure
of a ring by defining

[x+ I] + [y + I] := [x+ y + I] and [x+ I].[y + I] := [xy + I],

for all x, y ∈ R. One must check that these definitions are unambiguous, and that
they do make R/I a ring. The zero element in R/I is [0 + I] = I, and the identity
is [1 + I]. If R is commutative, so is R/I.

Proposition 7.10. The map R→ R/I defined by x 7→ [x+ I] is a surjective ring
homomorphism with kernel I.

Proof. Left to the reader. This is easy, but you should prove it once in your life
in order to understand why it is easy! The point is to see how the definition of
addition and multiplication in R/I synchronizes with the axioms for a map to be
a ring homomorphism. �

We will make frequent use of the previous result, and especially its companion,
Proposition 7.11 below, which applies this result to quotients of polynomial rings.

Let k be a field and I an ideal of k[x]. Suppose that I 6= k[x], so k[x]/I is not the
zero ring. The inclusion k → k[x] composed with the homomorphism k[x] → k[x]/I,
a 7→ [a + I], gives a homomorphism ψ : k → k[x]/I. Since I ∩ k = {0}, the kernel
of ψ is zero, whence ψ is injective. Because the map ψ : k → k[x]/I is injective
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we may identify k with its image in k[x]/I. We often do this. For example, this is
what we do in the next result: to make sense of the statement of Proposition 7.11
we must view k as a subring of k[x]/(f).

Proposition 7.11. Let k be a field and f ∈ k[x] be a polynomial of degree n ≥ 1.
Write x̄ for [x+ (f)], the coset containing x and view x̄ as an element of k[x]/(f).
Then every element of k[x]/(f) can be written as

λ0 + λ1x̄+ · · ·+ λn−1x̄
n−1

for unique elements λ1, λ1, . . . , λn−1 ∈ k.

Proof. We need to use Proposition 11.1 to prove this: given g ∈ k[x] we can write
g = qf + r for some q, r ∈ k[x] with deg r < n. You can either take this on faith or
look ahead to page 23.

Obviously [g + (f)] = [r + (f)], so

k[x]/(f) = {[g + (f)] | g ∈ k[x]} = {[r + (f)] | deg r < n}.

If r = λ0 + λ1x+ · · ·+ λn−1x
n−1, then

[r + (f)] = [λ0 + λ1x+ · · ·+ λn−1x
n−1 + (f)]

= [λ0 + (f) + [λ1 + (f)][x+ (f)] + · · ·+ [λn−1 + (f)][x+ (f)]n−1

= λ0 + λ1x̄+ · · ·+ λn−1x̄
n−1

The uniqueness is because if

λ0 + λ1x̄+ · · ·+ λn−1x̄
n−1 = µ0 + µ1x̄+ · · ·+ µn−1x̄

n−1

then (λ0 − µ0) + (λ1 − µ1)x + · · · + (λn−1 − µn−1)xn−1 is in (f). But the only
polynomial of degree < n that is a multiple of f is the zero polynomial. �

Proposition 7.12. Let φ : S → R be a ring homomophism. There is an isomor-
phism of rings

S/ kerφ ∼= im(φ).

Proof. Write I = kerφ. Since φ is a group homomorphism, the proof of the anal-
ogous result for groups already shows that the map θ : R/I → imφ defined by
θ([x + I]) = φ(x) is an isomorphism of abelian groups. So all that remains is
to check that θ(x)θ(y) = θ(xy), but this follows at once from the definition of
multiplication in R/I. �

Exercise. Let θ : R → S be a ring homomorphism and I an ideal of R such
that θ(I) = 0. Let π : R → R/I be the natural map. Show there is a unique
homomorphism φ : R/I → S such that θ = φπ.

Example 7.13. If λ ∈ k, then k[x]/(x − λ) ∼= k. To see this, let φ : k[x] → k
be the homomorphism given by plugging in λ; that is, φ(f) = f(λ). Clearly φ is
surjective—if α ∈ k, then α = φ(α)! If f is a multiple of x − λ, then φ(f) = 0, so
kerφ ⊃ (x−λ). However, a polynomial f can be written as f = (x−λ)q+ f(λ) for
a suitable q ∈ k[x], so we see that φ(f) 6= 0 if f is not a multiple of x − λ. Hence
kerφ = (x − λ). The isomorphism k[x]/(x − λ) ∼= k now follows from Proposition
7.12. ♦
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The kernel of a homomorphism φ : R → S provides a precise measure of the
(lack of) injectivity of φ—φ is injective if and only if kerφ = {0}; more explicitly,
since φ(a) = φ(b) if and only if a− b ∈ kerφ, one sees that φ(a) = φ(b) if and only
if [a+ kerφ] = [b+ kerφ]. It follows that the fibers of φ, that is the subsets

φ−1(s) := {r ∈ R | φ(r) = s} ⊂ R, s ∈ S,
are either empty or cosets of kerφ.

Lemma 7.14. If J is an ideal in R containing an ideal I, then J/I is an ideal of
R/I and every ideal of R/I is obtained in this way.

Proof. See the homework exercises on page 22. �

7.2. Maximal ideals and fields.

Lemma 7.15. Let u ∈ R. Then u is a unit if and only if (u) = R.

Proof. (⇒) If u is a unit, there is an element v ∈ R such that 1 = uv; thus r = uvr
for r ∈ R; in other words, every element of R is a multiple of u, which says that
R = (u).

(⇐) If R = (u), then every element of R is a multiple of u. In particular, 1 is,
so 1 = uv for some v ∈ R, thus showing that v is a unit. �

Lemma 7.16. A commutative ring R is a field if and only if its only ideals are 0
and R itself.

Proof. (⇒) If I is a non-zero ideal of R it contains a non-zero element, say u. But
u is a unit by the hypothesis, so r = ruu−1 ∈ I for every r ∈ R. That is, I = R.

(⇐) Let u be a non-zero element of R. Then the ideal (u) is non-zero, so is equal
to R by hypothesis; Lemma 7.15 now implies that u is a unit. �

An ideal I in a ring R is maximal if the only ideal that contains I but is not
equal to it is R itself.

One sees easily that (x− λ) is a maximal ideal of k[x], but in general there will
be other maximal ideals—that is the case when k is not algebraically closed (see
below).

Lemma 7.17. An ideal I in a ring R is maximal if and only if R/I is a field.

Proof. This follows immediately from Lemma 7.14, but here is an alternative proof.
Suppose that I is maximal. A non-zero element of R/I can be written as [a+ I]

for some a /∈ I. Since I is maximal aR + I = R. Hence there are elements b ∈ R
and c ∈ I such that 1 = ab+ c. In R/I,

[a+ I][b+ I] = [ab+ I] = [1− c+ I] = [1 + I] = 1R/I .

Hence [b+ I] is the inverse in R/I of [a+ I]. This shows that R/I is a field.
Conversely, suppose that R/I is a field. Let J be an ideal of R that is strictly

larger than I. There is an element a ∈ J\I. Since [a+ I] is a non-zero element of
R/I, it has an inverse, say [b+ I]. Since

1R/I = [1 + I] = [a+ I][b+ I] = [ab+ I],

1− ab ∈ I, and 1 ∈ aR+ I ⊂ J . Hence J = R, showing that I is maximal. �

Example 7.18. R[x]/(x2 + 1) ∼= C. ♦
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7.3. Ideals in Z.

Proposition 7.19. The ideals in Z are nZ, n ≥ 0.

Proof. First observe that each nZ is an ideal of Z. On the other hand, we showed
in Math 402 that the only subgroups of (Z,+) are the various nZ, and since an
ideal is first a subgroup, the result follows. �

Here is a cute observation regarding the notation (a, b) in the ring Z. We use this
notation for two different things: it denotes the ideal generated by a and b, namely
aZ + bZ, and it denotes the greatest common divisor of a and b. Now Proposition
7.19 tells us that the ideal (a, b) is equal to dZ, or (d), for some integer d; it turns
out that we can take d to be the greatest common divisor of a and b so the two
notations have (almost) the same meaning after all.

To prove this claim, let d denote the gcd of two non-zero integers a and b. To
see that (a, b) = (d) notice first that (a) ⊂ (d) because d|a and (b) ⊂ (d) because
d|b so, as ideals are closed under +, (d) ⊃ (a) + (b) = (a, b). The reverse inclusion
also holds because there are integers u and v such that d = au + bv, and hence
d ∈ (a, b) and hence (d) ⊂ (a, b).

8. Some examples

There is nothing difficult about the examples in this section. Mostly it is a
matter of becoming familiar with the notation, and ideas, and that does take some
time. Practice, practice, practice!

The ideal (x3 +1, x2− 2) in Q[x] is equal to Q[x]. Write I = (x3 +1, x2− 2).
Recall that (a, b) denotes the ideal of a ring R consisting of the elements {ar +
bs | r, s ∈ R}. Dividing x3 + 1 by x2 − 2 and finding the remainder gives

x3 + 1 = x(x2 − 2) + 2x+ 1,

which can be rewritten as 2x + 1 = (x3 + 1).1 + (x2 − 2).(−x), so 2x + 1 ∈ I.
Dividing x2 − 2 by 2x+ 1 and finding the remainder gives

x2 − 2 = (2x+ 1) 1
4 (2x− 1)− 7

4 ,

from which it follows that 7
4 ∈ I, and hence 7

4 .
4
7 = 1 ∈ I. But once 1 ∈ I, so is r.1

for every r ∈ Q[x], so I = Q[x].

There is an isomorphism of rings C[x]/(x2 − 1) ∼= C × C. Almost always
when one wants to establish an isomorphism of the form S/I ∼= R, one does so by
finding a surjective ring homomorphism φ : S → R such that kerφ = I and then
invoking Proposition 7.12. That is what we do here.

Define φ : C[x] → C× C by

φ(f) := (f(1), f(−1)).

It is elementary to show that φ is a homomorphism: recall from Example 7.3 that
”plugging in” is a ring homomorphism; you should check this! To see that φ is
surjective observe that

(α, β) = φ

(
1
2α(x+ 1)− 1

2β(x− 1)
)
.

Now
f ∈ kerφ⇔ 0 = φ(f) ⇔ f(1) = f(−1) = 0 ⇔ x2 − 1 divides f,
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so ker f = (x2 − 1).
The same sort of argument will show that R[x]/(x2−1) ∼= R×R and Q[x]/(x2−

1) ∼= Q×Q. However, the argument would not show that Z[x]/(x2−1) is isomorphic
to Z×Z, so let’s ask the question: is Z[x]/(x2− 1) isomorphic to Z×Z? Hint: the
element f = (1, 0) in Z × Z satisfies f2 = f ; is there an element in Z[x]/(x2 − 1)
that is equal to its own square?

If d ∈ Q is not a square, then Q[x]/(x2 − d) ∼= Q(
√
d). Define φ : Q[x] →

Q(
√
d) by φ(f) := f(

√
d). This is surjective (why?) and has kernel equal to (x2−d)

(why?).

R[x]/(x2 + x+ 3) ∼= C To prove this by invoking Proposition 7.12 we first need
a homomorphism φ : R[x] → C whose kernel is (x2 + x+ 3). If we write a = φ(x),
then a must satisfy a2 + a + 3 = φ(x2 + x + 3) = 0 in C. So, let a be one of the
complex zeroes of x2 + x+ 3 and define φ by

φ(f) = f(a).

Then kerφ = (x2 + x+ 3) as required.

F2[x]/(x2 + x+ 1) ∼= F4

Some Exercises.
In all these exercises, the elements a, b, c . . . belong to a commutative ring R.

(1) If a = bc+ d show that (a, c) = (d, c).
(2) Show that Z[x]/(x) ∼= Z. (Hint: in this and the next exercise, use Proposi-

tion 7.12.)
(3) Show that Z[x]/(n) ∼= Zn[x] for every integer n > 0.
(4) We define a I of Z[x] as follows: f is in I if and only if the sum of its

coefficients is zero. Show that I is an ideal in two ways: first, by using the
definition of an ideal; second, by exhibiting I as the kernel of a homomor-
phism. Which method is easier?

(5) Find generators for the ideal I in the previous question.
(6) We define a I of Z[x] as follows: f is in I if and only if the constant term

of I is a multiple of 8. Show that I is an ideal in two ways: first, by
using the definition of an ideal; second, by exhibiting I as the kernel of a
homomorphism. Which method is easier?

(7) Find generators for the ideal I in the previous question.
(8) Let X be any set and k any field. Show that the set S of all functions

X → k can be made into a ring in an obvious way—use the addition and
multiplication in k to define addition and multiplication in S.

(9) Think of the elements of R[x, y], the ring of polynomials with real coeffi-
cients, as functions R2 → R. That is, f(x, y) evaluated at the point (a, b)
in the real plane is f(a, b) ∈ R. Let C be the curve y2 = x(x2 − 1) in R2.
By restricting f ∈ R[x, y] to C ⊂ R2 we get a map φ : R[x, y] → S where S
is the ring of all functions C → R. Show that φ is a ring homomorphism,
and determine its kernel.

(10) Show that x8 + xz7 + x6 + x4 + 1 divides x15 − 1 in F2[x].
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9. Arithmetic in Z

After learning to count and add, children learn how to multiply and divide.
Questions about division and factorization are of primary importance in all rings.
We begin here with Z.

Recall that an integer p is prime if the only numbers dividing it are ±1 and ±p.
If an integer m divides an integer m we write n|m.

Lemma 9.1. Let n be an integer ≥ 2. Then n has a positive prime divisor.

Proof. Let Φ = {m > 1 | m|n}. Then Φ ⊂ {2, . . . , n}, so has a smallest element,
say p. Certainly p divides n. If p were not prime there would be a positive integer
q dividing p and satisfying 1 < q < p; but q would then divide n, so belong to Φ,
and would be smaller than p, contradicting the choice of p. We conclude that p is
prime. �

Theorem 9.2. There are infinitely many primes in Z.

Proof. If there were only finitely many positive primes p1, . . . , pt, the number m :=
1+p1 · · · pt would not be divisible by any pi, and this would contradict the previous
lemma. �

Lemma 9.3. Let p ∈ Z\{−1, 0, 1}. Then p is prime if and only if it has the
following property:

whenever p|ab, p|a or p|b.

Proof. Since an integer p is prime if and only if −p is prime we can assume that p
is positive.

(⇒) The gcd d = (p, a) is a positive integer dividing p so is either 1 or p. If
d = p, then p|a and we are done, so suppose that d = 1. By a result in Math 402,
there are integers u, v such that 1 = pu + av. Hence b = pbu + abv; but p divides
pbu and ab, hence abv, so p divides pbu+ abv = b.

(⇐) To see that p is prime, suppose that d divides p. Write p = dc. It suffices
to show that either c or d is ±1. Suppose to the contrary that neither is ±1. Then
the absolute values of c and d are both ≥ 2, and hence the absolute values of c and
d are both ≤ p/2.

However, since p divides the product dc, the hypothesis implies that p divides
either c or d. But p can’t divide any positive integer ≤ p/2, so we obtain a contra-
diction.

We conclude that either c or d is ±1, and hence p is prime. �

Theorem 9.4 (The Fundamental Theorem of Arithmetic). Let n be an integer
≥ 2. Then n is a product of primes in a unique way: if

n = p1p2 . . . pr = q1q2 . . . qs

with all the pis and qjs positive primes, and p1 ≤ . . . ≤ pr and q1 ≤ . . . ≤ qs, then
r = s and pi = qi for all i.

Proof. By Lemma 9.1, there is a smallest positive prime dividing n, say p1. Write
n = p1n1. Since p1 ≥ 2, n1 ≤ 1

2n. Applying Lemma 9.1 to n1 now, we can write
n = p1p2n2 with p2 a prime and 2 ≤ p1 ≤ p2 and n2 ≤ 1

22n. Continueing in this
way, we get

n = p1p2 . . . ptnt and nt ≤
1
2t
n.
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This process will stop once 2t > n. Thus n is a product of primes.
Now suppose that n = p1p2 . . . pr = q1q2 . . . qs as in the statement of the theorem.

Since p1 is prime and divides q1q2 . . . qs, it must equal some qi. But q1 ≤ qi = p1

and p1 is the smallest positive prime dividing n, so p1 = q1. Hence
n

p1
= p2 . . . pr = q2 . . . qs

and repeating the argument we get p2 = q2, ... et cetera. �

More Exercises.
We will write [r] to denote the image of an element r ∈ R in a quotient ring R/I.

That is, [r] = r + I, the coset of I containing r.
The 25 elements in the field K = F5[x]/(f), where f = x2 + x+ 1, are

{0, ai | 1 ≤ i ≤ 24} = {αa+ β | α, β ∈ F5},

where a = [3x+ 1].

(1) Fill in the missing powers of a in the following table:

a7 = 2a a13 = 4a a19 = 3a
a2 = 4a+ 3 a8 = 3a+ 1 a14 = a+ 2 a20 = 2a+ 4
a3 = a9 = a15 = a21 =

a4 = 3a+ 2 a10 = a+ 4 a16 = 2a+ 3 a22 = 4a+ 1
a5 = 4a+ 4 a11 = 3a+ 3 a17 = a+ 1 a23 = 2a+ 2
a6 = 2 a12 = 4 a18 = 3 a24 = 1

(2) Write [x] in the form αa+ β, with α, β ∈ F5.
(3) Write [x3 + 2x+ 4] in the form αa+ β, with α, β ∈ F5.
(4) Find at least 2 zeroes in K of g = t8 + t4 + 1 ∈ K[t]. (Hint—factor y3 − 1

and z12 − 1.)
(5) Why is the ring F = F19[x]/(x2 + 5) a field?
(6) Find the two square roots of 15 in the field F .
(7) Find the zeroes in F of the polynomial f(y) = y2 + 3y + 8 ∈ F [y] by using

the quadratic formula

y =
−b±

√
b2 − 4ac

2a
.

Friendly advice: plug your answer into f(y) and check you get zero!
(8) Give an explicit isomorphism θ : F → F19[t]/(t2 + 1).

10. Divisibility and Factorization

The notion of division makes sense in any ring, and much of the initial impetus
for the development of abstract algebra arose from problems of division and factor-
ization, especially in rings closely related to the integers such as Z[

√
d]. Division

and factorization in polynomial rings is also of great importance.

Definition 10.1. Let a and b be elements of a commutative ring R. We say that a
divides b in R if b = ar for some r ∈ R.

We then call b a multiple of a and write a|b. ♦
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Every element divides zero.
Zero divides no elements other than itself. At the other end of the spectrum, 1

divides every element. But 1 is not the only element with this property; a unit u
divides every element because b = u(u−1b). Conversely, if u divides every element
of R it is a unit.

10.1. Greatest common divisors. Let R be a domain. A greatest common divisor
of two elements a, b ∈ R is an element d ∈ R such that

(1) d|a and d|b, and
(2) if e|a and e|b, then e|d.

We write d = gcd(a, b), or just d = (a, b). We say that greatest common divisors
exist in R if every pair of elements in R has a greatest common divisor in R.

The greatest common divisor is not unique. For example, in the ring of integers,
both 2 and −2 are greatest common divisors of 6 and 10. Similarly, in Z[i] both 2
and 2i are greatest common divisors of 4 and 6.

Lemma 10.2. Let R be a domain. If d and d′ are greatest common divisors of a
and b, then each is a unit multiple of the other.

Proof. Because d and d′ divide each other, we have d′ = du and d = d′v, for some
elements u and v. Hence duv = d; because R is a domain and d is non-zero, we
may cancel to get uv = 1. �

To obtain uniqueness of a greatest common divisor we need some additional
structure on R. For example, in Z if we also insist that the greatest common
divisor be positive, then it becomes unique.

Actually, we haven’t even shown that greatest common divisors exist in Z or
Z[
√
d]. There is something to do here.

We can define the greatest common divisor of any collection of elements by saying
that d is a greatest common divisor of a1, . . . , an if it divides each ai, and if e is
any element of R dividing all of them, then e necessarily divides d.

Exercise. Sometimes we write (a, b) for the greatest common divisor of two
integers a and b. This notation is also used to denote the ideal generated by a and
b. For some rings there is an equality of ideals, (a, b) = (d), when d is a greatest
common divisor of a and b.

Show that 1 is a greatest common divisor of 2 and x in Z[x]. What is the greatest
common divisor of x and y in C[x, y]?

10.2. Primes and Irreducibles.

Definition 10.3. Let R be a commutative ring. A non-zero non-unit a ∈ R is
irreducible if in every factorization a = bc either b or c is a unit;
prime if whenever a|bc either a|b or a|c. ♦

Lemma 10.4. In a commutative domain every prime is irreducible.

Proof. Let p be prime. If p = bc then, perhaps after relabelling the factors, p|b, so
b = pu and p = puc; we can cancel in a domain, so 1 = uc, whence c is a unit. �

The converse of this lemma is not always true: an irreducible need not be prime
(see Example 10.8 below).

In order to give such an example we introduce some more general considerations.
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10.3. Quadratic extensions of the integers. Let d be a non-square integer.
The ring

Z[
√
d] := {a+ b

√
d | a, b ∈ Z}

is called a quadratic extension of the integers.
Rings such of these have played, and continue to play, a central role in number

theory.
Factorization and divisibility questions in Z[

√
d] are tackled by making use of

what one knows about factorization and divisibility in Z, and this is done by making
use of the norm function: the norm of an element x = a+ b

√
d ∈ Z[

√
d] is

N(x) := a2 − b2d.

If d is a negative integer the norm of an element x in Z[
√
d] is equal to xx̄ = |x|2,

where x̄ is its complex conjugate.
The two fundamental properties of the norm are given in the next lemma, the

proof of which is trivial (notice the proof of (1) uses the fact that d is not a square.

Lemma 10.5. Let x, y ∈ Z[
√
d]. Then

(1) N(x) = 0 ⇔ x = 0.
(2) N(xy) = N(x)N(y).

Because the norm is an integer, a factorization a = xy in Z[
√
d] implies the the

factorizationN(a) = N(x)N(y) in Z. This provides a tool for studying factorization
questions in Z[

√
d].

Lemma 10.6. Let d be a negative integer.
(1) The element x = a+ b

√
d is a unit in Z[

√
d] if and only if N(x) = 1.

(2) The units in Z[i] are {±1,±i}.
(3) If d 6= −1, the units in Z[

√
d] are {±1}.

Proof. Since d < 0, N(x) ≥ 0. Certainly, if x is a unit, then 1 = N(1) = N(xx−1) =
N(x)N(x−1), so we conclude that N(x) = 1. Conversely, suppose that N(x) = 1.
Then x 6= 0, and it has an inverse in C, namely

x−1 =
1

a+ b
√
d
.
a− b

√
d

a− b
√
d

=
a− b

√
d

a2 − b2d
= a− b

√
d.

This belongs to Z[
√
d] so x is a unit in Z[

√
d].

The only way a2 − b2d can equal 1 is if a2 = 1 and b = 0, leading to the units
±1, or if a = 0, d = −1 and b2 = 1, leading to the units ±i in Z[i]. �

Example 10.7. Determining the units in Z[
√
d] is more complicated if d is a

positive integer. For example, 1 +
√

2 and 1 −
√

2 are units in Z[
√

2], and 2 ±
√

5
are units in Z[

√
5]. ♦

Example 10.8. An irreducible need not be prime. Let R = Z[
√
−5]. We claim

that 2 is irreducible in R but not prime.
It is easy to see that 2 is not prime because although it does not divide either

1 +
√
−5 or 1−

√
−5 in Z[

√
−5], it divides their product:

(1 +
√
−5)(1−

√
−5) = 6 = 2.3.

To see that 2 is irreducible, suppose that 2 = bc where b, c ∈ R. Then

4 = N(2) = N(b)N(c).
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If b = x + y
√
−5, then N(b) = x2 + 5y2, and the only way N(b) could divide 4

is if y = 0 and x = ±2; so the only factorizations of 2 in Z[
√
−5] are 2 = 2.1 =

(−2).(−1); since one of the factors is a unit, we see that 2 is irreducible. ♦

Exercise. Show that 2 is not prime in Z[i]. Describe exactly which prime
integers remain prime in Z[i].

10.4. Unique factorization.

Definition 10.9. A commutative domain R is a unique factorization domain, or UFD,
if every element of R can be written uniquely as a product of irreducible elements,
and the irreducibles that occur in the factorization are unique up to order and
multiplication by units. ♦

To see what “uniqueness” means in this definition, consider the factorizations

6 = 2.3 = (−3).(−2) = (−3).(−1).(2).(−1).(−1)

in Z. The uniqueness means this: if we have two factorizations of an element
as a product of irreducibles, and x is an irreducible appearing in one of those
factorizations, then some unit multiple of x must appear in the other factorization.

Lemma 10.10. In a unique factorization domain, primes and irreducibles are the
same.

Proof. We observed on page 19 that a prime is irreducible.
Suppose that x is an irreducible and that x|bc. Then bc = xy for some y. We

can write each of b, c, and y, as a product of irreducibles. Doing so gives two
factorizations of bc as a product of irreducibles. Buy the uniqueness of such a
factorization, at least one of the irreducibles in the factorizations of b and c must
be a unit mutiple of x. But that implies that x divides either b or c, thus showing
that x is prime. �

Example 10.11. Z[
√
−5] is not a unique factorization domain because, as we

showed in Example 10.8, the irreducible element 2 is not prime.
Indeed,

6 = 2.3 = (1 +
√
−5)(1−

√
−5)

gives two distinct factorizations of 6 as a product of irreducibles. We already showed
that 2 is irreducible, and a similar argument shows that 3 is irreducible. To see
that 1 +

√
−5 is irreducible, write 1 +

√
−5 = ab and suppose that a is not a unit.

Then 6 = N(1 +
√
−5) = N(a)N(b). We already saw that there are no elements in

Z[
√
−5] having norm 2 or 3, so it must be that N(a) ∈ {1, 6}. But a is not a unit,

so N(a) 6= 1; it follows that N(a) = 6, and hence that N(b) = 1, so b is a unit.
Thus 1 +

√
−5 is irreducible, and a similar argument shows that 1 −

√
−5 is

irreducible too. ♦

Historical remark. The notion of an ideal entered mathematics as a result of
the failure of unique factorization to hold in certain rings. Originally, what we now
call an ideal was called an ”idealized number”. The idea was to work with ideals
rather than numbers: i.e., one could ask whether the ideal (6) in Z[

√
−5] can be

written as a product of prime ideals in a unique way. Of course, one needs to define
what one means by a prime ideal for this to make sense. But notice that an integer
p is prime if and only if Z/(p) is a field; so we say that an ideal p in Z[

√
−5] is prime

if Z[
√
−5]/p is a field.
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Notice that (2) is NOT a prime ideal in Z[
√
−5]. To see this, observe that neither

a = 1 +
√
−5 nor b = 1 −

√
−5 is in (2), i.e., neither a nor b is divisible by 2 in

Z[
√
−5]. Hence their images ā and b̄ in Z[

√
−5]/(2) are non-zero. However, ab = 6

is divisible by 2, so ab ∈ (2) and this translates into the fact that in Z[
√
−5]/(2),

āb̄ = 0. Since Z[
√
−5]/(2) is not a domain it is not a field.

However, (2, 1 +
√
−5) is a prime ideal in Z[

√
−5], and so is (2, 1−

√
−5). Simi-

larly, the ideals (3, 1+
√
−5) and (3, 1−

√
−5) are prime, and we have the following

factorization of (6) as a product of prime ideals:

(6) = (2, 1 +
√
−5)2.(3, 1 +

√
−5).(3, 1−

√
−5).

In fact, every non-zero ideal in Z[
√
−5] can be written as a product of prime

ideals in a unique way. This result (which actually extends to many other rings) is
a very good replacement for the Fundamental Theorem of Arithmetic.

This is typical of how mathematics develops. One has a result (here the Fun-
damental Theorem of Arithmetic) that is enormously useful and one would like it
to hold in new situations. Unfortunately it does not, so one modifies the original
idea in some clever way (here by introducing ideals rather than numbers, and prime
ideals rather than prime elements) so that a modified version of the original result
is now true.

Mathematicians are tricky—we want something to be true so we introduce new
concepts and ideas so that it is true (or at least an appropriate modified version is
true).

A couple of people have asked about the official definition of a prime ideal. It is
this: an ideal p in a commutative ring R is prime if R/p is a domain. Thus, in Z,
0 is a prime ideal. In rings like Z[

√
d] it turns out that an ideal p is prime if it is

either zero or Z[
√
d]/p is a field.

Example 10.12. The ring R = k[t, t1/2, t1/4, · · · ] is a domain in which prime and
irreducible elements are the same but it is not a UFD. It fails to be a UFD because
some elements, t for example, cannot be written as a product of irreducibles. To see
that every irreducible is prime, suppose that x is irreducible and that x|yz. There
is a suitably large n such that x, y, and z, all belong to = k[t, t1/2, · · · , t1/2n

]; this
subring is equal to k[t1/2n

] which is a polynomial ring in one variable (so a UFD);
since x is still irreducible as an element of k[t1/2n

] it is prime in k[t1/2n

], so must
divide either y or z; hence x is prime in R. ♦

Some Exercises.
In all these exercises, the elements a, b, c . . . belong to a commutative ring R.

Similarly, I and J denote ideals in a commutative ring R. All rings are assumed to
have an identity 1 6= 0.

(1) Show that IJ is an ideal if I and J are ideals.
(2) If J is an ideal in R containing an ideal I, show that J/I is an ideal of R/I.

Show every ideal of R/I is obtained in this way.
(3) If J is an ideal in R containing an ideal I, show that

(R/I)/(J/I) ∼= R/J.

Hint: use Proposition 7.12.
(4) Show that there is a 1-1 correspondence between the ideals in R/I and the

ideals in R that contain I.
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(5) Show that Z[
√
−5]/(1 +

√
−5) ∼= Z6. The way to do this is to construct

a surjective ring homomorphism φ : Z[
√
−5] → Z6 such that kerφ = (1 +√

−5) and appeal to Proposition 7.12. In particular, you will need φ(1 +√
−5) = 0. However, a ring homomorphism must, by definition, send the

identity to the identity, so you now know what φ(
√
−5) must equal. Now,

you can figure out how to define φ on all elements of Z[
√
−5] because

φ(x+ y
√
−5) = φ(x) + φ(y)φ(

√
−5).

So, with all these hints go ahead and prove that Z[
√
−5]/(1 +

√
−5) ∼=

Z6. Make sure that when you define φ you show that it really is a ring
homomorphism—the tricky point will be to show that φ(ab) = φ(a)φ(b).

(6) Use the previous problem and the fact that

R

I + J
∼=

R/I

(I + J)/I

to show that Z[
√
−5]/(2, 1 +

√
−5) ∼= F2, the field with two elements.

(7) Show that Z[
√
−5]/(3, 1 +

√
−5) ∼= F3, the field with three elements.

(8) Decide whether the following integers remain prime in Z[i]: 2, 3, 5, 7, 11, 13.
Do you detect a pattern? Can you conjecture a general result?

(9) Is there a ring homomorphism φ : Z[
√
−5] → F7 such that φ(

√
−5) = 2?

Explain.
(10) Is there a ring homomorphism φ : Z[

√
−5] → F11 such that φ(

√
−5) = 2?

Explain.

11. Arithmetic in k[x]

In k[x], if we insist that the greatest common divisor of two polynomials be a
monic polynomial, meaning that its leading coefficient is one, it becomes unique.

Proposition 11.1. If f and g are non-zero elements of k[x] such that f is non-zero,
then there are unique polynomials q and r such that

g = fq + r and deg r < deg f.

Proof. Existence. We argue by induction on deg g. If g = 0, we can take q = r = 0.
If deg g < deg f , we can take q = 0 and r = g. If m = deg g ≥ deg f = n, we can
write

g = αxm + · · · lower degree terms

f = βxn + · · · lower degree terms.

Since
deg

(
g − αβ−1xm−nf

)
< deg g,

we may apply the induction hypothesis to g − αβ−1xm−nf .
Uniqueness. If g = fq + r = fq′ + r′, then f(q − q′) = r′ − r. But deg(r′ − r) <

deg f , so this implies that r′ − r = 0. Hence q′ = q also. �

Proposition 11.2. Every pair of non-zero elements in k[x] has a greatest common
divisor.

Proof. To prove this, we need to introduce the Euclidean algorithm. The Euclidean
algorithm is a constructive method that produces the greatest common divisor of
two polynomials, as we now show. �
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The Euclidean algorithm. Let f and g be elements of k[x] with f non-zero.
By repeatedly using Proposition 11.1 we may write

g = fq1 + r1 with deg r1 < deg f,
f = r1q2 + r2 with deg r2 < deg r1,
r1 = r2q3 + r3 with deg r3 < deg r2,
· · · · · · .

Since the degrees of the remainders ri are strictly decreasing, this process must
stop. Stopping means that the remainder must eventually be zero. If rt+2 = 0, and
we set r−1 = g and r0 = f , then the general equation becomes

ri = ri+1qi+2 + ri+2 with deg ri+2 < deg ri+1, (11-1)

and the last equation becomes

rt = rt+1qt+2.

Claim: rt+1 = gcd(f, g). Proof: Since rt+1 divides rt, it follows from (11-1) that
rt+1 also divides rt−1. By descending induction, (11-1) implies that rt+1 divides all
ri, i ≥ −1. In particular, rt+1 divides f and g. On the other hand, if e divides both
f and g, then it divides r1. If e divides ri and ri+1, then it follows from (11-1) that
it also divides ri+2. By induction, e divides rt+1. Hence rt+1 is a greatest common
divisor of f and g. ♦

This proceedure for finding the greatest common divisor of f and g is called the
Euclidean algorithm. It completes the proof of Proposition 11.2.

If K is a field containing k, then K[x] contains k[x]. Hence, if f and g belong
to k[x], we can ask for their greatest common divisor in k[x], and for their greatest
common divisor in K[x]. These are the same. This is because the uniqueness of q
and r in Proposition 11.1 ensures that carrying out the Euclidean algorithm in k[x]
for a pair f, g ∈ k[x] produces exactly the same result as carrying out the Euclidean
algorithm in K[x] for that pair.

Proposition 11.3. Let d be a greatest common divisor in k[x] of non-zero elements
f and g. Then d = af + bg for some a and b.

Proof. Since a greatest common divisor is unique up to a scalar multiple, we can as-
sume that d = rt+1, the last remainder produced by Euclidean algorithm. Working
backwards, we have

rt+1 = rt−1 − rtqt+1 = rt−1 − (rt−2 − rt−1qt)qt+1 = · · · ,

and so on. Eventually we obtain an expression in which every term is a multiple of
either r0 = f or r−1 = g. Hence the result. �

Let f ∈ k[x]. We write (f) for the set of all multiples of f . That is,

(f) = {fg | g ∈ k[x]}.

It is clear that (f) contains zero. The sum and difference of two multiples of f are
multiples of f . Any multiple of a multiple of f is a multiple of f . Hence (f) is an
ideal of k[x]. We call it the principal ideal generated by f .

Theorem 11.4. Every ideal in k[x] is principal.
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Proof. The zero ideal consists of all multiples of zero, so is principal. If I is a non-
zero ideal, choose a non-zero element f in it of minimal degree. Clearly (f) ⊂ I.
If g is an element of I, we may write g = fq + r with deg r < deg f . However, r
equals g − fq, so belongs to I; because the degree of f was minimal, we conclude
that r = 0. Hence g ∈ (f). Thus I = (f). �

Notice that (f) is generated by λf if λ is a non-zero element of k. Conversely,
if (f) = (g), then g and f must be multiples of each other, so g = λf for some
non-zero λ in k. Hence, if I is a non-zero ideal in k[x], there is a unique monic
polynomial f such that I = (f).

Proposition 11.5. The following conditions on a non-zero, non-unit f ∈ k[x] are
equivalent:

(1) f is irreducible;
(2) (f) is a maximal ideal;
(3) k[x]/(f) is a field.

Proof. By Lemma 7.17, conditions (2) and (3) are equivalent, so we only need prove
the equivalence of (1) and (2).

(1) ⇒ (2) Suppose that f is irreducible, and that (f) ⊂ (a) 6= k[x]. Then f = ab
for some b, and a is not a unit because 1 /∈ (a); because f is irreducible, b must be
a unit. Thus a = fb−1, so every multiple of a is a multiple of f , whence (a) ⊂ (f),
and we deduce that (f) = (a) showing that (f) is maximal.

(2) ⇒ (1) Suppose that f = ab; we must show that either a or b is a unit.
Suppose that a is not a unit. Then (a) 6= k[x]. But every multiple of f is a multiple
of a, so (f) ⊂ (a), and the hypothesis that (f) is maximal implies that (f) = (a).
In particular, a = fu for some u ∈ k[x], whence f = ab = fub and 1 = ub because
we can cancel in a domain. Thus b is a unit, showing that f is irreducible. �

The simplest illustration of Propositon 11.5 is provided by k[x]/(x − λ) where
λ ∈ k. Every polynomial of degree one is irreducible, so k[x]/(x − λ) is a field.
Which field? It is k because (x− λ) is the kernel of the evaluation homomorphism
ε : k[x] → k, ε(f) = f(λ).

Example 11.6. Let f ∈ R[x] be a monic polynomial of degree two. If f has a real
zero, it is not irreducible in R[x]. Suppose f has no real zero. Then it is irreducible
in R[x], so R[x]/(f) is a field. Which field? It is C because, if α ∈ C is a zero of
f , (f) is the kernel of the evaluation homomorphism ε : R[x] → C, ε(f) = f(α).
(Why is ε surjective?)

It is perhaps good for your health to see explicitly which element(s) of R[x]/(f)
square to −1. The way to do this is to complete the square: if f = x2 + 2bx + c,
then in R[x]/(f) we have

(x+ b)2 = b2 − c;

because f has no real zero, b2 − c < 0, whence
√
c− b2 ∈ R; so the square of the

image in R[x]/(f) of
√
c− b2(x+ b) is −1. ♦

Proposition 11.5 provides a huge source of fields. For example, if d ∈ Q is not a
square, then Q[x]/(x2 − d) is isomorphic to Q(

√
d).

Algebraic and transcendental elements. Let K be a field and k a subfield
of K. An element a ∈ K is said to be algebraic over k if it is a zero of a non-zero
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polynomial with coefficients in k. That is, if

λna
n + λn−1a

n−1 + · · ·+ λ1a+ λ0 = 0

for some λ0, . . . , λn ∈ k, not all zero. Equivalently, a is algebraic over k if and only
if the homomorphism ε : k[x] → K given by ε(f) = f(a) is not injective.

If a is not algebraic over k we say it is transcendental over k.
We say that k is algebraically closed if the only elements algebraic over k (whatever

K may be) are the elements of k itself.

Proposition 11.7. Let k be a field. The following are equivalent:
(1) k is algebraically closed;
(2) the only irreducible polynomials in k[x] are the degree one polynomials;
(3) every polynomial in k[x] of positive degree has a zero in k.

Exercise. Factor x7 − 1 as a product of irreducible polynomials in F2[x], F3[x],
and F7[x].

12. Zeroes of polynomials

One of the great motivating problems for the development of algebra was the
question of finding the zeroes, or roots, of a polynomial in one variable.

The question of whether an element α ∈ k is a zero of a polynomial f ∈ k[x]
can be expressed formally as follows: is f in the kernel of the ring homomorphism
εα : k[x] → k defined by

εα(f) = f(α)?
You should check that εα is a ring homomorphism; indeed, the ring structure on
k[x] is defined just so this is a homomorphism. The kernel of εα is an ideal, and
obviously contains x − α and therefore the ideal (x − α). However, (x − α) is a
maximal ideal. We therefore have the following result.

Lemma 12.1. If f ∈ k[x], then x− α divides f if and only if f(α) = 0.

Definition 12.2. Let α ∈ k and 0 6= f ∈ k[x]. We say that α is a zero of f of
multiplicity n if (x− α)n divides f but (x− α)n+1 does not. ♦

Proposition 12.3. Let f be a monic polynomial in k[x]. If α1, . . . , αr are the
distinct zeroes of f , and αi is a zero of multiplicity ni, then

f = (x− α1)n1 · · · (x− αr)nrg

where g is a polynomial having no zeroes in k.

Proof. We argue by induction on the number of zeroes and multiplicity, cancelling
a factor of the form x− α at each step. �

The next result and its corollary are among my favorite results in mathematics—
the proof is very devious. It shows that if f is a non-constant polynomial with
coefficients in a field k, then there is a larger field K in which f has a zero. Of
course, the first example that comes to mind is the polynomial x2 + 1 in which
case C, the field of complex numbers, contains a zero of the polynomial. However,
notice that the proof is essentially a tautology.

A field K is called an extension of a field k if k is a subfield of K.

Theorem 12.4. Let f ∈ k[x] be an irreducible polynomial. Then there is a field
K ⊃ k and an element α ∈ K such that f(α) = 0.
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Proof. Since f is irreducible K := k[x]/(f) is a field. Let α = x̄ = x + (f) be the
image of x in K. If f =

∑
aix

i, then, computing in K, we have

f(α) =
∑

aiα
i =

∑
(ai + (f))(x+ (f))i =

(∑
aix

i + (f)
)

= (f + (f)) = 0

as claimed.
Alternatively, let π : k[x] → K denote the natural map, and write α = π(x).

Then

f(α) =
n∑

i=0

aix̄
i = π

( n∑
i=0

aix
i
)

= π(f) = 0.

Hence α is a zero of f . �

Corollary 12.5. Let f ∈ k[x] be a monic polynomial. Then there is a field K ⊃ k
and elements αi ∈ K such that f = (x− α1)(x− α2) · · · (x− αn).

Proof. We argue by induction on the degree of f . If deg f = 1 there is nothing to
prove. Write f = gh where g is irreducible. Then L := k[x]/(g) is a field and there
is an α ∈ L such that g = (x − α)g′ for some g′ ∈ L[x]. Now consider f as an
element in L[x]. As such it factors, say f = (x−α)f ′. By induction there is a field
K ⊃ L such that f ′ is a product of linear factors in K[x]. Hence f is a product of
linear terms in K[x]. �

13. Principal ideal domains

Recall that every ideal in Z is of the form (d) for some d. Similarly, every ideal
in k[x] is of the form (f) (Theorem 11.4).

An ideal of the form (r) in a ring R is said to be principal.

Definition 13.1. A principal ideal domain is a domain in which every ideal is principal,
i.e., every ideal consists of multiples of a single element. ♦

Using the Euclidean algorithm is the standard method to show that a ring is a
principal ideal domain. The argument in Theorem 11.4 is typical.

Proposition 13.2. Let R be a principal ideal domain. Then
(1) greatest common divisors exist in R;
(2) if d = gcd(a, b), then d = ax+ by for some x, y ∈ R;
(3) every irreducible in R is prime.

Proof. (1) and (2). The ideal aR + bR is principal, so is equal to dR for some
d ∈ R. Clearly, d = ax + by for some x, y ∈ R, so it remains to show that d is a
greatest common divisor of a and b. First, since a and b belong to dR, they are
both divisible by d. Second, if e divides both a and b, then aR + bR is contained
in eR, so d is a multiple of e. Hence d is a greatest common divisor of a and b.

(3) Let a be irreducible, and suppose that a|bc. To show that a is prime, we
must show it divides either b or c. Let d = ax + by = gcd(a, b). Since d divides
a, either d is a unit or a = du with u a unit. But d|b, so the second alternative
implies that a|b. Now suppose that d is a unit; since a divides bc it also divides
acxd−1 + bcyd−1 = c(ax+ by)d−1 = c. Hence a is prime. �

Theorem 13.3. Every principal ideal domain is a unique factorization domain.
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Proof. Let R be a PID and a a non-zero non-unit in R. We must show that a is a
product of irreducibles in a unique way.

Uniqueness. Suppose that a = a1 · · · am = b1 · · · bn and that each ai and bj is
irreducible. Without loss of generality we can assume that m ≤ n. If m = 1,
then we would be done. By Proposition 13.2, a1 divides some bj ; relabel the bjs
so that a1|b1. Since a1 and b1 are irreducible, b1 = a1u for some unit u. Thus
a2 · · · am = (ub2) · · · bn. If m = 1, we would have 1 = (ub2) · · · bn so n would have
to be one also, and we would be finished. However, if m > 1 and by an induction
argument we can reduce to the case m = 1.

Existence. Suppose to the contrary that a is not a product of irreducibles. Then
a is not irreducible, so a = a1b1 with a1 and b1 non-units. Since a is not a product
of irreducibles, at least one of a1 and b1 is not a product of irreducibles. Relabelling
if necessary, we can assume that a1 is not a product of irreducibles. Thus a1 is not
irreducible, and we may write a1 = a2b2 with a2 and b2 non-units.

Continuing in this way, we obtain a sequence a1, a2, . . . of irreducible elements,
and factorizations ai = ai+1bi+1 into a product of non-units. This yields a chain

Ra ⊂ Ra1 ⊂ Ra2 ⊂ · · ·

of ideals. The union of an ascending chain of ideals is an ideal of R, and it is a
principal ideal, say Rz, by hypothesis. Now z must belong to some Rai, but then
Rz ⊂ Rai ⊂ Rai+1 ⊂ Rz, so these ideals are equal. In particular, ai+1 ∈ Rai, so
ai+1 = aiu. It follows that ai = ai+1bi+1 = aiubi+1, whence bi+1 is a unit. This is
a contradiction.

We conclude that a must be a product of irreducibles. �

Proposition 13.4. Let f be an element in a principal ideal domain R. The fol-
lowing are equivalent:

(1) f is irreducible;
(2) (f) is a maximal ideal;
(3) R/(f) is a field;
(4) f is a prime.

Proof. Lemma 7.17 shows that conditions (2) and (3) are equivalent. Theorem 13.3
and Lemma 10.10 shows that conditions (2) and (4) are equivalent.

(1) ⇒ (2). Suppose J is an ideal of R that contains (f). By hypothesis, J is
principal, say J = (g). Thus f = gh for some h ∈ R. Since f is irreducible either g
is a unit, in which case J = R, or h is a unit, in which case g = fh−1 and (g) = (f).

(2) ⇒ (1). Suppose that f = gh. Then (f) ⊂ (g) so either (g) = R, in which
case g is a unit, or (g) = (f), in which case g = fv for some v ∈ R and hv = 1 so
h is a unit. Thus f is irreducible. �

14. Vector spaces

Definition 14.1. Fix a field k. An abelian group (V,+) is called a k-vector space if
there is an action of k on V ,

k × V → V, (α, v) 7→ α.v, or αv,

such that for all u, v ∈ V and α, β ∈ k,
(1) α(u+ v) = αu+ αv,
(2) (α+ β)v = αv + βv,
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(3) α(βv) = (αβ)v,
(4) 1.v = v,
(5) α0 = 0.

♦

Vector spaces are all around us and you have encountered many.
Let n ≥ 1. The n-dimensional vector space kn = k × · · · × k is the Cartesian

product of n copies of k with action given by

α.(λ1, . . . , λn) := (αλ1, . . . , αλn).

We also define k0 = {0} to be the k-vector space consisting of one element. We call
it the zero vector space.

The polynomial ring k[x] is a k-vector space with the action defined by

α.(λ0 + λ1x+ · · ·+ λnx
n) := αλ0 + αλ1x+ · · ·+ αλnx

n.

The principle that ensures k[x] is a k-vector space applies to other situations: if
R is any ring that contains k as a subring in such a way that αr = rα for all α ∈ k
and all r ∈ R, then R becomes a k-vector space via

α.r = αr.

The vector space axioms follow from the fact that R is a ring.
For example, the quotient rings k[x]/I are k-vector spaces.

Definition 14.2. A subspace U of a k-vector space V is a subgroup of (V,+) such
that λu ∈ U whenever λ ∈ k and u ∈ U . ♦

If R is a ring containing a field k, then every ideal I of R is a subspace of R.
Similarly, if I ⊂ J are ideals of R, then J/I is a subspace of R/I (because it is an
ideal).

Definition 14.3. Let U and V be k-vector spaces. A k-linear map f : U → V is a
group homomorphism such that f(λu) = λf(u) for all λ ∈ k and all u ∈ U . If f is,
in addition, bijective we call it an isomorphism of vector spaces and write U ∼= V .
The inverse of an isomorphism is an isomorphism. ♦

Theorem 14.4. Let f : U → V be a linear map between two k-vector spaces. Then
ker f := {u ∈ U | f(u) = 0} is a subspace of U , im f is a subspace of V , and
U/ ker f ∼= im f .

If two rings R and S contain copies of the field k and f : R → S is a ring
homomorphism such that f(λ) = λ for all λ ∈ k, then f is a linear map.

Example 14.5. Let V = kn, n ≥ 1, and define t : V → k to be the linear map

t(α1, . . . , αn) := α1 + · · ·+ αn =
n∑

i=1

αi.

It is an easy matter to check that t is a linear map—you should do it.
One can jazz this up. If ω1, . . . , ωn are any elements of k, the map w : V → k

defined by

w(α1, . . . , αn) :=
n∑

i=1

ωiαi
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is linear (again, check). We call w(α1, . . . , αn) a weighted sum. The map t in the
previous paragraph is a special case of w.

The map w can be described in terms of matrix multiplication and this is useful
because there are many excellent computer programs for efficient multiplication of
matrices. In this case we have

w(α1, . . . , αn) = (α1, . . . , αn)

ω1

...
ωn

 = (ω1, . . . , ωn)

α1

...
αn


♦

Example 14.6. The map w : F10
11 → F11 defined by

w(α1, . . . , α10) :=
10∑

i=1

iαi

is a linear map. You should check this. The kernel of w consists of what are called
ISBNs, International Standard Book Numbers. If you pick a book off your book
shelf you will find, perhaps on the back, perhaps on one of the early pages, a 10-digit
number, for example, 3-540-60168-6, that uniquely identifies the book. The first
digit identifies the language, the next three the publisher, the next five the book
on that publishers list, and the last is a check digit. What we mean by that is that
the first 9 digits, α1, . . . , α9 are determined by the book, but α10 is chosen exactly
so that (α1, . . . , α10) belongs to ker(w). This can be done because once α1, . . . , α9

are known and viewed as elements of F11, one knows a1 +2α2 + · · ·+9α9 ∈ F11 and
if one now sets α10 := a1 +2α2 + · · ·+9α9, then a1 +2α2 + · · ·+9α9 +10α10 = 0 so
(α1, . . . , α10) belongs to ker(w). When you enter an ISBN into a computer system
it checks that it belongs to ker(w); if you mistype one of the digits the computer
will know that you made an error because what you have entered will not belong
to ker(w).

It is possible that α10 = 10 but the letter X is used to denote that element of
F11; for example, 0-521-22909-X is a valid ISBN number. ♦

Example 14.7. Let

A =

α11 . . . α1m

...
...

αn1 . . . αnm


be an n×m matrix with entries in the field k. View the elements of km as column
vectors

u =

β1

...
βm

 .

Define a linear map f : km → kn by

f(u) = Au

for each u ∈ km where A is the matrix above. Explicitly,

f(β1, . . . , βm) =

α11 . . . α1m

...
...

αn1 . . . αnm


β1

...
βm

 .
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The fact that f is a linear map follows easily from the basic properties of matrix
multiplication and addition. Indeed, matrices were introduced, and their product
and sum were defined, just so that every linear map f : km → kn is of the form
u 7→ Au for a suitable n×m matrix A.

We can also describe each linear map f : km → kn as right multiplication by an
m×n matrix as oppposed to left multiplication by an n×m matrix. For example,
the map in the previous paragraph is also given by

f(β1, . . . , βm) =
(
β1 · · · βm

) α11 . . . αn1

...
...

α1m . . . αnm


♦

15. Bases and dimension

Perhaps the most important notion needed for the analysis of a vector space is
that of a basis, which then leads to the notion of dimension.

Definition 15.1. A basis for a k-vector space V is a set B = {vi | i ∈ I} ⊂ V such
that every v ∈ V can be expressed in a unique way as

v =
∑
i∈I

αivi

for some αi ∈ k. We do allow the possibility that the index set I is infinite. ♦

Of course, for a given v at most a finite number of the coefficients αi in the
expression for v are non-zero (there is no way of making sense of an infinite sum in
V ).

The uniqueness part of the definition is vital. The span of a subset B of V is the
set of v ∈ V that can be expressed as a finite sum

v =
∑

αivi (15-1)

for some vis in B and αis in k. It is an easy exercise to show that the span of B is
a subspace of V . We call an expression of the form (15-1) a linear combination of
the vis. B is a basis for the subspace it spans if and only if every element in that
span can be expressed as a linear combination of elements in B in a unique way;
this is equivalent to the condition that if

∑
αivi = 0 with each vi ∈ B, then all αi

are zero.

Definition 15.2. The dimension of a vector space V is the cardinality of (number of
elements in) a basis for V . ♦

The following result, which we will not prove, ensures that this makes sense.

Proposition 15.3. Any two bases for a vector space have the same cardinality.

We usually write dimV for the dimension of V , or dimk V if we want to emphasize
the field k.

The dimension of kn is n. The vectors

e1 = (1, 0, 0, . . . , 0), e2 = (0, 1, 0, . . . , 0), . . . , en = (0, 0, . . . , 0, 1, 0),

form a basis for kn because

(λ1, . . . , λn) = λ1e1 + λ2e2 + · · ·+ λnen,
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and there is obviously no other way of writing (λ1, . . . , λn) as a linear combination
of e1, . . . , en with coefficients in k.

Theorem 15.4. Two k-vector spaces are isomorphic if and only if they have the
same dimension.

Proof. If U and V have bases B and C respectively having the same cardinality
there is a bijection t : B → C. We then define f : U → V by

f

(∑
αiui

)
:=

∑
αit(ui)

for any αis in k and uis in B. It is easy to check that f is a linera map, and that
it has an inverse given by

f−1(
∑

βjvj) =
∑

βjt
−1(vj)

where the vjs belong to C and the βjs to k.
Conversely, if f : U → V is an isomorphism and B is a basis for U it is easy to

check that {f(u) | u ∈ B} is a basis for V . �

Corollary 15.5. Up to isomorphism, the only vector spaces of finite dimension are
the kn, n ≥ 0.

Proposition 15.6. If f is a polynomial of degree n ≥ 0, then dimk k[x]/(f) = n,
and the images of 1, x, . . . , xn−1 are a basis for k[x]/(f).

Proof. The natural homomorphism π : k[x] → k[x]/(f) sends k, the subring of
constant polynomials, to an isomorphic copy of itself in k[x]/(f), so we think of
k as a subring of k[x]/(f). Multiplication in k[x]/(f) therefore gives k[x]/(f) the
structure of a k-vector space. Since the powers of x are a basis for k[x], their images
span k[x]/(f).

If g is any element of k[x], then g = af + r for some a ∈ k[x] and some r of
degree < n. Since π(g) = π(r) and since r is a linear combination of 1, x, . . . , xn−1,
{π(xi) | 0 ≤ i ≤ n − 1} spans k[x]/(f). These elements are linearly independent
too because the only linear combination of 1, x, . . . , xn−1 that belongs to (f) is
0.1 + 0.x+ · · ·+ 0.xn−1. �

Theorem 15.7. If W is a subspace of a vector space U , then

dim
U

W
= dimU − dimW.

Amongst other things this says that the dimension of a subspace or quotient of
U is no larger than that of U itself.

One trivial consequence of this result (that we use often) is that when W is a
subspace of a finite-dimensional vector space U , W = U if and only if dimW =
dimU .

Consider the following special, but important, case of the theorem. Let f and g
be non-zero polynomials in k[x] such that g divides f . Then (f) ⊂ (g) and we have
the ring isomorphism

k[x]/(f)
(g)/(f)

∼=
k[x]
(g)

.
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This is also an isomorphism of k-vector spaces so

deg(g) = dim
k[x]
(g)

= dim
k[x]
(f)

− dim
(g)
(f)

from which we see that

dim
(g)
(f)

= deg(f)− deg(g).

If we set n = deg(f) and d = deg(g), then (g)/(f) is a d-dimensional subspace of
the n-dimensional vector space k[x]/(f). This provides an important example of
an (n, d)-linear code (see below).

Theorem 15.8. Let f : U → V be a linear map between two vector spaces. Then
(1) ker f is a subspace of U and im f is a subspace of V ,
(2) im f ∼= U/ ker f ,
(3) dim(ker f) + dim(im f) = dimU .

Some Homework Problems
In all the exercises below we write F for the field with two elements.

(1) The first digit of an ISBN identifies the language in which it is published:
for example, 0 for English, 2 for French, 3 for German. The next three
digits identify the publisher. Suppose that the ISBN of a book published
in German is 3-540. The English translation of it has an ISBN beginning
0-abc, and the rest of the ISBN is the same as for the German edition. Find
abc in order for this to be true. Is there a unique such abc? Explain.

(2) If in entering an ISBN into the computer one transposes two adjacent digits
can the computer detect the error?

(3) UPS identifies packages by assigning a 10 digit number consisting of nine
digits plus a check digit: the check digit is the remainder modulo 7 of the
9-digit number. What percentage of single digit errors will this method
recognize?

(4) Show that a finite domain is a field.
(5) Let K be a finite field. Why is the image of the natural ring homomorphism

Z → K isomorphic to Zp for some prime p? We call this p the characteristic
of K.

(6) If k is a subfield of a field K, then K can be viewed as a k-vector space in a
natural way. Suppose that K is a finite field of characteristic p. Why must
the number of elements in K be of the form pn for some integer n?

(7) Let K ⊂ L be finite fields. By the previous exercise there is a prime p and
integers m and n such that |K| = pm and |L| = pn. What is the relation
between m and n (Hint: count the number of elements in kn when k is a
finite field).

(8) Let B be a subset of a vector space V . Show that B is not a basis if it
contains distinct elements u, v, w, y, z such that u+ v = w + y + z.

(9) Find a subset B of the following elements of F6 that provide a basis for F6:

000000, 011000, 001111, 111010, 010111, 110101, 100010, 101101, 101010, 111111, 010101.

Make sure you prove that the elements in B both span F6 and that they
are linearly independent—you may prove the latter by showing that 0 can
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be written in only one way as a linear combination of the elements in B,
namely the combination with all coefficients equal to zero.

16. Finite fields

Let K be a finite field. The group (K,+) is finite, so n.1 = 1 + · · · + 1 = 0 for
some positive integer n. Let p be the smallest such integer. Then the natural ring
homomorphism Z → K, 1 7→ 1, has kernel (p). Hence K contains a copy of Fp.

We call p the characteristic of K.

Proposition 16.1. Let K be a finite field of characteristic p. Then |K| = pn for
some n.

Proof. We can view K as a vector space over its subfield Fp. Because K is finite
it has finite dimension, say n. Hence K ∼= Fn

p as an Fp-vector space. But |Fn
p | =

pn. �

Lemma 16.2. Let p be a prime, n a positive integer, and set q = pn. Suppose a
and b belong to a ring R in which p = 0. Then

(a+ b)q = aq + bq.

Proof. We argue by induction on n. For n = 1 we have

(a+ b)p =
p∑

i=0

(
p

i

)
aibp−i.

If 1 ≤ i ≤ p− 1, the binomial coefficient
(
p
i

)
is divisible by p so is zero in R. Hence

only the i = 0 and i = p terms from the binomial expansion survive in R and give
the result (a+ b)p = ap + bp.

Now suppose n > 1 and write q = pr. Then

(a+ b)q =
(
(a+ b)r

)p =
(
ar + br

)p = (ar)p + (br)p = aq + bq,

as required. �

Theorem 16.3. Let p be a prime and n a positive integer. Then
(1) There is a field with pn elements.
(2) If K is a field with pn elements then every element in K is a zero of the

polynomial xpn − x.

Proof. (2) Since K× := K − {0} is a group with pn − 1 elements, apn−1 = 1 for all
a ∈ K − {0}. Hence apn

= a for all a ∈ K.
(1) Write q = pn. Consider the polynomial xq − x ∈ Fp[x]. By Corollary 12.5,

there is a field L containing Fp and elements α1, . . . , αq ∈ L such that

xq − x = (x− α1)(x− α2) · · · (x− αq).

Let K be the subset of L consisting of all the αis. By the previous lemma, αi +αj

is again in K; so too is αiαj . Obviously, 0 and 1 are in K, and so too is α−1
i if

αi 6= 0. Hence K is a subfield of L.
It remains to show that K has exactly q elements, i.e., that xq−x is not divisible

by (x − λ)2 for any λ ∈ L. If it were, then λ would be a zero of both xq − x and
its derivative, qxq−1 − 1. But that derivative is −1 because p|q and p = 0 in Fp

and hence in L. Hence xq − x is not divisible by (x − λ)2, and we deduce that
|K| = q. �
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Theorem 16.4. If K is a finite field, then K× is a cyclic group.

Proof. Let e = |K×| = pn1
1 · · · pnt

t as a product of powers of distinct primes. Define

ei :=
e

qi
and di :=

e

qni
i

.

Since the polyomial xei − 1 has at most ei zeroes, there is an ai ∈ K such that
aei

i 6= 1. Define bi := adi
i . Then 1 = ae

i = b
p

ni
i

i , but

1 6= aei = b
p

ni−1
i

i

so bi has order exactly qni
i .

Claim: If G is an abelian group and x, y ∈ G have relatively prime orders r and
s, then xy has order rs. Proof: Let d denote the order of xy. Then 1 = (xy)ds = xds

so r|ds and hence r|d. Similarly, s|d. Hence rs|d. But (xy)rs = 1, so d = rs. ♦
An induction argument based on the claim now shows that the order of b1b2 · · · bt

is e. Hence K× is cyclic. �

Proposition 16.5. Let R be a commutative domain containing a field k. If
dimk R <∞, then R is a field.

Proof. Fix 0 6= a ∈ R and define φ : R → R by φ(x) = ax. Then φ is a k-linear
map and is injective because R is a domain. Thus dim(∈ φ) = dimR by Theorem
15.8. Hence imφ = R, so 1 = φ(x) for some x ∈ R. Since ax = 1, a is a unit. �

17. Linear Codes

Do not confuse coding theory with cryptography. In cryptography the key point
is secrecy; one wishes to send a message in such a way that an unauthorized reader
can not understand it. In coding theory secrecy is not an issue. Instead, the goal
is to send a message in such a way that if a modest number of errors occur in
transmission the recipient will still be able to recover the original message.

The process involved is the following. The sender begins with the original mes-
sage, perhaps a photograph. According to some rules the message is translated into
a string of zeroes and ones. Rather than thinking of this as a single long string of
zeroes and ones we think of it as a long sequence of chunks, each chunk consisting of
some specified number of bits. For example, if one has a photograph consisting of
1024× 1024 = 220 pixels and each pixel can have one of 128 = 27 color/brightness
levels, then the message consists of 220 chunks where each chunk consists of 7 bits.
We call these chunks message words.

We do not send the message words. Instead we add some extra data to each
message word in a clever way to create a code word and transmit the code word.
Let’s begin with two simple examples.

Example 17.1. The (3, 1)-repetition code. Suppose a message word is a single bit,
0 or 1, and each message word is turned into a 3-bit code word by repeating it 3
times. Thus 000 is sent rather than 0 and 111 is sent instead of 1. If a single bit
of a code word is changed in transmission one can recover the sent code word by
taking the most frequently occurring digit; e.g., if one receives 101 it makes some
sense to guess that 111 was sent. This allows us to correct one error and is therefore
called a 1-error correcting code. However, if two errors are made in transmission
we would not correctly decode the received word. ♦
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Example 17.2. The (4, 1)-repetition code. This code corrects one error and detects
two errors. As in the previous example, a message word is a single bit, 0 or 1. Now
each message word is turned into a 4-bit code word by repeating it 4 times. Thus
0000 is sent rather than 0 and 1111 is sent instead of 1. If a single bit of a code
word is changed in transmission one can recover the sent code word by taking the
most frequently occurring digit. The (4, 1)-repetition code is better than the (3, 1)-
repition code in that if two errors are made in transmission we will recognize that
because one cannot change a codeword to different codeword by making ≤ 2 errors.
But this code will not correct two errors because if we receive 0011 there is no basis
for reasonably arguing that one of 0000 and 1111 was sent rather than the other.
♦

In the photograph example, we might add another 8 bits to the 7 bits in each
message word in a very particular way. This new chunk consisting of 15 bits is
called a code word and it is the code word what we transmit. In coding theory such
a 15-bit code word is viewed as an element of the 15-dimensional vector space F15

2 .
We often write C for the set of code words. In this example, C is a subset of F15

2

and consists of 28 elements, one code word for each possible message word.
The sequence of code words (i.e., the 220 15-bit code words in the photograph

example) is called the encoded message and the process of translating the original
message to the encoded one is called encoding.

The encoded message is now sent. There is a possibility, in some situations a
virtual certainty, that errors will arise during transmission. A typical cause of such
errors is electro-magnetic interference. In the photograph example, we send a code
word v ∈ C and the received word w is an element F15

2 which generally will not be
v, the word sent. If a received word is a valid code word (i.e., w ∈ C) the receiver
assumes that w was the code word sent. However, if the received word is not a
valid code word (i.e., w 6∈ C) the recipient tries to correct w by replacing it by the
code word that is “nearest to it”. After the correction is made, one translates the
code word back to the message word that corresponds to it. This process is called
decoding.

The encoding and decoding process are of no interest to us here. If you ab-
solutely must think about them, suppose for simplicity that the original message
is in English, and one simply replaces the letter ”a” by 000001, the letter ”b” by
000010, etc. But, to repeat, we have no interest in this process, and will consider
it no further.

Example 17.3. The (3, 2) parity check code. Suppose the original message is
composed of the four message words

00, 01, 10, 11.

The message words are the four elements of the vector space F2
2. A message word

is converted to a codeword by adding to the end of it

• a 0 if the message word has an even number of 1’s;
• a 1 if the message word has an odd number of 1’s.
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The following table lists the message words and the corresponding code words:

Message Word −→ Code Word
00 000
01 001
10 101
11 110

The code words form a subset C ⊂ F3
2. A v ∈ F3

2 is a code word if and only if the
sum of its digits is zero. The code words form a vector subspace of F3

2. They are
the elements in the kernel of the linear map

F3
2 → F2, (α1, α2, α3) 7→ α1 + α2 + α3

(see Example 14.5). If we receive a word for which the sum of its digits is 1, we
know an error must have occurred in the transmission. Thus, this code allows us
to recognize if a single error occurred in the transmission of a word. But we are
unable to make a good decision as to what the sent word was; for example, if we
receive the word 001, the word sent might be 000, or 011, or 101, or something
else—the three possibilities listed are those in which only a single bit is messed up
during transmission. This is not an error correcting code.

Do not confuse C and F2
2. The message words belong to F2

2 and the code words
belong to C; adding the appropriate digit to the end of a message word to produce
a code word is an isomorphism F2 → C. In fact, C is the image of the linear map
f : F2

2 → F3
2 given by

f(u) = uA

where

A =
(

1 0 1
0 1 1

)
.

Thus the encoding procedure consists of right multiplication by A. ♦

Definition 17.4. Fix positive integers k < n. An (n, k) binary linear code is a k-
dimensional subspace C of Fn

2 . We call C an (n, k)-code, or block code, or simply
a code. Elements of C are called code words. ♦

Only code words are transmitted but due to errors in transmission any element
of Fn

2 might be received.
Each code word is simply a string of n 0s and 1s, and what is received is a string

of zeros and ones. We make the assumption that all errors are equally likely: i.e.,
if we send a string of n zeroes and ones the probability that the ith digit is changed
is independent of i and independent of whether that digit is a zero or one. We also
assume that multiple errors are independent.

Example 17.5. The rectangular (8, 4) code. The word “rectangular” refers to
the encoding procedure, the manner in which message words are changed into
codewords. Suppose the message word is m = abcd ∈ F4, i.e., each of a, b, c, d is 0
or 1. Arrange a, b, c, d into a 2× 2 square that is the top left part of a 3× 3 square
and fill in the entries labelled w, x, y, z in the square

a b w
c d x
y z ∗
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so that the sum of the entries in each of the top two rows and in the left-most two
columns is zero. Then encode by

abcd 7→ abcdxyzw.

For example, to encode 1011 we use

1 0 1
1 1 0
0 1 ∗

and send 10111001. When recipient checks that a+ b+w = c+ d+x = a+ c+ y =
b+ d+ z = 0. If this is not the case an error is recognized, and one can correct the
error (think about it!). This code also detects two errors (think about it!). You
can also check that C, the set of code words, is a 4-dimensional subspace of F8. ♦

The next code is better than the previous one. Like the previous one, its message
words consist of four bits, and it corrects one error and detects two errors (proofs
later). However, the codewords for it consist of 7 bits rather than 8 in the previous
example. Thus it is more efficient than the previous code.

Example 17.6. The Hamming (7, 4) code. Here the code words form a 4-dimensional
subspace C ⊂ F7

2. A basis for C consists of the words

1 0 0 0 0 1 1
0 1 0 0 1 0 1
0 0 1 0 1 1 0
0 0 0 1 1 1 1

Thus a valid code word is the sum of some of these four vectors. ♦

If Fd = {message words} it is convenient to define the encoding algorithm to be
a linear map f : Fd → Fn given by right multiplication by a d×n matrix. of course
we want f to be injective so different message words give different code words. In
that case if C is the image of f , then f is an isomorphism Fd → C so its inverse, the
decoding algorithm, is also given by a linear map (equivalently, by multiplication
by a matrix).

For the Hamming code the matrix

A =


1 0 0 0 0 1 1
0 1 0 0 1 0 1
0 0 1 0 1 1 0
0 0 0 1 1 1 1


provides a linear map f : F4

2 → F7
2,

f(α1, . . . , α4) = (α1, . . . , α4)


1 0 0 0 0 1 1
0 1 0 0 1 0 1
0 0 1 0 1 1 0
0 0 0 1 1 1 1


= (α1, . . . , α4, α2 + α3 + α4, α1 + α3 + α4, α1 + α2 + α4).

The map f is obviously injective and the decoding algorithm C = im(f) → F4
2 is

simply (β1, . . . , β7) 7→ (β1, . . . , β4).

Discussion. How should we choose C? For simplicity we will always work over
the field F2. We should think of the set of message words as fixed, that is we are
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given some Fd consisting of message words—a typical example might be F8
2, a vector

space with 256 elements, which is large enough to provide a vector for each letter
of the english alphabet, both upper case and lower case, a vector for each digit 0-9,
and for various other everyday symbols. We are then free to choose n > d and a
d-dimensional subspace C of Fn. We do not want n too big because this increases
transmission time (a single message word consists of d digits but we must send n
digits). However, we want C to be sort of well spread out in Fn so that if, for
example, a single digit of a code word c is altered during transmission the received
word w is not in C but c is the element of C that is closest to w. We obviously
need a notion of distance for ”closest” to make sense.

17.1. Hamming distance and weight. Let u, v ∈ Fn. The Hamming distance
between u and v is

d(u, v) := the number of positions where u and v differ.

Explicitly, if u = (u1, . . . , un) and v = (v1, . . . , vn), then

d(u, v) =
∣∣{i | ui 6= vi}

∣∣.
The Hamming weight of v ∈ Fn is W (v) := the number of ones in v.

The next result shows that the Hamming distance has various good properties
that justify our using the word distance: part (3) is called the Triangle Inequality—
in some sense it says that the shortest distance between two points is a “straight
line.”; part (4) says that the Hamming distance respects the vector space structure
on Fn.

Lemma 17.7. Let u, v ∈ Fn and let d(−,−) denote the Hamming distance.
(1) d(v, u) = d(u, v) = W (u− v);
(2) d(u, v) = 0 if and only if u = v;
(3) d(u, v) ≤ d(u, z) + d(z, v) for all z ∈ Fn;
(4) d(u, v) = d(u+ z, v + z) for all z ∈ Fn.

Proof. (1) This is clear because the ith entries, ui and vi, of u and v differ if and
only if ui − vi = 1.

(2) This follows at once from (1).
(3) Fix z = (z1, . . . , zn) ∈ Fn. If ui 6= vi, then either ui 6= zi or vi 6= zi.
(4) We have d(u+ z, v + z) = W ((u+ z)− (v + z)) = W (u− v) = d(u, v). �

If a codeword u is transmitted and v is received the number of errors in transmis-
sion is the number of coordinates in which u and v differ; that is, d(u, v).

The next result says that if the probability that an error occurs when transmit-
ting a single digit (bit) is small, then it is more probable that few rather than many
errors occur in transmission. We shall always make this assumption.

Proposition 17.8. Let p denote the probability that an error occurs when trans-
mitting a single digit (bit). Let P (t, n) denote the probability that t errors occur
when transmitting n ≥ 1 digits. If p < 1

n+1 , then

(1− p)n = P (0, n) > P (1, n) > P (2, n) > · · · > P (n− 1, n) > P (n, n) = pn.

Proof. There are
(
n
t

)
ways in which exactly t errors can occur when transmitting n

digits, so

P (t, n) =
(
n

t

)
pt(1− p)n−t.
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Therefore
P (t+ 1, n)
P (t, n)

=
n!

(t+ 1)!(n− t− 1)!
· t!(n− t)!

n!
· p

1− p
=
n− t

t+ 1
· p

1− p
.

We want to show that this is < 1. The hypothesis is that (n+1)p < 1, so (n−t+t+
1)p < t+1 for all t = 0, 1, . . . , n, and this can be rewritten as (n−t)p < (t+1)(1−p),
from which the result follows. �

17.2. Nearest neighbor decoding. Proposition 17.8 shows that if p < 1
n+1 it is

more likely that there are fewer rather than more errors so the codeword nearest
to a received word is most likely the codeword that was transmitted. We therefore
adopt the following decoding policy:

• a received word is decoded as the codeword nearest to it and
• if there is more than one codeword nearest to a received word
the decoder records an error.

We call this (maximum-likelihood) nearest neighbor decoding.
We say that a linear code
• corrects t errors if every codeword that is transmitted with ≤ t errors is

correctly decoded by nearest neighbor decoding.
• detects 2t errors if a codeword cannot be changed to a different codeword

by changing ≤ 2t bits.

17.3. Balls. Let v ∈ Fn and t a non-negative number (usually a positive integer).
The ball of radius t with center v is

Bt(v) := {z ∈ Fn | d(v, z) ≤ t}.

Proposition 17.9. Let u, v ∈ Fn and s and t non-negative integers. Then

Bs(u) ∩Bt(v) 6= φ ⇐⇒ d(u, v) ≤ s+ t.

Proof. (⇒) If z belongs to both balls, then d(u, v) ≤ d(u, z) + d(z, v) ≤ s+ t.
(⇐)1 If d(u, v) ≤ s, then the balls intersect because v is in both. If s ≤ d(u, v) ≤

s+ t, then we can change s digits of u that differ from the corresponding digits in
v to get an element z; clearly d(u, z) = s and d(z, v) ≤ t, so z is in both balls. �

It is easier to detect errors than correct them—we saw this with the ISBNs where
one could recognize a non-ISBN but not know which ISBN it was “trying to be”.
A linear code C ⊂ Fn detects t errors if and only if d(u, v) ≥ t+ 1 for all u 6= v in
C.

Lemma 17.10. The following conditions on a linear code C are equivalent:
(1) C corrects t errors;
(2) for all u ∈ C and all z ∈ Bt(u), u is the unique element of C having

distance ≤ t from z;
(3) Bt(u) ∩Bt(v) = φ whenever u and v are distinct elements of C;
(4) min{W (u) | 0 6= u ∈ C} ≥ 2t+ 1.

Proof. Better you convince yourself than read what I write. �

1The implication (⇒) is true for any pair of non-negative real numbers s and t. But the
implication (⇐) fails if s and t are not integers: for example, if d(u, v) = 1, and s and t are
positive numbers such that s + t = 1, then the intersection of the balls is empty.
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Theorem 17.11. The following conditions on a linear code C are equivalent:
(1) C corrects t errors;
(2) d(u, v) ≥ 2t+ 1 for all u 6= v in C;
(3) W (u) ≥ 2t+ 1 for all 0 6= u ∈ C.

Proof. This follows from the previous two results. �

17.4. (n, k, d) linear codes. An (n, k, d)-code is an (n, k)-linear code such that

d = min{W (u) | 0 6= u ∈ C}.
In other words, distinct codewords are distance at least d apart and there are code
words exactly distance d apart.

Corollary 17.12. An (n, k, d) code corrects t errors and detects 2t errors if and
only if d ≥ 2t+ 1.

Proof. This is a restatement of Theorem 17.11. �

Lemma 17.13. Let Fk ∼= C ⊂ Fn be an (n, k)-linear code.
(1) If C is is an (n, k, d)-code, then the balls B d−1

2
(u), u ∈ C, are disjoint.

(2) If c is the largest integer such that the balls Bc(u), u ∈ C, are disjoint then
the minimum distance for the code is either 2c+ 1 or 2c+ 2.

Proof. (1) If z were in two distinct such balls, say those centered at u, v ∈ C, then
d(u, v) ≤ d(u, z) + d(z, v) = d− 1, so the minimum distance would be ≤ d− 1.

(2) By Proposition 17.9, the fact that Bc(u)∩Bc(v) = φ implies that d(u, v) > 2c,
and hence is ≥ 2c+1. However, if the minimum distance were ≥ 2c+3, Proposition
17.9 would imply that the balls Bc+1(u), u ∈ C, were disjoint, contradicting the
choice of c. �

17.5. Perfect codes. If a ∈ R we define [a] := the largest integer that is ≤ a.
An (n, k, d)-code Fk ∼= C ⊂ Fn is perfect if Fn is the disjoint union of the balls

Bt(u), u ∈ C, where t =
[

d−1
2

]
.

Proposition 17.14. An (n, k, d) code C ⊂ Fn is perfect if and only if

2n−k = 1 +
(
n

1

)
+

(
n

2

)
+ · · ·+

(
n

t

)
(17-1)

where t =
[

d−1
2

]
.

Proof. Fix u ∈ Fn. The number of elements in Fn that differ from u in exactly
i ≤ n positions is

(
n
i

)
so the number of elements in Bt(u) is
t∑

i=0

(
n

i

)
= 1 +

(
n

1

)
+

(
n

2

)
+ · · ·+

(
n

t

)
.

(⇒) There are 2n elements in Fn and 2k elements in C, so if Fn is the disjoint
union of the balls Bt(u), u ∈ C, then

2n = 2k

(
1 +

(
n

1

)
+

(
n

2

)
+ · · ·+

(
n

t

))
. (17-2)

(⇐) Since W (u) ≥ d ≥ 2t+1 for 0 6= u ∈ C, the balls Bt(u), u ∈ C, are disjoint.
Therefore the number of elements in their union is the right-hand side of (17-2)
which equals 2n by hypothesis. Hence the union of the balls is equal to Fn

2 . �
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Warning: Proposition 17.14 does not say that a perfect (n, k, d) code exists if
the equation (17-1) holds. However, if there is an (n, k, d)-code such that equation
(17-1) holds then that code must be perfect. Let’s look for some perfect codes.

17.6. Perfect 1-error correcting codes. This is the simplest case. By Corollary
17.12, (n, k, 3)-code corrects 1 error and detects 2 errors. An (n, k, 3) code is perfect
if and only if

2n−k = 1 +
(
n

1

)
= n+ 1

so our search for a perfect (n, k, 3)-code must begin by taking n to be one less than
a power of two.
• A perfect code with n = 1 would be useless because then k would be zero so

Fk = {0} and the only message word is 0, and C is the zero subspace of Fn. Such
a code can only send one message, a string of zeroes, duh! So, the first interesting
case of a 1-error correcting code would be when n = 3, and k = 1.
• There is a perfect (3, 1, 3)-code. Let C ⊂ F3 be the subspace {000, 111}. This

is a perfect (3, 1, 3)-code. The isomorphism F = Fk → C is given by 0 7→ 000
and 1 7→ 111. The message words are the elements of F, namely {0, 1}, and the
corresponding code words are 000 and 111. This code triples the length of a message;
it detects two errors and corrects one error.
• The next smallest n for which a perfect (n, k, 3)-code might exist is n = 23−1 =

7. In this case k must be 4.

Proposition 17.15. The Hamming (7, 4)-code is a perfect (7, 4, 3)-code.

Proof. We must check that all non-zero codewords have weight ≥ 3 and at least
one code word has weight exactly 3. A basis for C is given by

a = 1000011, b = 0100101, c = 0010110, d = 0001111.

The non-zero elements of C written in “alphabetical order”, namely

a, ab, abc, abcd, abd, ac, acd, ad, b, bc, bcd, bd, c, cd, d,

where acd denotes a+ c+ d, et cetera, are

1000011, 1100110, 1110000, 1111111, 1101010, 1010101, 1011010, 1001100,
0100101, 0110011, 0111100, 0101010, 0010110, 0011001, 0001111.

Since each of these has weight ≥ 3, we are done. �

The next smallest n for which a perfect (n, k, 3) code might exist is n = 24−1 =
15 and k = 11. Is there a perfect (15, 11, 3) code?

17.7. Perfect 3-error correcting codes. An (n, k, 7)-code is 3-error correcting
and will be perfect if and only if

1 +
(
n

1

)
+

(
n

2

)
+

(
n

3

)
= 2n−k.

A calculation with n = 23 gives

1 +
(

23
1

)
+

(
23
2

)
+

(
23
3

)
= 2048 = 211 = 223−12

so a (23, 12, 7)-code will be perfect if it exists. How can we find one or decide one
does not exist. This is a hard question. There is one, and it is due to Golay. It is



43

intimately related to a sporadic simple group, the Mathieu group M24. It is also
related to the most efficient known packing of spheres in 24-dimensional space. See
http://www.math.uic.edu/ fields/DecodingGolayHTML/introduction.html

In 1949, Golay published a half-page article Notes on digital coding in the Pro-
ceedings of the Institute of Electrical and Electronic Engineers that is now seen as
one of the most important publications of the last century. Today, reliable data
transmission uses methods developed from that original article.

17.8. Further remarks. Other important codes are the Golay (11, 6, 5)-code, and
the Reed-Muller (32, 6, 16) code. The latter was used on the Mariner 6, 7, and 9
voyages to transmit pictures back to earth. Each picture consisted of 700 × 832
pixels, each of which had 64 = 26 brightness levels black-white. The cameras pro-
duced pictures at the rate of 100,000 bits per second but data could be transmitted
back to earth only at 16,200 bps, so pictures were temporarily stored on tape prior
to transmission. For this reason the question of efficiency is of great importance in
constructing codes. The Reed-Muller code corrects 7 errors; thus if 7/32, or a little
over 22%, of a code word is corrupted in transmission one can still determine the
original code word.

The Voyager 1 and Voyager 2 spacecraft transmitted color pictures of Jupiter and
Saturn in 1979 and 1980. Color image transmission required 3 times the amount
of data, so the Golay (24,12,8) code was used (this is a jazzed up version of his
(23, 12, 7) code). This Golay code is only 3-error correcting, but could be trans-
mitted at a much higher data rate than the Reed-Muller code because 23

12 is much
smaller than 32

6 . Voyager 2 went on to Uranus and Neptune and the code was
switched to a Reed-Solomon code.

In 1960, Reed and Solomon introduced their codes in a five-page article ”Polyno-
mial Codes over Certain Finite Fields,” in the Journal of the Society for Industrial
and Applied Mathematics. The basic idea is this. Let n = 2r and take k < n.
(A typical example is r = 8). Let K = Fn and choose a generator, say α, for the
cyclic group K − {0}. Given a message word m = a0a1a2 · · · ak−1 ∈ Kk form the
polynomial f = a0 + a1x + a2x

2 + · · · + ak−1x
k−1 ∈ K[x] and evaluate it at each

element of K to obtain a code word

F (m) := (f(0), f(α), f(α2), . . . , f(αn−1)) ∈ Kn.

Since f is a polynomial of degree ≤ k−1 we can determine it once we know its value
at k different points. Since n > k, we can recover f , and hence its coefficients which
are the message word, from the code word. The idea behind the error correction
is this. If you plot some points on the graph of a polynomial, for arguments sake
let’s say 20 points of a degree 4 polynomial, and a small number of those points are
incorrect one can “see” that by looking at the graph and still figure out what the
polynomial is that is being corrected.

The 2004 missions to Mars and Saturn transmitted photographs consisting of
1024×1024 and each pixel consisted of a 12 bits giving its color, brightness, intensity,
etc. Thus each picture required 210 × 210 × 12 bits. That is a little more than 12
million bits per photograph.

Error-correcting codes are essential for computer disk drives, CD players, televi-
sion transmissions, phone calls, and all kinds of data transmission over both short
and long distances. Careful engineering can reduce the error rate to what may
sound like a negligible level–the industry standard for hard disk drives is 1 in 10
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billion–but given today’s volume of information processing that ”negligible” level
is an invitation to disaster. Billions and billions of dollars of equipment and mil-
lions of lives depend on error correcting codes. The world would look very different
without these ideas, all of which grow out of elementary abstract algebra. The
abstract algebra on which coding theory rests was developed over the last 150 years
which was in turn developed to answer questions and problems that had arisen
from within mathematics over the two or three centuries prior to that. In particu-
lar, none of this mathematics was developed with the goal of being used in the real
world. Keep this in mind the next time you hear about cutting the budget for the
National Science Foundation because the research being done is “of no practical
use.”

18. BCH codes

These codes were invented by Bose, Chauduri, and Hocquenghem. The following
definition is vague but will tell you where we are headed.

Definition 18.1. A BCH code is a linear code of the form

C =
(g)

(xn − 1)
⊂ F[x]

(xn − 1)
∼= Fn

where g ∈ F[x] is a (carefully chosen) polynomial dividing xn − 1. ♦

18.1. Notation. We will write elements of F[x]/(xn − 1) as truncated polynomials
of degree ≤ n− 1. For example, in F[x]/(x7 − 1) we have

(1+x2+x4)(1+x3+x4+x6) = 1+x3+x4+x6+x2+x5+x6+x+x4+1+x+x3 = x+x2+x5.

We will adopt 1, x, x2, . . . , xn−1 as a basis for F[x]/(xn−1) and write (a0, a1, . . . , an−1)
for the polynomial a0+a1x+· · ·+an−1x

n−1 ∈ F[x]/(xn−1). Hence, when we speak
of the weight of an element in F[x]/(xn − 1) ∼= Fn we mean its weight with respect
to this basis, i.e., the number of non-zero coefficients/entries in (a0, a1, . . . , an−1) =
a0 + a1x+ · · ·+ an−1x

n−1.

18.2. The recipe for a BCH code. Choose integers t, r with t < 2r − 1 and
write n = 2r−1. We will construct an (n, k, d) linear code where d ≥ 2t+ 1. It will
detect 2t errors and correct t errors. The code is constructed in 3 steps.

(1) Let K = F2r be the field with 2r elements. Fix some α ∈ K such that

K = {0} ∪ {α, α2, . . . , αn = 1}.
Such an α exists by Theorem 16.4.

(2) The minimal polynomial of β ∈ K is the non-zero polynomial m ∈ F[x] of
smallest degree such that m(β) = 0. Compute the minimal polynomials of
α, α2, . . . , α2t, and write mi for the minimal polynomial of αi. Define

g = lcm{m1, . . . ,m2t}.
(3) The BCH code of length n and designated distance 2t+ 1 is

C =
(g)

(xn − 1)
⊂ F[x]

(xn − 1)
.

We will show that g divides xn − 1 in section 18.4 so that (g) does contain
(xn − 1).

Theorem 18.2. The minimum distance of this BCH code is ≥ 2t+ 1.
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We will prove this in subsection 18.6.

18.3. Minimal polynomials.

Lemma 18.3. Let k ⊂ K be fields such that dimk K < ∞. Let m ∈ k[x] be the
minimal polynomial of an element β ∈ K. Then m is irreducible.

Proof. Since dimk K < ∞, the powers 1, β, β2, . . . are linearly dependent. Hence
there is a non-zero polynomial f such that f(β) = 0. Let m be the minimal
polynomial. If m = gh, then 0 = m(β) = g(β)h(β) so either g(β) = 0 or h(β) = 0.
It follows that m is irreducible. �

We have seen many times that if a and b belong to a field of characteristic p, then
(a+ b)p = ap + bp. It follows from this that if f is a polynomial with coefficients in
K, then f(ap) = f(a)p.

Lemma 18.4. Let k ⊂ K be fields such that dimk K < ∞. Let m ∈ k[x] be the
minimal polynomial of an element β ∈ K. If the characteristic of K is p, then m

is also the minimal polynomial of βp, βp2
, . . . .

Proof. If f ∈ k[x], then f(β)p = f(βp), so f(β) = 0 if and only if f(βp) = 0. Hence
β and βp have the same minimal polynomial. The other cases are similar. �

18.4. The g defined in section ?? divides xn − 1. Because the multiplicative
group (K\{0}, ·) has order n = 2r − 1, the order of every element in it divides n.
In other words, xn − 1 vanishes on all n elements of K\{0}. Since xn − 1 is in the
kernel of the evaluation map f 7→ f(β), the minimal polynomial of every 0 6= β ∈ K
divides xn − 1.

Hence the least common multiple of all such minimal polynomials must divide
xn − 1.

18.5. A (15, 7, 5)-code. Here n = 24 − 1 = 15, r = 4, and t = 2. We realize
K = F16 as

K =
F[t]

(t4 + t+ 1)
.

The irreducibility of t4 + t + 1 ensures that K is a field; to see that t4 + t + 1 is
irreducible, observe that it has no linear factors because it has no zeroes in F = F2,
and it has no quadratic factors because the only degree two irreducible is t2 + t+ 1
and t4 + t+ 1 6= (t2 + t+ 1)2.

Let α = [t] denote the image of t in K. Straightforward computations give

α4 = α+ 1 α8 = α2 + 1 α12 = α3 + α2 + α+ 1
α = α α5 = α2 + α α9 = α3 + α α13 = α3 + α2 + 1
α2 = α2 α6 = α3 + α2 α10 = α2 + α+ 1 α14 = α3 + 1
α3 = α3 α7 = α3 + α+ 1 α11 = α3 + α2 + α α15 = 1

Let’s write mi for the minimal polynomial of αi. We want to find g ∈ F[x], the
least common multiple of m1,m2, . . . ,m4 = m2t.

By definition of α, it is a zero of x4 + x+ 1 which is irreducible, so

m1 = x4 + x+ 1.

Because we are working over a field of characteristic two, this is also the minimal
polynomial of α2, α4, α8, so m1 = m2 = m4.
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To find m3, the minimal polynomial of α3, notice that m3 is also the minimal
polynomial of α6, α12, α24 = α9, so

m3(x) = (x− α3)(x− α6)(x− α9)(x− α12)

= (x2 − (α3 + α6)x+ α9)(x2 − (α9 + α12)x+ α6)

= x4 − (α3 + α6 + α9 + α12)x3 + · · ·
= x4 + x3 + x2 + x+ 1.

Hence

g(x) = (x4 + x+ 1)(x4 + x3 + x2 + x+ 1) = x8 + x7 + x6 + x4 + 1.

Hence the BCH code is

F7 ∼= C =
(g = x8 + x7 + x6 + x4 + 1)

(x15 − 1)
⊂ F[x]

(x15 − 1)
∼= F15.

Notice that the weight of the code word g is 5. To verify our claim that this is a
(15, 7, 5)-code we must show that every multiple of g, gh with deg h ≤ 8, has at
least five non-zero coefficients. There are 28 − 1 such h′s so we surely do not want
to do this by checking every case. The result is Theorem 18.2, which we now prove.

18.6. Proof of Theorem 18.2. We must show that a non-zero codeword has
weight ≥ 2t+ 1. In other words we must show that at least 2t+ 1 coefficients of a
non-zero

f = a0 + a1x+ · · ·+ an−1x
n−1 ∈ (g)

are non-zero. Suppose to the contrary that the number of non-zero ajs is d ≤ 2t.
Since f is a multiple of the minimal polynomial of αi, 1 ≤ i ≤ 2t, Let aj1 , . . . , ajd

be the non-zero coefficients of f . f(αi) = 0 for 1 ≤ i ≤ 2t. We can express this as
the matrix equation

(
a0 a1 . . . an−1

)


1 1 . . . 1
α α2 . . . α2t

α2 α4 . . . α4t

...
...

αn−1 α2(n−1) . . . α2t(n−1)

 = 0.

Let aj1 , . . . , ajd
be the non-zero coefficients of f . Taking the submatrix consisting

of the first d columns and the rows labelled j1, . . . , jd we obtain

(
aj1 . . . ajd

)

αj1 α2j1 . . . αdj1

αj2 α2j2 . . . αdj2

...
...

αjd α2jd . . . αdjd

 = 0.

It follows that the determinant of this d × d matrix is zero. However, that deter-
minant is

αj1+···+jd


1 αj1 (αj1)2 . . . (αj1)d−1

1 αj2 (αj2)2 . . . (αj2)d−1

...
...

1 αjd (αjd)2 . . . (αjd)d−1

 = 0.
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However, it follows from the next lemma that there are two different values of i for
which αji are the same; this contradicts the fact that αi, 1 ≤ i ≤ n are distinct.
We conclude that the number of non-zero ajs must be ≥ 2t+ 1.

18.7. The Vandermonde determinant.

Lemma 18.5. If f(x1, . . . , xn) is an alternating homogeneous polynomial of degree
1
2n(n− 1), then

f(x1, . . . , xn) = c
∏
i<j

(xi − xj)

for some c ∈ k.
Proof. To say that f is alternating means that the value of f changes by a sign if
the position of two of the variables is switched:

f(x1, . . . , xj , . . . , xi, . . . , xn) = −f(x1, . . . , xi, . . . , xj , . . . , xn).

Write f as a polynomial in x1 and x2 with coefficients in k[x3, . . . , xn], say

f =
∑
i,j

aijx
i
1x

j
2.

The alternating hypothesis says that∑
i,j

aijx
j
1x

i
2 = −

∑
i,j

aijx
i
1x

j
2

so aij = −aji and we can now write

f =
∑
i<j

aij(xi
1x

j
2 − xj

1x
j
2).

However, there is a factorization

xiyj − xjyi = xiyj

(
1−

(
x

y

)j−i)
= xiyj

(
1− x

y

)(
1 +

(
x

y

)
+ · · ·+

(
x

y

)j−i−1)
= (y − x)xi(yj−1 + xyj−2 + · · ·+ xj−i−1yi)

so we can write xi
1x

j
2−x

j
1x

i
2 = (x1−x2)g for some polynomial g ∈ k[x1, x2]. Hence

f is divisible by x1−x2. We can repeat this argument for every pair of variables xi

and xj to see that xi − xj divides f . It follows that f is a multiple of the product∏
i<j

(xi − xj)

of those factors. This product has
(
n
2

)
terms so has the same degree as f . The

result follows. �

Theorem 18.6. The following formula holds for the determinant:

det


1 1 . . . 1
x1 x2 . . . xn

x2
1 x2

2 . . . x2
n

...
...

xn−1
1 xn−1

2 . . . xn−1
n

 =
∏
i<j

(xi − xj).
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Proof. Write f(x1, . . . , xn) = detA for the determinant of this matrix; it is a
polynomial in x1, . . . , xn. Since the determinant is a sum of products, and each
product is the product of a single term from each row, each term of f = detA has
degree

0 + 1 + 2 + · · ·+ (n− 1) =
1
2
n(n− 1) =

(
n

2

)
.

Because the determinant changes sign when two columns are switched, f is an
alternating function. Now the only such polynomials are the scalar multiples of∏

i<j(xi − xj). However, by multiplying the diagonal terms, we see that the coef-
ficient of x1x

2
2 . . . x

n−1
n is one. So the multiple must be one. �

19. Implementing nearest neighbor decoding

Dot product on Fn. There is a dot product in Fn, namely

u · v :=
n∑

i=1

uivi

where u = (u1, . . . , un) and v = (v1, . . . , vn). We say that u and v are orthogonal
if u · v = 0. We write

u⊥ := {v ∈ Fn | u · v = 0}.
If u is non-zero, u⊥ is a subspace of dimension one; this is because the map v 7→ u ·v
is a surjective linear map Fn → F (see Theorem 15.8). More generally, if D is any
subset of Fn we define

D⊥ := {v ∈ Fn | u · v = 0 for all u ∈ D};

this is a subspace of Fn.
Let e1, . . . , en be the usual basis for Fn, i.e., ei has a 1 in the ith position and

zeroes elsewhere. Then

ei · ej =

{
1 if i = j

0 if i 6= j.

More about the Hamming (7, 4, 3)-code. Let F4 ∼= C ⊂ F7 be the Hamming
code. Claim: The vectors

x = 0001111, y = 0110011, z = 1010101

belong to C⊥. To verify this it suffices to check that x, y, and z are othogonal to a
set of basis vectors for C. Now C was defined to be the linear span of the elements

a = 1000011, b = 0100101, c = 0010110, d = 0001111

It is routine to verify that x, y, z are orthogonal to a, b, c, d. Define the matrices

G =


1 0 0 0 0 1 1
0 1 0 0 1 0 1
0 0 1 0 1 1 0
0 0 0 1 1 1 1

 , E =



0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1


.
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The orthogonality can now be expressed as saying that GE = 0. Since E is a 3× 7
matrix it gives a linear map F7 → F3, u 7→ uE. Now G is the encoding matrix
in the sense that the linear map F4 → F7 given by v 7→ vG encodes the message
words as code words. It is easy to see that the map F7 → F3, u 7→ uE is surjective
(because the rows of E span F3). By Theorem 15.8, the kernel of this map therefore
has dimension four; but the kernel contains C which is 4-dimensional, so the kernel
is exactly C. In other words, u ∈ C ⇔ uE = 0; thus E provides a way of checking
whether the received word is a valid code word.

The next lemma shows that E does an awful lot more than that.

Lemma 19.1. Consider the Hamming (7, 4, 3)-code F4 ∼= C ⊂ F7. Suppose that a
code word u is transmitted and an error occurs in the ith digit, so that v = u + ei

is received. Then vE is the binary representation of the number ei. Thus vE tells
us exactly which digit is wrong.

Proof. Now vE = (u + ei)E = uE + eiE = eiE, so we simply need to check that
for the seven basis vectors ei ∈ F7, eiE is the binary representation of the integer
i, i = 1, . . . , 7. Now eiE is equal to the ith row of E. Since the ith row of E is
indeed the binary representation of the integer i the result follows. �

If you need more convincing try a few examples—impress your friends and family:
let them pick any element u of C, change one digit, and you then tell them which
digit they changed!

All this is capable of generalization. Observe that G is of the form (I4 |A) where
I4 is the 4× 4 identity matrix and A is a 4× 3 matrix. We call a k × n matrix of
the form G = (Ik |A) a standard generator matrix. The map Fk → Fn, v 7→ vG, is
injective, so its image C is isomorphic to Fk. Thus G gives rise to an (n, k)-linear
code, Fk ∼= C = {vG | v ∈ Fk} ⊂ Fn.

Theorem 19.2. Let G = (Ik |A) be a k × n standard generator matrix and define
the n× k matrix

H =
(

A

In−k

)
.

Then GH = 0 and for each w ∈ Fn,

(1) wH = 0 if and only if w ∈ C := {vG | v ∈ Fk};
(2) if e ∈ Fn is the smallest weight word such that wH = eH, then the rule

w 7→ w − e is nearest neighbor decoding.

Proof. We use the notation

δij =

{
1 if i = j

0 if i 6= j.
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Notice that A is a k × (n − k) matrix. Let’s write A = (aij)1≤i≤k, 1≤j≤n−k. The
ij-entry of GH is the product of the ith row of G with the jth column of H, namely

(
δi1 · · · δik ai1 · · · ai n−k

)


a1j

...
akj

δ1j

...
δn−k j


= aij + aij = 0.

Hence GH = 0.
(1) Let φ : Fn → Fn−k be the linear map φ(w) = wH. Because the identity

matrix In−k appears in the lower part of H, φ is surjective. But

n = dim Fn = dim(imφ) + dim(kerφ)

so dim(kerφ) = k. However, since GH = 0, and C is the image of the map Fk → Fn,
v 7→ vG, C ⊂ kerφ. Since C and kerφ have the same dimension they are equal.
Thus wH = 0 if and only if w ∈ C.

(2) We must show that w − e is the codeword that is nearest to w. First, w − e
is a codeword because (w−e)H = 0. Notice that {v ∈ Fn | vH = wH} = w+C; in
particular, this is a coset of C. Thus, e is the element in w+C of minimal weight.
If u is a code word, then w − u ∈ w + C, so W (w − u) ≥W (e). Hence

d(w, u) = W (w − u) ≥W (e) = d(w,w − e).

Hence u is no closer to w than w − e is. �

We call the H in Lemma 19.2 the parity check matrix for the code generated by
G.

Here is one way to implement this decoding algorithm.
(1) Find an element in each coset w+C, w ∈ Fn, of minimal weight. Call this

a coset leader. The cosets are the elements of Fn/C ∼= Fn−k, so there are
2n−k different coset leaders.

(2) Create a table of elements eH ∈ Fn−k, one for each coset leader e.
(3) If w is received, compute wH, then look at the table to find the e such that

eH = wH.
(4) Decode w as w − e.

Warning. Coset leaders are not necessarily unique: there might be several elements
in a given coset w + C having the same minimal weight. For example, if ei + ej is
a code word, then ei + C = ej + C, so either ei or eJ could be chosen as a coset
leader for ei + C.

We call wH the syndrome of w. The table we create is called a syndrome look-up
table. Here is what it is for the Hamming code.
Syndrome Coset leader
000 0000000
001 0000001=e7
010 0000010=e6
011 1000000=e1
100 0000100=e5
101 0100000=e2
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110 0010000=e3
111 0001000=e4


