BASIC PROPOSITIONS ABOUT GROUPS

We will assume that G is a group in the following propositions.

1. There exists a *unique* element $e \in G$ such that ea = a = ae for all $a \in G$.

2. For every $a \in G$, there exists a *unique* element $b \in G$ such that ab = ba = e. We denote that element b by a^{-1} .

3. For every $a \in G$, we have $(a^{-1})^{-1} = a$.

4. For every $a, b \in G$, we have $(ab)^{-1} = b^{-1}a^{-1}$.

5. (Cancellation Laws) (i). If $a, b, c \in G$ satisfy ac = bc, then a = b. (ii). If $a, b, c \in G$ satisfy ca = cb, then a = b.

6. (i) If $a, b \in G$, then there exists a unique $c \in G$ such that ac = b, namely $c = a^{-1}b$.

(ii) If $a, b \in G$, then there exists a unique $d \in G$ such that da = b, namely $d = ba^{-1}$.

7. (Law of exponents.) Suppose that $a \in G$ and $n, m \in \mathbb{Z}$. Then $a^n a^m = a^{n+m}$ and $(a^n)^m = a^{nm}$.

8. Suppose that $a \in G$ and that a has finite order. Let m be the order of a. (i) Suppose $k \in \mathbb{Z}$. Then $a^k = e$ if and only if m divides k. (ii) Suppose $h, k \in \mathbb{Z}$. Then $a^h = a^k$ if and only if $h \equiv k \pmod{m}$.