THE LEFT AND RIGHT COSET DECOMPOSITIONS

We assume that G is a group and H is a subgroup of G.
Definition: Suppose that $a \in G$. The set $a H=\{a h \mid h \in H\}$ is called the left coset of H for a. The set $H a=\{h a \mid h \in H\}$ is called the right coset of H for a.

Basic Properties:

1. If $h \in H$, then $h H=H h=H$. Thus, H is both a left coset and a right coset for H.
2. If $a \in G$, then there is a bijection between H and $a H$. Thus, every left coset of H in G has the same cardinality as H. The same statements are true for the right cosets of H in G.
3. Suppose that $a \in G$. If $b \in a H$, then $b H=a H$. Similarly, if $b \in H a$, then $H b=H a$.
4. If two left cosets of H in G intersect, then they coincide. If two right cosets of H in G intersect, then they coincide.
5. Every element of G belongs to exactly one left coset of H in G. Every element of G belongs to exactly one right coset of H in G. Thus, G is the disjoint union of the distinct left cosets of H in G. Also, G is the disjoint union of the distinct right cosets of H in G.
6. The set of left cosets of H in G (denoted by G / H) has the same cardinality as the set of right cosets of H (denoted by $H \backslash G$). If these sets are finite, their cardinality is denoted by $[G: H]$.
7. (The order-index equation) If G is finite, then $|G|=[G: H]|H|$.
8. If $a, b \in G$, we will write $a \equiv_{L} b(\bmod H)$ if $a^{-1} b \in H$. We refer to this relation on G as "left congruence modulo H ". It is an equivalence relation on G. The equivalence classes are precisely the left cosets of H in G. If $a \in G$, then the equivalence class for a under left congruence modulo H is the left coset $a H$.
9. If $a, b \in G$, we write $a \equiv_{R} b(\bmod H)$ if $a b^{-1} \in H$. We refer to this relation on G as "right congruence modulo H ". Similar statements to those in (8) are valid.
10. Suppose that $a \in G$. Then $a H=H a$ if and only if $a H a^{-1}=H$.

Definition: A subgroup H of G is said to be a "normal" subgroup of G if $a H a^{-1}=H$ for all $a \in G$.
11. Here are some sufficient conditions for a subgroup H of G to be a normal subgroup of G :
(i): G is abelian and H is any subgroup. (ii): G is any group and $[G: H]=1$ or 2 .
(iii): $H \subset Z(G) . \quad$ (iv): For all $a, b \in G$, we have $a b a^{-1} b^{-1} \in H$.

