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CHAPTER 0

In the beginning...

Every area of human enquiry requires its own particular language. That
language is built up over a long period of time. It evolves in order to express
the ideas that arise in the area. New words are created as new concepts
develop. These languages are often impenetrable to outsiders. Usually there
are good reasons for this. Mathematics is no exception in this regard.

Two fundamental concepts in mathematics are the notions of sets and
functions. In order to state the definitions and results in any branch of
mathematics we use the language of set theory. We use the English language
too. In Spain though, they use the Spanish language together with the
language of sets. It might be an enjoyable exercise for you to look at a
mathematics book written in Spanish and observe that there is a lot in it
you can understand without speaking Spanish simply because Spanish and
English mathematicians use the same set-theoretic language, or notation.

Notation. We will use the standard notations of set theory. The nota-
tion is important. It is designed so we can say things briefly and precisely.
It is part of the language of mathematics. You must learn to use it, and use
it correctly. You must not, for example, confuse the symbols ∈ and ⊂; the
first is used for elements, the second for subsets; it is ok to say that 2 ∈ Z,
but not ok to say {2} ∈ Z; the first of these reads “2 is an element of Z,
and the second of these reads “the set consisting of 2 is an element of Z; it
is ok to write {2} ⊂ Z because this reads “the set consisting of 2 is a subset
of Z.

It is common practice to use upper case letters for sets and lower case
letters for elements. Of course, we can not always follow this practice—for
example, the subsets E = {even integers} and O = {odd integers} of the
integers are themselves elements of the two element set {O,E}.

1. The language of sets

1.1. A set is a collection of things. Not necessarily mathematical things:
there is the set of US presidents, past and present, the set of people who
are alive, the set of dogs, the set of single women with red hair that own a
house in Paris, the set of letters in the Greek alphabet, the set of popsicles,
the set of New Zealand citizens, and so on. Mathematical examples include
the set of whole numbers (called integers), the set of prime numbers, the set
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6 0. IN THE BEGINNING...

of even numbers, the set of odd numbers, the set of squares, the set of lines
in the plane R2, the set of pairs of distinct points in 3-space, and so on.

Usually we use an upper case letter to denote a set and when specifying
the set we use curly parentheses. For example, we could write

A = {living mothers}
P = {prime numbers}
E = {even numbers}
O = {odd numbers}.

Particularly important sets have special names and are denoted by special
symbols. For example,

N = {the natural numbers} = {0,1,2,3,. . . }
Z = {integers} = {whole numbers}

= {. . . ,−2,−1, 0, 1, 2, . . .}
Q = {rational numbers} = {fractions}

= {ab | a, b ∈ Z, b 6= 0}
R = {real numbers}
C = {complex numbers}

R2 = {the points in the plane}.
We also improvise on these standard notations. Some examples are

2N = {the even natural numbers} = {0,2,4,6,. . . }
Z≤0 = {the non-positive integers} = {. . . ,−3,−2,−1, 0 . . .}
3Z = {all integer multiples of 3} = {. . . ,−9,−6,−3, 0, 3, 6, 9, . . .}

R≥0 = {the non-negative real numbers} = {r ∈ R | r ≥ 0},
Of particular importance is the empty set, denoted φ, that has no ele-

ments at all. It might seem a little odd to talk about the empty set and to
have a special symbol for it, but think of the parallel with the symbol we
use for zero, 0. It is quite interesting to read about the history of zero on
Wikipedia. Check it out!

1.2. Elements. The things that belong to a set are called its elements.
For example, the prime number 37 is an element of the set P above. The
point (3,−2) belongs to the set R2. The number π is an element the set R.

We usually use lower case letters for the elements of a set. When x is
an element of a set X, we write x ∈ X, and read this as x is an element of
X or x belongs to X or X contains x or, simply, x is in X.

Before we can talk about a particular set we need a precise description
of it. One possibility is to list its elements—for example, we can define the
set V consisting of the vowels by writing V = {a, e, i, o, u, y}. If a set is
finite, i.e., it does not have an infinite number of elements in it, it might be
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possible to describe the set by explicitly writing out a list of all its members.
The set of people now living on planet earth is finite, but we are not able
to list all the elements in it. However, if a set is infinite, or even finite but
extremely large, this is not possible, so we must find some short way to
describe the set precisely.

A set is completely determined by its elements. Two sets are equal if
and only if they have the same elements.

1.3. The symbol meaning ”such that”. We already mentioned the
set of rational numbers Q. You already know what fractions are but let’s
define them using set notation:

(0-1) Q =
{
a
b

∣∣ a, b ∈ Z, b 6= 0
}
.

The vertical symbol | is read as “such that”. Thus, the mathematical sen-
tence (0-1) should be read as follows: Q is the set of all numbers a

b such that
a and b are integers and b is not zero.

Another common notation for “such that” is the colon. Using the colon
the above sentence would be

(0-2) Q =
{
a
b : a, b ∈ Z, b 6= 0

}
.

I prefer the symbol | to the symbol : because it is more visible.
By using the symbol for such that we can give more succinct definitions

of sets. For example, if a ∈ Z, we write aZ for the set of integer-multiples
of a and can write this succinctly as

aZ := {ax | x ∈ Z} = {· · · ,−2a,−a, 0, a, 2a, · · · }.

In a similar way we introduce the notation

a− bZ = {a− bx | x ∈ Z}. and a+ bZ = {a+ bx | x ∈ Z}.

More explicitly, for example, 1 + 3Z = {· · · ,−5,−2, 1, 4, 7, · · · }.

1.4. Cardinality. We denote the number of elements in a set X by
|X|. We call the number of elements in a set its cardinality. For example,
the cardinality of the empty set is zero; it is the only set whose cardinality
is zero. Two sets are said to have the same cardinality if they have the same
number of elements.

The cardinality of infinite sets is a subtle matter but we can’t say more
about this until we discuss the notion of injective, surjective, and bijective,
functions. We will do this shortly and say more about cardinality once we
have those notions in hand.

1.5. Subsets and containment. We say that a set X is contained in
a set Y if every element of X is an element of Y . More formally, we say X
is a subset of Y if it is contained in Y and write

X ⊂ Y
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to denote this situation. Thus the symbol “⊂” is read as is a subset of or is
contained in. For example,

N ⊂ Z ⊂ Q ⊂ R ⊂ C.

If X is any set, then X ⊂ X and φ ⊂ X.
It is quite common to prove the equality of two sets X and Y by proving

that X ⊂ Y and Y ⊂ X. In other words, X = Y if and only if X ⊂ Y and
Y ⊂ X.

1.6. Intersection and union. Two important operations on sets are
intersection and union. They bear some resemblance to addition and mul-
tiplication of numbers.

The intersection of sets X and Y consists of the elements that are in
both X and Y . It is denotedby X ∩ Y . Using the examples above, we have,
for example,

P ∩ E = {2}
because 2 is the only even prime number. You may know that there are
infinitely many primes, so P ∩O is an infinite set, i.e., it has infinitely many
elements. Notice we wrote P∩E = {2} not P∩E = 2. There is an important
difference—the intersection of two sets is a set, and the number 2 is different
from the set whose only element is 2.

The union of sets X and Y , which we denote by X ∪ Y , consists of the
elements that are in either X or Y . For example, {1, 2, 3} ∪ {2, 3, 4} =
{1, 2, 3, 4}. Likewise,

O ∪ E = Z
because every number is either even or odd. Notice that

O ∩ E = φ

because there are no numbers that are both even and odd.
If X is a subset of Y it is clear that X ∩ Y = X and X ∪ Y = Y .

1.7. OR versus EXCLUSIVE OR. Sometimes students are con-
fused by the way mathematicians use the word ”or”. In everyday language
we tend to use the word ”or” in a context where something is one thing or
the other but can not be both. An example will help. We might say, ”my
leg hurts” and the listener might respond with the question ”does your left
leg or your right leg hurt” assuming that only one of your legs hurts and you
will answer by stating which of your two legs hurts. However, the pedantic
mathematician might answer “yes”, meaning that it is true that at least one
of his legs hurts.

In mathematics when we say that either P or Q is true we mean that
one of the following is true:

• P is true but Q is false;
• Q is true but P is false;
• both P and Q are true.
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Thus, if someone asks “is 729 even or odd”, the pedantic mathematician
will answer “yes”. Frustrating for others, but that’s the way it is.

To distinguish the mathematician’s notion of OR from the general pub-
lic’s idea mathematicians introduce the notion of what is called “exclusive
or”. We sometimes write XOR to mean “exclusive or”. Thus, one would
answer yes to the question “is P XOR Q true” only if

• P is true but Q is false;
• Q is true but P is false;

I haven’t explained that very well...read about it on the web.

1.8. Properties of intersection and union. You already know the
basic properties of the arithmetic operations + and ×. For example, there
are the associative rules,

a+ (b+ c) = (a+ b) + c and a× (b× c) = (a× b)× c

which implies that the expressions a+ b+ c and a× b× c are unambiguous.
You also know that

a+ b = b+ a and a× b = b× a.

Slightly more sophisticated is the distributive rule

a× (b+ c) = a× b+ a× c

which involves both operations, addition and multiplication. And zero has
two special properties

0× a = 0 and 0 + a = a

for all numbers a.
There are analogous properties for the set operations ∪ and ∩. For any

sets X, Y , and Z,

X ∪ Y = Y ∪X
X ∩ Y = Y ∩X

X ∪ (Y ∪ Z) = (X ∪ Y ) ∪ Z
X ∩ (Y ∩ Z) = (X ∩ Y ) ∩ Z
X ∩ (Y ∪ Z) = (X ∩ Y ) ∪ (X ∩ Z)

X ∪ (Y ∩ Z) = (X ∪ Y ) ∩ (X ∪ Z)
φ ∩X = φ

φ ∪X = X.

Mathematicians like it when there are similarities like this between the arith-
metic operations + and × and the set operations ∪ and ∩. Of course, there
are some significant differences too. For example, X ∩ X = X ∪ X = X.
One other difference is that there are two distributive laws for ∩ and ∪ but
only one distributive law for + and × (+ does not distribute across ×).
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All these properties are easy to check. The only ones that might require
some care are the distributive laws. You should try to prove them yourself.
The strategy to use is that I mentioned earlier for showing two sets are
equal: show each is a subset of the other.

There is also a similarity between ⊂ and ≤. It is a good exercise for you
to write down some of the similarities.

1.9. Disjoint union. The union of two subsets B and C of a set A is
denoted by B ∪ C. If B ∩ C = φ, we say that B and C are disjoint. We
sometimes write B t C to denote the union of two disjoint sets, and call it
the disjoint union of B and C. For example, Z is the disjoint union of the
even and the odd numbers. More generally, if n is a positive integer, then
Z is the disjoint union of the n subsets,

i+ nZ := {a ∈ Z | a leaves a remainder of i when divided by n}
as i runs through the numbers 0 to n− 1. Of course, you know this already
but a rigorous proof requires some thought (see Theorem 11.1).

Notice that nZ consists of the numbers divisible by n, which is exactly
{nb | b ∈ Z}; that is why we write nZ for this set—it is all multiples of n.
And the notation i+nZ is explained by the fact that i+nZ = {i+nb | b ∈ Z}.

Of course, we could define i+nZ for any integer i to be {i+nb | b ∈ Z}.
We will do this later, but you need to be warned that i+nZ = j+nZ if i−j
is divisible by n. For example, the set of odd numbers is 1 + 2Z = 3 + 2Z =
−57 + 2Z, . . ..

1.10. Set difference. If A ⊂ B we define

B −A := {b ∈ B | b /∈ A}.
We also use this notation when A and B are subsets of a set C, even though
B need not be contained in A. For example, if A = {0, 1, 2, 3, 4} ⊂ Z and E
is the set of even integers, then A− E = {1, 3}.

1.11. Products. The Cartesian product of sets X and Y is the set

X × Y := {(x, y) | x ∈ X, y ∈ Y };
that is, X×Y consists of all ordered pairs (x, y) in which x belongs to X and
y belongs to Y . The Cartesian product Y ×X consists of all ordered pairs
(y, x) in which x belongs to X and y belongs to Y . Note that X×Y 6= Y ×X
unless X = Y ,

Notice this: if X and Y are finite, we have the formula

|X × Y | = |X| × |Y |.
That’s why we use the word “product”; the number of elements in the
product of a sets is the product of the number of elements in each set. In fact,
it is interesting to pause and think that thousands of years ago, before man
had much mathematics, he must have had a notion of Cartesian product: if
we have 3 families and each family needs two spears we need a total of six
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spears. I’ve expressed that poorly, but when you think about it the notion
of multiplication must surely have arisen after the notion (intuitive and not
explicitly expressed) of Cartesian product.

You should also wonder why we use the word Cartesian. Any ideas?

2. Functions

2.1. A function f : X → Y from a set X to a set Y is a rule that assigns
to each element in x an element f(x) in Y . We also call a function a map
or mapping.

A deceptively important, deceptive because apparently trivial, function
is the identity function idX : X → X defined by idX(x) = x for all x ∈ X.
There are many identity functions, one for each set.

2.2. Composition of functions. We can compose two functions: If
f : X → Y and g : Y → Z, we define g ◦ f : X → Z to be the function

(g ◦ f)(x) := g(f(x)).

We call g ◦f the composition of g and f . Somtimes we omit ◦ and just write
gf .

2.2.1. Composition of functions is associative. Composition is associa-
tive, meaning that

(hg)f = h(gf)

whenever these compositions make sense; we usually write hgf for this. Do
not read this sentence only once and pass on, think about why it is true.
Can you prove it? Associativity of composition of functions is every bit as
important as the fact that multiplication of numbers is associative. Look
at the proof of Lemma 0.2 and isolate the step in which associativity of
composition is used.

Associativity is a deceptively simple property. Too often beginners use
it in situations where it does not apply. One of my favorite examples of its
misuse, if one can use the word “favorite” to choose among terrible sins,
occurs in elementary calculus. Certainly, students in an elementary calculus
course would agree that subtraction is not an associative operation because
(a− b)− c 6= (a− b)− c in general. Perhaps with a little more thought such
students might agree that division is not an associative operation. Despite
that, I have seen many students write the following

d

dx

(
1
x

)
= lim

h→0

1
x+h −

1
x

h
=

−h
x(x+h)

h

but the last expression is ambiguous because − is not associative. For ex-
ample, (

1
2

)
2
6= 1(

2
2

) .
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2.2.2. The identity function. Identity functions have the following im-
portant property: if f : X → Y is any function, then

f ◦ idX = f = idY ◦f.

In this regard the identity function behaves like the number 1. Perhaps a
better analogy is with matrices: there are many identity matrices, one of
size n× n for each n ∈ N, and the result of the product of a matrix A with
the appropriate sized identity matrix is A.

If f : X → X we often write f2 rather than ff or f ◦ f . Likewise we
write f3 for fff and so on. It is convenient to define f0 to be idX . We then
have the wonderful formula

fmfn = fm+n

for all m,n ∈ N.

2.3. Injective, surjective, and bijective, functions. We now meet
some particularly important classes of functions.

Let f : X → Y . We say that f is

• injective, or one-to-one or 1-1, if f(x) 6= f(x′) whenever x 6= x′;1

• surjective, or onto, if each y ∈ Y is equal to f(x) for some x ∈ X;
• bijective if it is both injective and surjective.

An injective, surjective, or bijective function is called an injection, surjection,
or bijection for short.

To check your understanding of these notions prove the following result.

Lemma 0.1. Let g : X → Y and f : Y → Z be functions.

(1) If f ◦ g is injective so is g.
(2) If f ◦ g is surjective so is f .
(3) f ◦ g is injective if f and g are.
(4) f ◦ g is surjective if f and g are.

You should also decide whether the converse of each of these statements
is true or not.

2.3.1. The range of a function. The range of a function f : X → Y ,
which we denote by R(f), is the set of all values it takes, i.e.,

R(f) := {f(x) | x ∈ X}.

I like this definition because it is short but some prefer the equivalent defi-
nition

R(f) := {y ∈ Y | y = f(x) for some x ∈ X}.

1Many people think ”one-to-one” is a lousy name. I agree. It would be better to
say such a function is ”different-to-different. After all, that is its defining property: f is
injective if it sends different elements of X to different elements of Y .
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2.3.2. Consider the function

f : {men} → {women}, f(x) := the mother of x.

Is f well-defined, injective, surjective, bijective? What is the range of f ,
Give reasons, in standard English prose, for your answers.

2.3.3. The sine function sin : R → R is not one-to-one because sinπ =
sin 2π. It is not onto because its range is [−1, 1] = {y | − 1 ≤ y ≤ 1}.
However, if we consider sin as a function from R to [−1, 1] it is becomes
onto, though it is still not one-to-one. If we consider sin as a function from
[−π

2 ,
π
2 ] to [−1, 1] it is becomes bijective. That is why we define the inverse

sine function sin−1 as a function from [−1, 1] to [−π
2 ,

π
2 ].

2.3.4. The function f : R → R given by f(x) = x2 is not one-to-one
because f(2) = f(−2) for example, and is not onto because its range is
R≥0 := {y ∈ R | ly ≥ 0}. However, the function

f : R≥0 → R≥0, f(x) = x2,

is both one-to-one and onto.
2.3.5. Exercise. Let X be a finite set and f : X → X a function. Show

that f is injective if and only if it is surjective.
2.3.6. Domain and codomain. If f is a function from X to Y we call X

the domain and Y the codomain of f . I don’t use these words very often
myself but you can read this paragraph as part of your general cultural
education. The examples in sections 2.3.3 and 2.3.4 show that for a give
formula f(x) the question of whether f is injective or surjective depends in
a delicate way on the choice of domain and codomain.

If we want to be very precise, we define a function as a triple (f,X, Y )
consisting of a domain X, a codomain Y , and a subset Γf of X × Y such
that if x ∈ X, there is a unique y in Y such that (x, y) ∈ Γf . We then write
f(x) for the unique element in Y such that (x, f(x)) is in Γf . We call Γf
the graph of the function.

Thus, when we just give a formula f(x) to define a function we are not
really giving a complete definition. We must also state the domain and
codomain to give a complete definition of a function.

Lemma 0.2. The following properties of a function f : X → Y are
equivalent:

(1) f is bijective;
(2) for each y in Y there is a unique x ∈ X such that f(x) = y;
(3) there is a unique function g : Y → X such that fg = idY and

gf = idX .

Proof. (1)⇒ (2) Let y ∈ Y . Since f is surjective, y = f(x) for some x ∈ X.
Since f is injective there can be only one x ∈ X such that f(x) = y.

(2) ⇒ (3) Define g : Y → X by declaring that g(y) is the unique x in X
such that f(x) = y. If y ∈ Y , then fg(y) is y because g(y) is defined just so it
has the property that f(g(y)) = y. Thus fg = idY . If x ∈ X, and y = f(x),
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then g(y) is defined to be x; i.e., x = g(y) = gf(x). Thus gf = idX . Thus
the function g we have just defined has the claimed properties.

Suppose g′ : Y → X also had the property that fg′ = idY and g′f = idX .
Let y ∈ Y . Then y = idY (y) so

g(y) = g
(

idY (y)
)

= g(fg′(y)) = (gf)(g′(y)) = idX
(
g′(y)

)
= g′(y).

Thus g(y) = g′(y) for all y ∈ Y and we conclude that g = g′. (Notice we
used the associative law for composition of functions in our calculation.)

(3) ⇒ (1) Since fg = idY and idY is surjective, f is surjective. Since
gf = idX and idX is injective, f is injective. �

2.4. The inverse of a function, if it exists. The function g in part
(3) of Lemma 0.2 is called the inverse of f and is denoted by

f−1.

It may be defined by declaring that f−1(y) = x provided that f(x) = y. We
then have

f−1 ◦ f = idX and f ◦ f−1 = idY .
These formulas provide the defining property of f−1 provided it exists.

If f is a bijective function from a set X to itself and n ∈ N, we define
f−n to be

(f−1)n = f−1 ◦ · · · ◦ f−1︸ ︷︷ ︸
n times

.

We then have the wonderful formula

fmfn = fm+n

for all m,n ∈ Z.
2.4.1. An example. The inverse of the function f : R → R, f(x) = 2x,

is the function g : R→ R, g(x) = 1
2x because

fg(x) = 2g(x) = 2(
1
2
x) = x and gf(x) = g(2x) =

1
2

(2x) = x.

2.4.2. Warning: A function need not have an inverse! For example, the
function h : Z→ Z, h(n) = 2n, does not have an inverse. Why?

2.4.3. Important: Notice I defined the inverse of a function (if it exists)
not an inverse. The result in the next lemma explains why I used the and
not an.

Lemma 0.3. A function can have at most one inverse.

Proof. Let f : X → Y . Suppose g1 : Y → X and g2 : Y → X are such that

fg1 = fg2 = idY and g1f = g2f = idX .

If y ∈ Y , then y = idY (y) = fg1(y) so

g2(y) = g2
(
fg1(y)

)
=
(
g2(fg1)

)
(y) =

(
(g2f)g1)

)
(y) = (idX g1)(y) = g1(y).

Since g1(y) = g2(y) for all y ∈ Y , g1 = g2. �
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Because f can have at most one inverse we denote that inverse by f−1

whenever it exists.
2.4.4. One-sided inverses. Let f : X → Y . It is possible for there to be a

function g : Y → X such that fg = idY but gf 6= idX . Likewise, there might
be a function h : Y → X such that hf = idX but fh 6= idY . For example,
let N = {0, 1, 2, . . .} and let f : N → N be the function f(n) = n + 1. Let
g : N→ N be the function

g(n) =

{
n if n = 0
n− 1 if n ≥ 1.

Then gf = idN but fg 6= idN because fg(0) = 1. Thus g is a left inverse to
f but not a right inverse. Similarly, f is a right inverse to g but not a left
inverse.

However, if f : X → Y has a left inverse and a right inverse, then the
left inverse must equal the right inverse so f has an inverse. To see this,
suppose there are functions g : Y → X and h : Y → X such that fg = idY
and hf = idX . Then

g = idX ◦g = (hf) ◦ g = (hf)g = h(fg) = h ◦ idY = h.

2.4.5. Warning about notation: Do not confuse the function f−1 with
the function 1/f . In fact, we have not even defined a function called 1/f so
there can’t possibly be any confusion. Still, you might imagine a situation
in which it is logical to use the label 1/f for a certain function related to f ;
indeed, there are such situations but it need not be the case that 1/f has
anything to do with f−1.

2.4.6. Exercise. Think of a situation in which one might reasonably label
a function 1/f yet 1/f need have nothing to do with f−1.

2.5. More about cardinality. Sets X and Y have the same cardinality
if there is a bijection f : X → Y . For example the set of integers has the
same cardinality as the set of even integers, even though 2Z is a proper
subset of Z. The function f : Z→ 2Z, f(n) := 2n, is a bijection.

Show that the property of having the same cardinality is an equivalence
relation. The equivalence classes are called cardinals. It is convenient to
actually say that |X| denotes the equivalence class that X belongs to. We
write |X| ≤ |Y | if there is an injective function f : X → Y . If |X| ≤ |Y |
and |Y | ≤ |X| is |X| = |Y |?

A set having the same cardinality as Z is said to be countable.
Two important examples, both for illustrating the idea of cardinality,

and for their historical impact are these: (1) Z and Q have the same cardi-
nality; (2) Z and R have different cardinalities. The latter example shows
there are different kinds of infinity. Indeed, we say that

Show for finite sets X and Y that there is a bijection (see below) f :
X → Y if and only if |X| = |Y |.

Infinite cardinals. Different cardinals.
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One of the most famous arguments in mathematics is Cantor’s diagonal
argument to show that |Q| = |Z|. This is famous not just because it proves
an important fact but famous because no one had even thought of asking
the question before Cantor. Indeed, before Cantor there was not even a
mathematical framework in which one could rigorously ask the question
whether Z and Q have the same number of elements.

To appreciate this you might ask yourself this: if there are injective
functions f : X → Y and g : Y → X, does it make sense to say that X and
Y have the same number of elements? Is |X| = |Y |?

Is |R| = |Z|. If not, is there a set S with |Z| < |S| < |R|?
You can read about these topics on the web.
2.5.1. Exercise. Let’s see whether you have understood some of the

above. First we introduce the notation

Map(X,Y ) := {all functions f : X → Y }.
If |X| = |X ′| and |Y | = |Y ′| prove that

|Map(X,Y )| = |Map(X ′, Y ′)|.
Prove this by choosing explicit bijections a : X → X ′ and b : Y → Y ′ and
using those to define an explicit bijection

Φ : Map(X,Y ) = Map(X ′, Y ′).

Let X, Y , and Z, be any sets; show there is a (natural) bijection

Ψ : Map(X × Y, Z)→ Map(X,Map(Y,Z)).

Please note that we are not assuming that the sets X, Y , or Z, are finite so
you can’t prove this just by counting elements!

3. Writing Mathematics

3.1. In a mathematics book you will see the words

Lemma, Proposition, Theorem, Corollary.

Each of these is followed by a precise statement of a result/fact, and that
is followed by a proof of the statement. Or it should be! These four words
indicate, to some extent, the status of the result. A theorem is very impor-
tant and a proposition important. A lemma is usually a result proved in
preparation for proving a theorem or proposition. Some lemmas that have a
short and simple proof acquire a particular importance because they encap-
sulate simple observations that are used over and over again. For example,
we frequently make use of the observation that a function from a finite set
to itself is injective if and only if it is surjective. A corollary is a useful con-
sequence of a theorem, usually with a much simpler proof than the theorem.
A deep theorem might have many corollaries worth stating.

A good topic for discussion when you next kick back with some other
math geeks is why we use such labels. Why do we bother to organize the
results is such a way? Why do we care about proofs anyway? And, what
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constitutes a proof? Why are some proofs so hard to understand? If you
find a particular proof difficult to understand it is often a good idea to try
writing it out in a different way. For example, you might try to rearrange
the order of the different paragraphs or steps in it. Why should we bother
understanding the proofs in this course? The flippant answer to the last
question is because your grade depends on it.

This will be the first or second course in which you encounter

the axiomatic method.

Although the axiomatic method is the rock on which Euclid’s books are
built, it is only over the past 200 years that mathematicians have adopted
this formal and precise way of presenting their subject as the right way to
present the material.

The foundation of the axiomatic method consists of

Definitions.

We make precise definitions of the objects and precise definitions of their
properties.

In a group theory course the primary objects are groups and rings; there
are many secondary objects too that require precise definitions: subgroups,
normal subgroups, quotients, ideals, ... It is all rather frightening at first.
But it is through making precise definitions that we place our subject on
a solid foundation; and I mean rock-solid. There can be no debate about
what a group is once the definition has been made.

In a linear algebra course the primary objects are matrices, vector spaces,
linear transformations, bases, and notions such as dimension, invertibility,
and so on.

It is having rock-solid definitions and rock-solid proofs that distinguishes
mathematics from all other lines of human inquiry. There is a certainty in
mathematics that you will not see in physics, chemistry, biology, economics,
psychology, sociology, astrology, and so on. All sciences strive to mathe-
maticize, to place themselves on a solid footing. Man seeks certainty.

Having precise definitions, and making precise statements in Theorems
and their proofs, can give mathematics a dry appearance. However, the
examples and applications are what give the subject life; an analogy with
biology can help; the examples, for example the various groups that we know,
the groups that nature has given us, are the living creatures that we study;
they all have their special characteristics and features; there are patterns,
they can occur in families, there are the cyclic groups, the symmetric groups,
the simple groups, and so on. We study these creatures. The theorems and
so on are reports on the results of our studies: for example, every symmetric
group Sn for n ≥ 5 contains a simple subgroup with exactly half as many
elements as itself; if H is a subgroup of a group G, then the number of
elements in H divides the number of elements in G; and so on.
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3.2. English. These notes are written in a mixture of standard english
prose and mathematical notation. So are mathematics books. That is how
to express the ideas of mathematics: in prose and notation, woven together
into grammatically correct sentences. You must do the same in this course.
It is the only way to express your ideas clearly. When you write out a
solution to a problem your goal is to convey certain ideas to the reader.
It is your responsibility to do that clearly and unambigously. It is not the
reader’s responsibility to struggle to discern your meaning. You must be the
reader’s guide and friend, making his or her life easy.

You must begin every sentence with an upper-case letter. You must
end each sentence with a period. A sentence has a subject, a verb, and an
object. Sentences should not be unduly long. Follow the rules of English
grammar. These rules are introduced in third grade and by sixth grade most
children have learned them. You are now at a university and must write at
the university level.

I have sometimes heard the complaint that this is a mathematics course,
not an english course. But, whatever the field of human inquiry, the only
way to convey its ideas is through language, and that language is always
a mixture of everyday prose and the technical terminology and notation of
the particular field.

So, write, and write well.

3.3. Proofs. You must write a lot of proofs in this course. A proof is
an argument designed to convince your reader that something is true, or
false.

A proof is not a list of equations that you have used to persuade your-
self that you understand why something is true. A proof is an argument
to persuade someone else that something is true. You must not expect the
reader to assemble your list of equations into an argument by inserting ap-
propriate phrases and punctuation. It is your job to do that. Your equations
and calculations are typically the work you do prior to assembling an argu-
ment. A good argument will use your equations but will weave them into
an argument.

Think of the analogy of cooking. A proof is something like a recipe. It
is not just a list of ingredients. Certainly one needs to know the ingredients,
but one must also know how to combine them and in what order and in
what proportions. It is no good giving a list of ingredients and then in the
narrative part of the recipe mentioning only some of them. You leave the
reader baffled—was I supposed to add sugar or not? Likewise, in a proof,
you should say everything that is necessary and nothing that is superfluous.
Like cooking, it is a difficult skill. It takes years to develop and you can
spend a lifetime honing that skill. Developing that skill is an important
part of this course. Practice, experience, and judgment, are required to do
this well.
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Your proof should use phrases like “If..., then ...”, and words like “be-
cause”, “since”, “therefore”, “so”, “since”, ”but”, and so on.

3.4. Definitions. I will ask you to state a large number of definitions
in the midterm and finals exams. Definitions are as important as proofs. I
can do no better than to quote Giuseppe Peano:

There is no need to prove every theorem in class, but let
us at least have precise concepts and correct definitions.
Rigor does not consist in proving everything. It consists
in saying what is true and not saying what is not true.

Definitions are important historical landmarks. They generally emerge over
an extended period of time as mathematicians come to isolate the important,
essential, and fruitful concepts. The important features of a mathematical
object have names. For example, important features of a group include
whether it is finite, abelian, cyclic, of prime order, simple, and so on? Other
important features of a group involve its subgroups, conjugacy classes, and
so on. To compare two groups we use homomorphisms, their kernels and
images, isomorphisms, and so on. There is no avoiding the fact that you
must learn these and other definitions. There are lots of them and it looks
daunting at first. As with any new vocabulary, whether English or foreign,
using the new words is the way to embed them in your mind. Use them in
conversation with others. Doing many exercises will help those definitions
to take root in your mind.





CHAPTER 1

Integers

We begin with elementary properties of the integers, the set

Z = {· · · ,−2,−1, 0, 1, 2, · · · }.

We will not prove anything new or surprising but we will examine carefully
familiar properties of the integers and see what fundamental principles make
them true.

1. The natural numbers

Children experience a degree of bewilderment when they first encounter
negative numbers. Before that a child’s notion of number is confined to the
set of natural numbers, the set

N := {1, 2, 3, . . .}.

Before learning about the algebraic operations + and × a child understands
the order relation on N—a child is aware that two is larger than one, three
larger than two, and so on.

That order relation is extended to the integers: if x and y are integers
we say that x is less than y, and write x < y, if x+ n = y for some n ∈ N.
We write x ≤ y if x = y or x < y.

Even before they can speak, children are intuitively aware of the well-ordering principle:

every non-empty subset of N has a smallest element.
(Just ask a child to choose among several boxes of chocolate.) Although the
well-ordering principle can be proved from a more fundamental set of axioms,
we will take it on faith. No doubt, you have used the well-ordering principle
for many years, and believe it, so the leap of faith is small. However, just
because you take something for granted does not mean that we should not
look afresh at it with a critical eye.

Actually, if you think about it, young children, and even monkeys and
other animals, are aware of the following fact which is equivalent to the
well-ordering principle:

every non-empty subset of N has a largest element.
Just ask a child to choose from a collection of different piles of jelly beans:
if you say ”you can choose one pile” the child will unerringly zero in on the
pile with the most jelly beans. Likewise with monkeys and bananas.

Why is this equivalent to the well-orderining principle?

21
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Fractions. For now we will restrict our attention to the integers, but
let’s keep in the back of our mind the rational numbers, or fractions, consist-
ing of such things as 0,−15

34 , 7
1
4 , . . .. More formally, we define the rational

numbers to be
Q = {ab | a, b ∈ Z, b 6= 0}.

Notice that a subset of the non-negative rational numbers need not have a
smallest element: for example, {1, 1

2 , . . . ,
1
n , . . .} has no smallest element.

2. Division and remainders

Let a and b be integers. We say that b divides a, or that a is a multiple of b,
if there is an integer c such that a = bc. We write b|a to mean “b divides
a”, and b 6 |a to mean “b does not divide a.

Basic Facts about divisibility. You should know and be able to use
the following facts. We will use them frequently with no further comment.

(1) every integer divides 0;
(2) 1 divides every integer;
(3) if a|b and x ∈ Z, then a|bx;
(4) if a|b and b|c, then a|c;
(5) if a|b and a|c, then a|bx+ cy for all x, y ∈ Z;
(6) if a|b and b|a, then either a = b or a = −b.

You should be able to prove all the above. You might just read out loud
items (3)–(6) to see if you can translate the symbols into fluent sentences.

Generally speaking, when we try to divide one integer by another, we
end up with a remainder; for example, trying to divide 89 by 12, we find
that

89 = 12× 7 + 5.
We call 89 the dividend, 12 the divisor, 7 the quotient, and 5 the remainder.

Theorem 1.1 (The division algorithm). Let a, b ∈ Z with b > 0. Then
there exist unique q, r ∈ Z such that a = bq + r and 0 ≤ r < b.

Some comments before the proof. We are dividing a by b to obtain a
quotient q and a remainder r. There is no requirement that a be positive,
although we do assume that b is. Thus, q might be negative, but r is not
negative. The point of the theorem is that q and r are unique! If we did
not require r to lie between 0 and b− 1, there would be no uniqueness.

The key step in the proof is the existence of r which we will prove as a
consequence of the well-ordering principle.

With this preamble, let’s prove the theorem.
Proof. [Theorem 1.1] Let

a− bZ := {a− bt | t ∈ Z}.
Because b is positive, if t is sufficiently negative a−bq is positive; thus a−bZ
contains non-negative integers; by the well-ordering principle a − bZ has a
smallest element; we call that r and let q be the integer such that a−bq = r.
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If r ≥ b, then r−b ≥ 0 and r−b = a−b(q−1), so r−b is a non-negative
element of a− bZ and is smaller than r; that contradicts our choice of r so
we conclude that r < b. Hence r and q exist as claimed, and it remains to
prove their uniqueness.

Suppose a = bq′ + r′ and 0 ≤ r′ < b. Then r − r′ = b(q − q′) and
|r − r′| < b; but the only integer that has absolute value strictly less than b
and is a multiple of b is zero, so r − r′ = 0; thus r = r′ and q = q′, proving
uniqueness of q and r. �

Corollary 1.2. If n is a positive integer, then Z is the disjoint union
of the sets r + nZ, 0 ≤ r ≤ n− 1.

Here is a cute application of the division algorithm.

Example 1.3. If a is an integer that is divisible neither by 2 nor 3, then
24 divides a2 − 1. We use the “rabbit out of the hat” method of proof. By
the division algorithm, we can write a = 6b+ r with 0 ≤ r < 5. If r were 0,
2, or 4, then a would be even, hence divisible by 2; but we assumed this was
not the case. If r were 3, then 3 would divide a contrary to our hypothesis.
The only remaining possibility is that r = 1 or r = 5.

Thus we can write a = 6n± 1. Therefore

a2 − 1 = (6n+ 1)2 − 1 = 36n2 ± 12n = 12n(3n± 1).

If n is even, then 24 divides 12n, and therefore divides a2 − 1. If n is odd,
then 3n± 1 is even, so again 24 divides a2 − 1. ♦

3. The Euclidean Algorithm

3.1. Greatest common divisor. The notion of greatest common di-
visor appears repeatedly in this course. If a and b are non-zero integers,
their greatest common divisor is the largest integer that divides both a and
b. It is denoted (a, b) or gcd(a, b). E.g., (12,−12) = 12.

You should be asking yourself “do a and b actually have a greatest com-
mon divisor?” They do and we give the argument in the next paragraph.

Consider the set of integers that divide both a and b. This set contains
1 so is non-empty. However, it cannot contain any number bigger than |a|,
the absolute value of a, so it must have a biggest member. (Actually, writing
out the details of this argument carefully, you will see we have used the Well
Ordering Principle again: if X denotes the set of positive integers which
divide both a and b, then X ′ = {|a| − x | x ∈ X} is a non-empty set of
non-negative integers, so has a smallest element, say x′ = |a| − x, and it is
easy to check that x must be the largest member of X, so x is the gcd).

3.2. Finding the greatest common divisor. The previous section
shows that the greatest common divisor of a and b exists, but how do we go
about finding it? We find it by using the Euclidean Algorithm which consists
of repeatedly using the division algorithm. We begin with integers a and b,
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b > 0, and obtain sequences of integers q0, q1, q2, . . . and r0, r1, r2, . . . such
that

a = bq0 + r0 and 0 ≤ r0 < b,

b = r0q1 + r1 and 0 ≤ r1 < r0,

r0 = r1q2 + r2 and 0 ≤ r2 < r1,

...
...

rt−2 = rt−1qt + rt and 0 ≤ rt < rt−1,

rt−1 = rtqt+1.

You keep dividing the latest remainder into the previous one; the proceedure
stops because the remainders keep getting smaller

b > r0 > r1 > · · · ≥ 0.

When one hits a remainder of zero, as indicated above, then rt is the gcd of
a and b. Before proving this we illustrate the idea.

Example 1.4. Find (1547, 560).

1547 = 560× 2 + 427,
560 = 427× 1 + 133,
427 = 133× 3 + 28,
133 = 28× 4 + 21,
28 = 21× 1 + 7,
21 = 7× 3.

So (1547, 560) = 7. ♦

Proposition 1.5. The last remainder in the Euclidean Algorithm gives
the gcd.

Proof. We adopt the notation set up above. Write d = gcd(a, b). Since d|a
and d|b, d|r0 = a− bq0. Hence d|r1 = b− r0q1; et cetera. Eventually, we see
that d|rt. Since rt > 0, d ≤ rt. But also, rt|rt−1, so rt|rt−2 = rt−1qt + rt,
and rt|rt−3 = rt−2qt−1 +rt−2 et cetera. Eventually, we see that rt|b and rt|a.
Therefore, rt is the gcd. �

Theorem 1.6. If d = (a, b), then there exist u, v ∈ Z such that

d = au+ bv.

Proof. Just use the sequence of equalities in the Euclidean Algorithm from
the bottom up to express rt in terms of earlier remainders:

rt = rt−2 − rt−1qt

= rt−2 − (rt−3 − rt−2qt−1)qt
...

...
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The next example makes the procedure clear. �

Example 1.7. Reconsider Example 1.4. We will use the calculations in
that exercise to show there are integers u and v such that 7 = 1547u+560v.
We get

7 = 28− 1× 21

= 28− (133− 28× 4) = 28× 5− 133

= (427− 133× 3)× 5− 133 = 427× 5− 133× 16

= 427× 5− (560− 427)× 16 = 427× 21− 560× 16

= (1547− 560× 2)× 21− 560× 16

= (1547× 21− 560× 58.

Corollary 1.8. If a|bc and (a, b) = 1, then a|c.

Mention/look ahead to the Chinese Remainder Theorem.

Theorem 1.9 (The Fundamental Theorem of Arithmetic). Every inte-
ger is a product of prime numbers in a unique way.

3.2.1. The greatest common divisor of several elements. It should be
obvious that we can define the greatest common divisor of any set of integers
as the largest integer that divides all of them. We do that. You should check
that

gcd
(
a, gcd(b, c)

)
= gcd

(
gcd(a, b), c

)
= gcd(a, b, c),

and so on for larger sets of integers.

3.3. The least common multiple.





CHAPTER 2

Groups

1. Permutations

A permutation of a set X is a bijective function σ : X → X. For
example, the identity function idX is a permutation of X. We call it the
trivial permutation.

In this section we examine individual permutations and the set of all
permutations on X.

1.1. The set of permutations of a set X. Let X be any set.
The set of permutations of X is our first example of a group. If we

combine our first result about permutations, Proposition 2.1 below, with
the observation that idX is a permutation, and the fact that composition of
functions is associative, we have, in effect, verified that the set of permuta-
tions of X is a group.

So, all results about permutations in this section are, in fact, results
about permutation groups or, as they are usually called when X is finite,
the symmetric groups. Symmetric groups are of great importance.

Proposition 2.1. Let f and g be permutations of X. Then
(1) fg is a permutation of X;
(2) f−1 is a permutation of X.

Proof. These are facts about bijections (see section 2.3 in Chapter 0). A
composition of bijections is bijective. A bijection has an inverse and that
inverse is itself a bijection. �

1.1.1. The number of permutations of a set. There are infinitely many
permutations of an infinite set. For now we will mostly be concerned with
permutations of a finite set.

If n is a positive integer, then n factorial is the number

n! := n(n− 1)(n− 2) · · · 2.1,

the product of the integers between 1 and n. For example,

1! = 1, 2! = 2, 3! = 6, 4! = 24, 5! = 120,
6! = 720, 7! = 5040, 8! = 40320, and so on.

It is convenient to define
0! = 1.

27
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Lemma 2.2. There are n! permutations of a set having n elements.

Proof. Let’s assume X = {1, 2, . . . , n}. In defining a bijective function
f : X → X, there are n choices for f(1) then, once f(1) has been selected,
n− 1 choices for f(2), then n− 2 choices for f(3), and so on, giving a total
of n · (n− 1) · · · 3 · 2 · 1 = n! choices for f . �

1.1.2. Convention and warning. If σ and τ are permutations, the nota-
tion στ means first do τ , then do σ. After all, since σ and τ are functions
what could be more sensible than using the convention we are already fa-
miliar with: fg means first perform the function g then the function f .
However, not all books adopt this convention. For example, P.M. Cohn’s
three volume text Algebra uses the opposite convention. In all other respects
I love these books.

1.2. Cycle notation for permutations.
1.2.1. Remarks on notation. We need good notation for permutations.

Sometimes it is easy to do that: for example, the function f(n) = n+ 5 is a
permutation of the set Z. For permutations of finite sets, the case of most
interest to us, we can rarely use such simple formulas.

Before dealing with permutations let’s consider some notations for inte-
gers. The notation 10010 for the number ten thousand and ten immediately
gives us a sense of its size—it’s around ten thousand. It is also apparent
that 10010 is divisible by 10, hence by the primes 2 and 5. But the nota-
tion 10010 does not reveal any arithmetic properties of 10010 other than its
divisiblity by 2 and 5. In contrast, if we write 10010 as 2× 5× 7× 11× 13
we immediately see its arithmetic properties.

I don’t need to say anything about Roman numerals like MDCCLIV. The
fact that this notation was discarded long ago, except for some specialized
and ceremonial uses, is sufficient testament to its inadequacies.

1.2.2. Analogy with prime numbers. We will adopt a notation for per-
mutations that is analogous to writing an integer as a product of prime
numbers. The analogue of a prime number is a cyclic permutation, or cycle,
for short. In analogy with the fact that every integer can be written as a
product of prime numbers in a unique way we will show that every permu-
tation can be written as a product of disjoint cycles in a unique way. We
will now explain these terms, first somewhat informally.

1.2.3. Cycles. Let’s start with an example. Let σ be the permutation of
{1, . . . , 9} defined by

σ(1) = 1, σ(2) = 5, σ(3) = 7, σ(4) = 9, σ(5) = 2,

σ(6) = 4, σ(7) = 6, σ(8) = 8, σ(9) = 3.

The expression for σ as a product of disjoint cycles will be written

σ = (2 5)(3 7 6 4 9).



1. PERMUTATIONS 29

The meaning is this. First, σ is the product/composition of two simpler
permutations/functions, (2 5) and (3 7 6 4 9). The permutation denoted (2 5)
is the function that sends 2 to 5 and 5 to 2 and fixes the integers 1, 3, 4,
6, 7, 8, 9. The permutation denoted (3 7 6 4 9) is the function that sends 3
to 7, 7 to 6, 6 to 4, 4 to 9, 9 to 3, and fixes the integers 1, 2, 5, 8. We call
the factors (2 5) and (3 7 6 4 9) cycles. Each factor cycles around some of the
numbers in {1, . . . , 9}. The following picture to illustrate this:

7 // 6

��

(2 5) = 2 )) 5ii (3 7 6 4 9) = 3

@@��������
9oo 4oo

Each arrow indicates the action of σ. For example, 7 → 6 means σ(7) = 6.
The notation (2 5)(3 7 6 4 9) immediately reveals the behavior of σ, just as
writing 10010 as 2 × 5 × 7 × 11 × 13 immediately reveals its fundamental
arithmetic properties. The notation (2 5)(3 7 6 4 9) is efficient because we
omit the numbers i for which σ(i) = i. There could be no shorter notation
than (2 5 7) for the permutation τ defined by τ(2) = 5, τ(5) = 7, τ(7) = 2,
and τ(i) = i for all other i.

In some books the permutation τ = (2 5 7) will be written as

(2-1)
(

1 2 3 4 5 6 7 8 9
1 5 3 4 7 6 2 8 9

)
.

The general principle is that we write τ(i) below i, i.e.,

τ =
(

1 2 . . . 9
τ(1) τ(2) . . . τ(9)

)
.

This notation is cumbersome. You must examine it carefully to uncover the
essential properties of τ . And it is a lot of writing compared to (2 5 7)!

Likewise, (
1 2 3 4 5 6 7 8 9
1 5 7 8 2 4 6 9 3

)
.

is a cumbersome and obscure notation for the permutation (2 5)(3 7 6 4 8 9 3).
1.2.4. Warning: Different notations for the same cycle. Be warned that

the permutations (3 7 6 4 9) and (6 4 9 3 7) are the same!
1.2.5. Disjoint cycles. The cycles (2 5) and (3 7 6 4 9) are said to be dis-

joint because none of the terms in (2 5) appears in (3 7 6 4 9).1 Likewise, the
cycles (1 3 8), (2 4), and (5 6 7) are disjoint. On the other hand the cycles
(2 5) and (2 7 6 4 9) are not disjoint because 2 appears in each of them.

The permutation θ := (1 2 3)(3 4)(4 5 2 6)(7 1 5 3) is a product of four
cycles but they are not disjoint. Our convention for composition of functions
is that fgh means first apply the function h, then g, then f . Hence θ is the

1Recall that two subsets, A and B say, of a set X are disjoint if A ∩ B = φ. We say
three subsets A, B, and C, are disjoint if A ∩B = B ∩ C = A ∩ C = φ. And so on.



30 2. GROUPS

function first apply the permutation δ = (7 1 5 3), then γ = (4 5 2 6), then
β = (3 4), then α = (1 2 3). So, the effect of θ is as follows:

1 δ−→ 5
γ−→ 2

β−→ 2 α−→ 3

3 δ−→ 7
γ−→ 7

β−→ 7 α−→ 7

7 δ−→ 1
γ−→ 1

β−→ 1 α−→ 2

2 δ−→ 2
γ−→ 6

β−→ 6 α−→ 6

6 δ−→ 6
γ−→ 4

β−→ 3 α−→ 1

4 δ−→ 4
γ−→ 5

β−→ 5 α−→ 5

5 δ−→ 3
γ−→ 3

β−→ 4 α−→ 4.

Hence θ = (1 3 7 2 6)(4 5). In particular, θ is a product of disjoint cycles.
Perhaps you can already see that every permutation of a finite set is a
product of disjoint cycles. Although this might be intuitively obvious to you
we will give a rigorous proof, i.e., an explanation, of this fact in Theorem
2.5 below.

An important property of disjoint cycles is that they commute with one
another: for example, (1 3 7 2 6)(4 5) = (4 5)(1 3 7 2 6). It is best for you to
think about this yourself and why this is rather than have someone explain
it to you. As another example, observe that the six different products of the
three disjoint cycles (1 3), (2 4 7), and (5 6), are equal to each other.

1.3. The orbits of a permutation. It is useful to have a graphic,
dynamic mental image of a permutation. To encourage this we say “σ acts
on X” and speak of “the action of σ on X.” The word “action” has a
dynamic feel to it.

Let x ∈ X. The orbit of x under the action of σ is defined to be the set

Ox := {σn(x) | n ∈ Z} = {. . . , σ−2(x), σ−1(x), x, σ(x), σ2(x), . . .}.
We call Ox a σ-orbit. The size of the orbit is the number of elements in it.

The association of the word orbit with the movement of planets further
encourages us to have a dynamic picture of a permutation. Permutations of
X move the elements of X around.

Lemma 2.3. Let Ox and Oy be the σ-orbits of x and y. Then either
Ox = Oy or Ox ∩Oy = φ.

Proof. Suppose Ox ∩ Oy 6= φ. Then σm(x) = σn(y) for some integers m
and n. It follows that σk(x) = σk+n−m(y) and σ`(y) = σ`+m−n(x) for all
integers k and `. Hence Ox ⊂ Oy and Oy ⊂ Ox. Thus Ox = Oy. �

If A1, A2, . . . are subsets of a set X such that X = A1 ∪ A2 ∪ · · · and
Ai ∩Aj = φ whenever i 6= j we say that X is the disjoint union of A1, A2, . . .
and write X = A1 tA2 t · · · to denote this fact.
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Proposition 2.4. Let σ be a permutation of X. Then X is the disjoint
union of its σ-orbits.

Proof. Since x belongs to the orbit Ox, X is the union of all the σ-orbits.
By Lemma 2.3, different orbits are disjoint. Hence if A1, A2, . . . are the
distinct orbits, then X = A1 tA2 t · · · . �

Now assume σ is a permutation of a finite set X. Then every σ-orbit is
finite and there are only finitely many σ-orbits. Thus X = A1tA2t· · ·tAk
where A1, A2, . . . , Ak are the different σ-orbits. Suppose

A1 = {a11, a12, . . . , a1r1}

and

σ(a11) = a12, σ(a12) = a13, . . . , σ(a1 r1−1) = a1r1 , σ(a1r1) = a11.

Then the action of the cycle (a11 a12 . . . a1r1) on A1 is the same as the action
of σ. Likewise, if

A2 = {a21, a22, . . . , a2r2}
and

σ(a21) = a22, σ(a22) = a23, . . . , σ(a2 r2−1) = a2r2 , σ(a2r2) = a21

then the action of the cycle (a21 a22 . . . a2r2) on A2 is the same as the action
of σ. And so on. It follows that

σ = (a11 a12 . . . a1r1)(a21 a22 . . . a2r2) · · · (ak1 ak2 . . . akrk).

Since the different orbits are disjoint we have proved the next result.

Theorem 2.5. Every permutation can be written as a product of disjoint
cycles in a unique way.

Strictly speaking, we only proved this in the case when X is finite but
the same idea and a little more notation will prove the same result for any
set.

1.4. Cycles. You probably noticed that I have not given a precise def-
inition of a cycle yet, woeful sinner that I am.

Suppose σ is a permutation of a set X. Suppose too that σ 6= idX . We
call σ a cycle if it has at exactly one orbit of size > 1. If that orbit has size
r we call σ an r-cycle if the size of that orbit is r.

We also declare that idX is a cycle, the unique 1-cycle. We sometimes
call it the trivial cycle.

Two non-trivial cycles σ and τ are disjoint if their non-trivial orbits are
disjoint.

The inverse of a cycle is a cycle. For example, (3 5 2 6 1)−1 = (1 6 2 5 3).
A 2-cycle is called a transposition.

Proposition 2.6. Every permutation is a product of transpositions.
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Proof. Every cycle is a product of transpositions because, for example,
(1 2 . . . m− 1m) = (1m)(1m− 1) · · · (1 4)(1 3)(1 2). But every permutation
is a product of cycles, so the result follows. �

There is no uniqueness to the factorization of a permutation as a product
of transpositions. For example,

(1 2 3 4) = (1 2)(2 3)(3 4) = (1 4)(1 3)(1 2).

1.5. The symmetric groups. Let n be a positive integer. The set of
all permutations of the set {1, 2, . . . , n} is called the nth symmetric group, or
just the symmetric group if n is clear from the context. It is often denoted
by Sn or Σn.

The number of elements in Sn is n!.
Thus S1 has a single element, the identity permutation id{1}.
The second symmetric group S2 has two elements, id{1,2} and (12).
The third symmetric group, S3, has six (=3!) elements, namely

1, (1 2), (2 3), (1 3), (1 2 3), (3 2 1).

The multiplication table for S3 is:

• 1 (12) (13) (23) (123) (321)
1 1 (12) (13) (23) (123) (321)

(12) (12) 1 (321) (123) (23) (13)
(13) (13) (123) 1 (321) (12) (23)
(23) (23) (321) (123) 1 (13) (12)
(123) (123) (13) (23) (12) (321) 1
(321) (321) (23) (12) (13) 1 (123)

The entry in the row labelled (12) and the column labelled (123) is (12)(123) =
(23). And so on.

2. Groups

2.1. Definition and first observations. In the previous section we
encountered a group, the symmetric group Sn. Keep that example in mind
when reading the next definition—why does Sn satisfy axioms (1)–(3) in the
definition?

Definition 2.7. A group is a non-empty set G together with a map
G×G→ G that we usually denote by (x, y) 7→ xy, satisfying the following
properties:

(1) (xy)z = x(yz) for all x, y, z ∈ G;
(2) there is an element e ∈ G called the identity with the property that

ex = xe = x for all x ∈ G;

(3) for each x ∈ G there is an element x−1 in G such that xx−1 =
x−1x = e.
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We say the group is abelian if xy = yx for all x, y ∈ G.2 ♦

We call the map G × G → G, (x, y) 7→ xy, the group operation when
we want to be a little vague but in particular situations we often call it
multiplication, or addition, or composition.

2.1.1. The symmetric group is a group. Let’s check that Sn, the set of
permutations of the set {1, 2, . . . , n}, endowed with the binary operation
”composition of functions” satisfies the axioms of Definition 2.7. A compo-
sition of bijections is a bijection so ”composition of functions” is indeed a
map Sn × Sn → Sn. We also note that Sn is non-empty because it contains
the identity function id : {1, 2, . . . , n} → {1, 2, . . . , n}. Composition of func-
tions is associative so the associative axiom is satisfied. There is an identity
element, namely the identity map. Finally, the inverse of a bijection is a
bijection so every element in Sn has an inverse. Thus Sn is a group.

It is OK if you skip immediately to the examples in the next two sections
and return to the next result after looking at some of those. The next lemma
is an important, albeit elementary, result and you might find it easier to
appreciate its proof after you have some examples in mind.

Lemma 2.8. Let G be a group. Then

(1) G has exactly one identity element;
(2) each x ∈ G has a unique inverse;
(3) you can cancel in a group: if x, y, z ∈ G and xy = xz, then y = z.

Likewise, if yx = zx, then y = z.

Proof. (1) If e and e′ both satisfy condition (2) in Definition 2.7 they are
equal: we have e = ee′ = e′, the first “=” because e′ satisfies (2) and the
second “=” because e satisfies (2).

(2) if x ∈ G and xy = yx = e and xz = zx = e, then y = ye =
y(xz) = (yx)z = ez = z. The proof used condition (1), the associativity of
multiplication.

(3) If xy = xz, then

y = ey = (x−1x)y = x−1(xy) = x−1(xz) = (x−1x)z = ez = z.

A similar string of equalities with x−1 on the right instead of the left proves
the other cancellation rule. �

2.2. Some infinite groups. You already know lots of groups! Let’s
now mention some of them. Although most will be familiar look at each one
in light of the axioms for a group and check that all three of the axioms are
satisfied.

2Named after Niels Henrik Abel, 1802-29.
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2.2.1. The group of integers. The first group you meet as a child is the
group of integers Z with the group operation being addition. We denote
the result of the group operation by x + y rather than xy. To check that
Z really is a group first observe that it is non-empty and that its addition
is associative, x + (y + z) = (x + y) + z. The identity is zero because
0 + x = x+ 0 = x and the inverse of x is −x.

Note that Z is not a group under multiplication: although multiplication
is associative, x(yz) = (xy)z, and there is an identity, namely 1 (1.x = x.1 =
x), inverses do not exist—e.g., neither 2 nor 0 has an inverse.

2.2.2. The group of non-zero real numbers under multiplication. The
non-zero real numbers with their ordinary multiplication form a group, an
abelian group because xy = yx. The identity element is 1, and the inverse
of x is 1/x. There are two common notations for the set of non-zero real
numbers, R − {0} and R×, and we often write (R×, ·) or (R − {0}, ·) for
it—the first position denotes the set G and the second position denotes the
operation. Following that convention, the previous example is (Z,+) and
the next example is (R,+).

2.2.3. The group of positive real numbers under multiplication. The set
of positive real numbers with their ordinary multiplication form a group.
We denote this group by (R>0,×).

2.2.4. The group of real numbers under addition. The real numbers un-
der addition form a group that we denote by (R,+). The identity in (R,+)
is 0 and the inverse of x is −x.

2.2.5. Rational numbers. Similar examples with the rational numbers in
place of the reals are (Q− {0}, ·), Q>0,×), and (Q,+).

2.2.6. The general linear groups. The set of invertible n × n matrices
with real entries is denoted by GL(n,R). It is a group under matrix multi-
plication: the product of two n×n invertible matrices is an invertible matrix
of size n× n; the identity matrix is the identity; the inverse of A is exactly
the matrix you already know as its inverse; multiplication of matrices is
associative. We call GL(n,R) the general linear group (of size n over R). If
n ≥ 2, GL(n,R) is not abelian.

There are other general linear groups such that GL(n,Z), the group of
n × n invertible matrices whose entries, and the entries of its inverse, are
integers.

2.2.7. The special linear groups. We denote by SL(n,R) the set of n×n
matrices having determinant 1. The identity matrix belongs to SL(n,R).
Since det(AB) = (detA)(detB), a product of two matrices in SL(n,R) is in
SL(n,R). Since det(A−1) = (detA)−1, the inverse of a matrix in SL(n,R)
is in SL(n,R). We call SL(n,R) the special linear group.

2.3. Some finite groups. You have already met one of the most im-
portant classes of finite groups, the symmetric groups Sn. Symmetric groups
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are quite complicated. Indeed, they have been intensely studied for well over
a century now and although an enormous amount is known about them there
is still much we don’t know about them. You could devote a lifetime to their
study. Many people have done just that. But let’s start here with some sim-
ple examples, some of which will be familiar.

2.3.1. The trivial group. The simplest group of all consists of only one
element, G := {e} with ee = e. We call it the trivial group.

2.3.2. The group {±1}. A familiar group with two elements is the set

µ2 := {1,−1}
with the usual multiplication.

2.3.3. The multiplication table of a group. At primary school you prob-
ably wrote out some multiplication tables.

The order of a group is the number of its elements. We write |G| for the
number of elements in G. A group is said to be finite if it has only finitely
many elements.

For a finite group it is conceivable that we could write out its entire
multiplication table. We do this for some small groups below. We adopt the
following convention: the rows and columns are labeled by the elements of
the group; the entry in row a and column b is the product ab; the entry in
row b and column a is ba; we use the same order for the labeling of the rows
and columns.

You should be aware of some “patterns” that in the multiplication table.
If G is abelian, there is a symmetry of the table about the diagonal line

of slope −1. That symmetry expresses the fact that ab = ba.
The identity must appear exactly once in each row and column because

given x there is an element y such that xy = e = yx. The identity e appears
on the diagonal exactly when x2 = e, i.e., when an element is its own inverse.

In fact, every element of the group must appear in each row and column;
for example, the entries in the row labelled by x are {xg | g ∈ G}, and given
y ∈ G there is a g such that xg = y, namely g = x−1y, so y appears in the
row labelled x.

2.3.4. Positive and negative numbers. Here is a group whose elements
are themselves sets. Let P and N denote the sets of positive and negative
real numbers respectively. We define the group operation, which we call
multiplication, by declaring that The group operation says that

× P N
P P N
N N P

positive × positive = positive negative × negative = positive
positive × negative = negative negative × positive = negative.
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2.3.5. The parity group P. The elements in this group are themselves
sets. Let E denote the set of even integers and O the set of odd integers.
Young children know that

odd + odd = even, even+odd=odd=odd+even, even+even=even.

In other words, they know the addition table for the parity group P :=
{E,O}: Thus E is the identity in P and O is its own inverse.

+ E O
E E O
O O E

2.3.6. The group F. This group is abelian and its addition table is de-
fined to be Thus F = {0, 1} and the addition is as defined above.

+ 0 1
0 0 1
1 1 0

2.3.7. Remark. The last four examples are essentially the same. This
idea will be made precise when we introduce the notion of isomorphism.
We will then be able to say that the last four groups are isomorphic to one
another where the word isomorphism has a precise meaning.

2.3.8. Exercise: a group with three elements. There is a group with three
elements. There is essentially only one group with three elements. When
you begin to write out its multiplication table the axioms force your hand.
It is a very good exercise to see why this is. For example, write 1 for the
identity element and let x be some other element in your putative three-
element group. Now xx is either 1, x, or the third element in it. Consider
all three possibilities—perhaps you can exclude one of them, or even two of
them. Perhaps you should consider xxx.

2.3.9. The 4th roots of unity. Let i denote a square root of −1. Then
the set of complex numbers

µ4 := {1,−1, i,−i}
is a group under multiplication.

· 1 i -1 -i
1 1 i -1 -i
i i -1 -i 1
-1 -1 -i 1 i
-i -i 1 i -1
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2.3.10. Exclusive OR. Fix a set X. It might help if you think of an
explicit X such as the set of integers. Let G be the set of all finite subsets
of X including the empty set. If A and B are in G, i.e.,, subsets of X, we
define

A⊕B := {elements that are in either A or B but not both}.
The identity element is the empty set φ. Every element is its own inverse
because A ⊕ A = φ. You can draw a Venn diagram involving three sets in
order to convince yourself that the associative law A⊕(B⊕C) = (A⊕B)⊕C
holds.

If X = {3}, the “multiplication table” for the group is

⊕ φ {3}
φ φ {3}
{3} {3} φ

If X = {3, 8}, the “multiplication table” for the group is

⊕ φ {3} {8} {3, 8}
φ φ {3} {8} {3, 8}
{3} {3} φ {3, 8} {8}
{8} {8} {3, 8} φ {3}
{3, 8} {3, 8} {8} {3} φ

2.3.11. Another group with four elements, F2. The set

F2 := {00, 01, 10, 11}
can be made into a group:

+ 00 01 10 11
00 00 01 10 11
01 01 00 11 10
10 10 11 00 01
11 11 10 01 00

2.3.12. The group generated by the reflections in the x- and y-axes. The
set consisting of the matrices

I =
(

1 0
0 1

)
, S =

(
−1 0
0 1

)
, T =

(
1 0
0 −1

)
, ST = TS =

(
−1 0
0 −1

)
is a group under matrix multiplication. Note a product of two elements in G
is still in G. Each element is its own inverse. We know that multiplication of
any matrices is associative so the associative law holds in G. Each of these
matrices represents a linear transformation in the plane: S is the reflection
in the x-axis, T is the reflection in the y-axis, and ST is rotation by 180
degrees. This group is “essentially the same” as the previous example as
you can see by comparing the multiplication/addition tables:
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· I S T ST
I 1 S T ST
S S I ST T
T T ST I S
ST ST T S I

2.4. Multiplicative versus additive notation. In the above exam-
ples we used various notations for the group operations. The only hard and
fast rule is that we never use the symbol + for the group operation in a
non-abelian group. That would be too confusing because in all our prior
experience + has been a commutative operation whether adding numbers,
or matrices, or functions, etc. Thus if we speak about a group G with no
real knowledge of its nature we will always write xy for the result of the
group operation on the elements x and y. We then say that we are using
multiplicative notation for the group operation.

For example, we used multiplicative notation when we defined a group.
And, when we define isomorphism below we will again use multiplicative
notation.

2.4.1. Exponent Notation. If x is an element of a group G and n a pos-
itive integer we write xn for the product of x with itself n times. For ex-
ample, x2 = xx, x3 = xxx, and so on. The associative law ensures that x3,
for example, is unambiguous (because x(xx) = (xx)x). We also declare that
x0 = 1, the identity element in G, If n is a positive integer, we write xn for
(x−1)n.

It is a good exercise to check that xmxn = xm+n for all integers m and
n, and that (xm)n = xmn.

For a familiar group like (Z,+) it would be very confusing to use any
symbol other than + for the addition in Z. However, the exponent notation
above is not sensible to use in a group where we use + for the group opera-
tion. It makes more sense to write nx for x+ x+ · · ·+ x, the n-fold sum of
x with itself. Now the “exponent rules” become (n+m)x = nx+mx.

2.4.2. Notation for the identity. In the definition of a group we wrote
e for its identity element. It is common to use the symbol 1 to denote the
identity in a group where we are using multiplicative notation. It is also
common to write 0 for the identity element in a group where we are using
+ for the group operation. However, when we do this you must not confuse
1 with the real number 1. We are simply overworking the symbol 1 by
using it to denote two different things. Of course, you already have some
experience in doing that with matrices. The m × n matrices form a group
under addition and we denote the identity in this group, the m × n zero
matrix, by 0. Thus, in matrix algebra the symbol 0 is very overworked. For
example, you might even write 0× 0 = 0 where the first 0 is the 2× 3 zero
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matrix, the second 0 is the 3 × 4 zero matrix,and the 0 on the right is the
2× 4 zero matrix.

2.5. Complex roots of unity. For each integer n ≥ 1 we define

µn := {z ∈ C | zn = 1}.
This is a group under multiplication: it contains 1 which serves as the
identity in µn; if z is an nth root of unity, so is z−1; if zn = wn = 1, then
(zw)n = 1; and, of course, the multiplication is associative. We call µn the
group of nth roots of unity. We can explicitly list its elements

µn := {e2πim/n | 0 ≤ m ≤ n− 1}.
Notice that |µn| = n.

3. Isomorphisms

3.1. A preparatory result. Our next result is an important result
about group homomorphisms and their kernels but we don’t want to in-
troduce that terminology yet so we will state the result without any fancy
language. In any case, we will use parts of it frequently once we begin our
discussion of isomorphisms.

We will use the notation eG for the identity element in a group G when
we need to distinguish it from the identity element in a group H.

Lemma 2.9. Let f : G→ H be a function between two groups such that

f(xy) = f(x)f(y)

for all x, y ∈ G. Define K := {g ∈ G | f(g) = eH}. Then
(1) eG ∈ K;
(2) f(x−1) = f(x)−1 for all x ∈ G;
(3) the multiplication in G makes K a group;
(4) f is injective if and only if K = {eG}.

Proof. (1) The hypothesis on f implies that

eHf(eG) = f(eG) = f(eGeG) = f(eG)f(eG).

However, we can cancel in H so eH = f(eG).
(2) Let x ∈ G. Then f(x)f(x−1) = f(xx−1) = f(eG) = eH . Similarly,

f(x−1)f(x) = f(x−1x) = f(eG). Thus f(x−1) = f(x)−1.
(3) The following five observations show that K is a group.
(a) By (1), eG ∈ K, so K is not empty.
(b) If x, y ∈ K, then f(xy) = f(x)f(y) = eHeH = eH so xy ∈ K.

Thus, when restricted to elements of K, the multiplication in G
gives a composition K ×K → K.

(c) That composition is associative because it is associative for all ele-
ments in G.

(d) If x ∈ K, then xeG = x = eGx so K contains an identity element,
namely eG
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(e) If g ∈ K, then f(g−1) = f(g)−1 = e−1
H = eH so g−1 ∈ K. Hence

every element in K has an inverse in K.
(4) Certainly, if f is injective K = {eG}. To prove the converse suppose

that K = {eG}. If f(x) = f(y), then

f(xy−1) = f(x)f(y−1) = f(y)f(y−1) = f(yy−1) = f(eG) = eH

so xy−1 ∈ K = {eG}, i.e., x = y. Hence f is injective. �

3.2. When are two groups the same? The notion of isomorphism
formalizes the notion of sameness for groups. Two groups are “essentially
the same” if and only if they are isomorphic (see below).

Consider the groups µ2 = {1,−1}, P = ({E,O},+), and F = ({0, 1},+).
The three sets µ2, P, and F, are different because their elements are

different. Thus if someone asks “are any two of these groups the same”
we are bound to reply “no, their elements are the different.” However, if
we focus on the group operations and compare their multiplication tables
they are essentially the “same”. To see this write their multiplication tables
side-by-side and compare them.

It is the algebraic structure of a group that is important rather than the
individual nature of its elements. Group theory is not about how we label
the elements of a group. It is about the behavior of the group operation,
the algebraic features of the group.

Definition 2.10. Let G and H be groups. A bijection f : G→ H is called
an isomorphism if

f(xy) = f(x)f(y)
for all x, y ∈ G. In this case we say G and H are isomorphic groups and use
the notation G ∼= H to denote this fact. ♦

Every group is isomorphic to itself: the identity map idG : G→ G is an
isomorphism.

Proposition 2.11. Let G and H be groups and suppose f : G → H is
an isomorphism. Then

(1) f(eG) = eH ;
(2) f(x−1) = f(x)−1 for all x ∈ G;
(3) f−1 : H → G is an isomorphism;
(4) if g : H → K is an isomorphism, then gf is an isomorphism.

Proof. Parts (1) and (2) were already proved in Lemma 2.9.
(3) Let a, b ∈ H. Then there are elements x, y ∈ G such that f(x) = a

and f(y) = b. By definition of f−1, f−1(a) = x and f−1(b) = y. Because f
is an isomorphism, f(xy) = f(x)f(y) = ab so

f−1(ab) = xy = f−1(a)f−1(b)

which shows that f−1 is an isomorphism.
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(4) Since f and g are bijective so is gf . If x, y ∈ G, then

gf(xy) = g(f(x)f(y)) = gf(x)gf(y)

so gf is an isomorphism. �

The point is this. A group as a set with additional structure. That
additional structure is the product rule which satisfies the conditions in the
definition of a group. The requirement that f(xy) = f(x)f(y) is saying, in
effect, that the bijection f is “compatible” with the additional structure,
namely the products.

3.2.1. Remark. We used multiplicative notation when we defined “iso-
morphism” and when we stated and proved Proposition 2.11. However, often
we will have isomorphisms between groups G and H in which the group laws
are written additively. In that case the condition f(xy) = f(x)f(y) must be
replaced by f(x+ y) = f(x) + f(y). Here’s a simple example of that.

3.2.2. An example: Z ∼= Zd. Let d be a non-zero integer. We write Zd
for the set of all multiples of d; i.e., Zd = {nd | n ∈ Z}. Then (Zd,+) is
a group: it is non-empty; a sum of two multiples of d is a multiple of d so
ordinary addition is a binary operation Zd×Zd→ Zd; addition is certainly
associative; 0 is a multiple of d so is in Zd and is the identity in Zd; and
every element in Zd has an inverse in Zd, namely its negative. Now we know
(Zd,+) is a group, I claim that the function

f : Z→ Zd, f(n) := nd,

is an isomorphism. Certainly it is bijective; its inverse being the function
that sends an element x ∈ Zd to x/d. Furthermore,

f(m+ n) = (m+ n)d = md+ nd = f(m) + f(n)

so f is an isomorphism, and we may therefore write Z ∼= Zd.
There was nothing special about d in what we just did. If r is any

non-zero real number that set of all integer multiples of r is a group under
addition and is isomorphic to Z. Fill in the details if this is not immediately
obvious,

3.2.3. Remark. Sometimes we have an isomorphism between groups where
the group operation is written additively in one and multiplicatively in the
other. In that case one has to change the condition f(xy) = f(x)f(y) in the
appropriate way. We will now give a simple example of this phenomenon.
This example can be considered a warm-up for the much more important
example that appears in section 3.3 below.

3.2.4. Doubly infinite geometric progressions. Let a ∈ R − {−1, 0, 1}.
Then

A := {an | n ∈ Z}
is a doubly infinite geometric progression: it consists of the numbers

. . . a−2, a−1, 1, a, a2, . . . .
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The set A is a group under multiplication. Of course, 1 is the identity,
the inverse of an is a−n, and multiplication is associative. I claim that the
function

f : Z→ A, f(n) := an,

is an isomorphism of groups. Because a is not −1, 0, or −1, all the powers of
a are different. Hence f is injective. It is obviously surjective, and therefore
bijective. Since

f(m+ n) = am+n = aman = f(m)f(n)

for all m,n ∈ Z, f is an isomorphism. Notice that f−1, which is also an
isomorphism, satisfies f−1(xy) = f−1(x) + f−1(y).

3.2.5. Groups with four elements. We have seen several groups having
four elements. Are they all isomorphic to one another or not? For example,
the group F2 in section 2.3.11 is isomorphic to the group in section 2.3.12
with an isomorphism f : F2 → {I, S, T, ST} being given by the function

f(00) := I, f(01) := S, f(10) := T, f(11) := ST.

Certainly this f is bijective, but a little more care is required to see that

f(x+ y) = f(x)f(y)

for all x, y ∈ F2. Although the group operation in F2 is denoted by + and the
operation in the other group is written multiplicatively this has no bearing
on the question of isomorphism. Both groups are abelian but it is natural
to use + for one and × for the other.

The above f is not the only isomorphism from F2 to {I, S, T, ST}. The
function g : F2 → {I, S, T, ST} given by

g(00) := I, g(01) := T, g(10) := ST, g(11) := S.

There are two more isomorphisms from F2 to {I, S, T, ST}. Can you find
them?

Is F2 is isomorphic to µ4? The answer is no but how do we see this?
The best way to see this is to look for some algebraic feature that one of
the groups has but the other does not have. For example, every element x
in F2 has the property that x+ x is equal to the identity, but in µ2 we have
i2 6= 1. (The fact that the group operations are written differently has no
relevance.) Alternatively, there is an element ξ in µ4 such that every element
in µ4 is a power of ξ, i.e., µ4 = {ξ, ξ2, ξ3, ξ4}. But there is no element x in
F2 such that {x, x+ x, x+ x+ x, x+ x+ x+ x} is equal to F2.

Of course, we need to turn these observations into more rigorous proofs,
but that is easy—the harder part is to make the observations in the last
paragraph.

We use a proof by contradiction to prover that F2 6∼= µ4. Suppose to
the contrary that f : F2 → µ4 is an isomorphism. Then for all x ∈ F2 we
would have f(x+x) = f(00) = 1 (remember that an isomorphism sends the
identity to the identity) and therefore f(x)f(x) = 1. But f is surjective so
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we would have ξ2 = 1 for all ξ ∈ µ4 and that is not the case. Hence no such
f can exist.

Thus we have two different, meaning non-isomorphic, groups of order 4.
Are there any others? No. If G is a group with 4 elements it is isomorphic
to F2 or µ4. It is a good exercise to try proving that.

Proposition 2.12. Let p be a positive prime number. Then there is only
one group with p elements, i.e., if G and H are groups having p elements,
then G ∼= H.

Proof. Let G be any group with p elements. Let e denote the identity
element in G and fix an element x in G that is not e.

Let µp be the group of complex pth roots of unity. Write ξ = e2πi/p.
Then µp = {1, ξ, ξ2, . . . , ξp−1}. Define f : µp → G by

f(ξk) = xk.

Then f(ξkξ`) = f(ξk+`) = xk+` = xkx` = f(ξk)f(ξ`).
Let K = {ξn | f(ξn) = e. Then K is a subgroup of µp by Lemma 2.9.

Suppose K contains some element other than 1, say ξn with 1 ≤ n ≤ p− 1.
Since gcd(n, p) = 1, there are integers a and b such that an+bp = 1. Because
K is a group it contains

(ξn)a = ξna = ξ1−bp = ξ.

But that is absurd because f(ξ) = x 6= e. We conclude that K must equal
{1}. It now follows from Lemma 2.9 that f is injective. But G and µp have
the same number of elements so f is bijective and therefore an isomorphism.

We have shown that G ∼= µp. If H is another group with p elements
then H ∼= µp too. Hence H ∼= G. �

3.3. Logarithms. The discovery that the groups (R>0,×) and (R,+)
are isomorphic had a large impact on science. There are many isomorphisms
between. Fix a real number b > 1. The functions

f : R→ R>0 f(x) := bx

g : R>0 → R g(x) = logb x

are mutually inverse isomorphisms.
The historical significance of this isomorphism lies in the fact that it

simplified the task of calculation. For example, if one has to multiply two
positive real numbers x and y, one uses the fact that

xy = fg(xy) = f
(
g(x) + g(y)

)
= f(logb x+ logb y)

Large tables giving the values of f(x) and g(x) were published so one could
simply look up the values of g(x) and g(y), add them, then look up the value
of f

(
g(x) + g(y)

)
. Similarly, if one wanted to compute xr, one used the fact

that
xr = fg(xr) = f(log(xr)) = f(r log x).
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The discovery of the method of logarithms, i.e., the discovery of the
isomorphisms f and g, is usually attributed to the Scotsman John Napier,
the 8th Laird of Merchiston (1550-1617). The method was first revealed
to the public with the publication of Napier’s book Mirifici Logarithmorum
Canonis Descriptio in 1614. It was written in Latin, the language of science
at the time, and contained 57 pages of explanation and 90 pages of tables
of logarithms. Napier did not use a base as we now understand it, but his
logarithms were, up to a scaling factor, effectively to base 1/e.

Henry Briggs (1561-1630), Professor of Mathematics at Gresham Col-
lege, London, from 1596 to 1619, and from 1619 Savilian professor of geome-
try at Oxford, visited Scotland in 1615 and 1617 seeking Napier’s permission
to publish a table of common logarithms, i.e., logarithms to the base 10. The
first installment of Briggs’ table of common logarithms, containing a brief
account of logarithms and a long table of the logarithms of all integers below
1000 to 8 decimal places, was published in 1617 under the title Logarithmo-
rum Chilias Prima.

In 1624, Briggs published Arithmetica Logarithmica, containing the loga-
rithms of all integers from 1 to 20,000 and from 90,000 to 100,000 to fourteen
places of decimals, together with an introduction in which the theory and
use of logarithms are fully developed. The interval from 20,000 to 90,000
was filled by Adriaan Vlacq, a Dutch mathematician, but in his table, which
appeared in 1628, the logarithms were given to only ten places of decimals.
Vlacq’s table was later found to contain 603 errors, but considering that the
table was the result of original hand-calculation, and contained more than
2,100,000 digits, the number of errors is remarkably small. An edition of
Vlacq’s work, containing many corrections, was issued at Leipzig in 1794
under the title Thesaurus Logarithmorum Completus by Jurij Vega.

The great astronomer, Johannes Kepler (1571-1630) was an enthusiastic
supporter of Napier’s work and in 1624 published a clear explanation of how
they worked. Napier had not done that and many had been reluctant to use
Napier’s logarithms prior to Kepler’s explanation. At that time the main
task of astronomers was to produce tables of astronomical data, in large
part as an aid to astrology. The production of these tables involved huge
amounts of computation so Kepler’s enthusiasm is understandable.

Napier formed the word logarithm to mean a number that indicates a
ratio: the Greek word logos meant proportion, and arithmos meant number.
Napier chose that because the difference of two logarithms determines the ra-
tio of the numbers they represent, so that an arithmetic series of logarithms
corresponds to a geometric series of numbers. The term antilogarithm was
introduced in the late 17th century and persisted in collections of tables
until they fell into disuse around the 1970s.

Jost Bürgi (1552-1632), a Swiss clockmaker and maker of astronomical
instruments, invented logarithms independently of John Napier. There is
evidence that Bürgi invented the method of logarithms as early as 1588,
six years before Napier began work on the same idea. By delaying the
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publication of his work to 1620, and even then publishing only after repeated
requests from Johannes Kepler, Bürgi lost his claim for priority.3

3.4. The circle group. Let U(1) denote the set of complex numbers
of length 1. If z and w are complex numbers, then |zw| = |z||w| so the
usual multiplication of complex numbers is an associative binary operation
U(1)× U(1)→ U(1). The number 1 has length one so belongs to U(1) and
is its identity element. If z is a non-zero complex number, then |z−1| = |z|−1

so every element in U(1) has an inverse in U(1). Hence U(1) is a group.
We call U(1) the circle group because if you think of the complex numbers

as points in the euclidean plane R2 the complex numbers of length one form
a circle of radius one centered at 0.

3.5. Rotations in the plane. Given an angle θ we write Tθ for the
linear transformation of the plane R2 that rotates a point by an angle of
θ radians in the counterclockwise direction about the origin. Notice that
Tθ = Tθ+2nπ for all n ∈ Z, so each rotation can be labelled in infinitely
many different ways.

It is obvious that TθTψ = Tθ+ψ and that rotation in the counterclockwise
direction by an angle of −θ is the same as rotation in the clockwise direction
by an angle of θ so Tθ has an inverse, namely T−θ. it follows at once that
the set of all rotations is a group. We call it the rotation group in R2 and
denote it by SO(2). Actually, in keeping with its importance, it goes by
a grander name, the special orthogonal group. As the notation suggests
there are special orthogonal groups SO(n) for all integers n ≥ 0 but for
now we confine our attention to SO(2). The identity element is T0, the
rotation through zero degrees. In fact, T2nπ = idR2 for all n ∈ Z, and
T(2n+1)π = − idR2 for all n ∈ Z.

3In 1615, Kepler’s mother, Katharina Kepler, was accused of witchcraft by a prosti-
tute. European witch hunting was at its peak during Kepler’s career, and was supported
by all levels of society, including secular officials and intellectuals in universities. Kepler
spent several years making legal appeals and hiding his mother from legal authorities seek-
ing to torture her into confessing to witchcraft. Examining an accused witch ad torturam
was a standard court procedure during this era. In 1620, under court order, Kepler’s
mother was kidnapped in the middle of the night from her daughter’s home and taken to
prison. Kepler spent the next year appealing to the Duke of Württemberg to prevent his
imprisoned mother from being examined ad torturam. However, on September 28, 1621
Frau Kepler was taken from her prison cell into the torture room, shown the instruments of
torture and ordered to confess. She replied ”Do with me what you want. Even if you were
to pull one vein after another out of my body, I would have nothing to admit,” and said
the Lord’s Prayer. She was taken back to prison and freed on October 4 upon order of the
duke, who ruled that her refusal to confess under threat of torture proved her innocence.
He also ordered her accusers to pay the cost of her trial and imprisonment. After having
spent most of the last seven years under the legal threat of imminent torture, Katharina
Kepler died on April 13, still being threatened with violence from those who insisted she
was a witch.
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Let’s use column vectors x =
(
x1

x2

)
to label the points in the plane R2

and write Aθ for the unique 2 × 2 matrix such that Tθ(x) = Aθx for all
x ∈ R2. If we write our matrix with respect to the ordered basis

e1 =
(

1
0

)
and e2 =

(
0
1

)
the first column of Aθ is given by Tθ(e1) and the second column of Aθ is
given by Tθ(e2). Elementary trigonometry (draw the diagrams and check!)
then gives

(2-2) Aθ =
(

cos θ − sin θ
sin θ cos θ

)
.

There are many interesting aspects to this:
• if you have forgotten your formulas for sin(θ + ψ) and cos(θ + ψ)

you can recover them by using the fact that AθAψ = Aθ+ψ and
computing the product on the left;
• the determinant of Aθ is 1 because cos2 θ + sin2 θ = 1;
• A−1

θ = A−θ and using the formula for the inverse of a 2× 2 matrix
in you can recover the formulae for sin(−θ) and cos(−θ) if you have
forgotten them.

3.6. The isomorphism between U(1) and SO(2). Define f : SO(2)→
U(1) by

f(Tθ) := eiθ.

This is a well-defined function: although Tθ = Tθ+2nπ, f(Tθ) = f(Tθ+2nπ)
because e2nπi = 1. Furthermore, f is bijective: it is surjective because if
z = a+ ib ∈ U(1)− {±i}, then z = eiθ where

θ = tan−1
( b
a

)
and i = eiπ/2 and −i = e−iπ/2; it is injective because if f(Tθ) = f(Tψ), then
eiθ = eiψ which implies ei(θ−ψ) = 1 and θ − ψ = 2nπ for some integer n,
whence Tθ = Tψ.

Finally, since

f(Tθ)f(Tψ) = eiθeiψ = ei(θ+ψ) = f(Tθ+ψ) = f(TθTψ)

we conclude that f is an isomorphism.

3.7. More about isomorphisms. Equivalence relation
Suppose G and H are isomorphic groups. Then
(1) |G| = |H|;
(2) G is abelian if and only if H is abelian;
(3)



4. SUBGROUPS 47

3.7.1. What does isomorphism mean? Two groups are isomorphic if and
only if all their “essential” group-theoretic, or algebraic, features are the
same. The word essential is vague, but here is an example of a difference
that is not essential: let µ2 = {1,−1} and let P = {E,O} be the parity
group. The groups µ2 and P are different because we use different labels for
their elements and different symbols for the group operation (· for µ2 and
addition + for P). However, in terms of their group-theoretic properties
they are the same: they each have two elements and one other element that
is its own inverse.

There are some obvious questions you might ask. For example, are any
two groups with the same numbers of elements isomorphic? No; for example,
Z6 and S3 have six elements but are not isomorphic because one is abelian
and the other is not. We have already seen that µ4 and F2 both have order
4 but are not isomorphic because every element in F2 is its own inverse but
µ4 does not have that property.

3.7.2. Joke. An exam question describes two groups and then asks “Are
these two groups isomorphic?” The student answers “The first one is but
the second one isn’t.” :)

4. Subgroups

4.1. Definition. Let G be a group. A subset H ⊂ G is a subgroup of
G if the multiplication on G makes H a group.

Note that G itself is a subgroup of G and so is {e}. These are the boring
subgroups.

To show that a subset H of G is a subgroup we must show H satisfies
axioms (1), (2), and (3), of Definition 2.7. Even before checking those we
must check condition (0), that xy is in H whenever x and y are. If H passes
that test we say H is closed under multiplication.

Oh, we must check H is non-empty; let’s assume it is.
Condition (1), associativity of multiplication, will be satisfied by ele-

ments x, y, z ∈ H because it is already satisfied for all x, y, z ∈ G. So we do
not need to check condition (1).

Condition (2) says H must have an identity. Could H have an identity
that is different from e, the identity of G? If e′ ∈ H is such that e′x = x for
even one element x ∈ H, then e′x = ex; but we can cancel in G so e′ = e.
So, the identity in H has to be the identity in G. Thus H must contain e.

To see if condition (3) holds for H, the uniqueness of inverses tells us
that x−1 must belong to H whenever x does. All this proves the next result.

Proposition 2.13. A subset H of G is a subgroup if and only
(1) H contains the identity of G, and
(2) xy belongs to H whenever x and y do, and
(3) x−1 belongs to H whenever x does.

A shorter characterization of subgroups is given by the next result.
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Proposition 2.14. Let H be a non-empty subset of a group G. Then
H is a subgroup if and only xy−1 belongs to H whenever x and y do.

Proof. (⇒) This is trivial.
(⇐) By hypothesis, H is non-empty so contains an element, h say. It

also contains hh−1, the identity. Thus, if h ∈ H, so is eh−1 = h−1, so H
contains the inverse of every element in it. Finally, if u, v ∈ H, then v−1 ∈ H
so H contains u(v−1)−1 = uv. Hence H is a subgroup. �

Let d be an integer. Because the difference of two multiples of d is a
multiple of d Proposition 2.14 tells us that dZ := {dn | n ∈ Z} is a subgroup
of Z.

Proposition 2.15. The subgroups of Z are the subsets dZ, d ≥ 0.

Proof. Let H be a subgroup of Z. Since {0} = 0Z we may assume H 6= {0}.
If h is in H so is −h. Hence there is a smallest positive integer in H.

Let d be that integer. Because H is a subgroup, every multiple of d belongs
to H. Thus dZ ⊂ H.

Now let h be any element in H. Then h = qd + r for some integers q
and r with 0 ≤ r < d. Since r = h − qd, r belongs to H. By choice of d it
follows that r = 0, whence h ∈ dZ. Thus dZ = H. �

4.1.1. Exercise: If H is a subgroup of G and f : G→ G′ an isomorphism
show that f(H) is a subgroup of G′ and that the restriction of f to H is an
isomorphism from H to f(H).

Proposition 2.16. If H and K are subgroups of G so is H ∩K.

Proof. Certainly H ∩K is non-empty because both H and K contain the
identity element. Suppose that x and y belong to H ∩K. Then xy−1 ∈ H
because H is a subgroup and xy−1 ∈ K because K is a subgroup. Thus
xy−1 ∈ H ∩K and it now follows from the previous result that H ∩K is a
subgroup of G. �

The next result explains, in part, the importance of the symmetric
groups—they are ubiquitous.

Theorem 2.17 (Cayley’s Theorem). If G is a group with n elements,
then G is isomorphic to a subgroup of the symmetric group Sn.

Proof. The idea of the proof is simple: if x ∈ G, then the function λx :
G→ G defined by λx(y) := xy is a permutation of G. Write P for the group
of permutations of G. Then P is a group isomorphic to Sn so it is enough
to show that G is isomorphic to a subgroup of P.

Define f : G → P by f(x) := λx. First we check that λx really is in
P: if y 6= y′, then xy 6= xy′ so λx(y) 6= λx(y′) which implies that λx is
injective; if g ∈ G, then g = λx(x−1g) so λx is surjective; thus λx is a
permutation of G. It is clear that f(x)f(y) is the function that sends g to
λxλy(g) = xyg = λxy(g) so f(x)f(y) = f(xy).
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Certainly f(G) is a subgroup of P because f(1) = idG; f(x)f(y) = f(xy);
and f(x)−1 = f(x−1).

It is clear that f is injective because if x 6= y, f(x)(1) = x whereas
f(y(1) = y so f(x) 6= f(y). Thus, considered as map from G to f(G), which
is a subgroup of P, f is bijective and hence an isomorphism. �

4.2. The center of G. The center of G is the subgroup

Z(G) := {z ∈ G | zg = gz for all g ∈ G}.

In German, the word for center is zentrum. That’s why we use the notation
Z(G). Germany was a hotbed of group theory in the late 1800s.

The center of G is a subgroup of G, a particularly important one.
In fact, it is a special case of the following more general result which we

will prove after introducing a generalization of the center. The centralizer of
a subset S of G is defined to be

CG(S) := {z ∈ G | zg = gz for all g ∈ S}.

In other words, CG(S) consists of the elements in G that commute with all
elements in S. Hence Z(G) = CG(G).

Lemma 2.18. If S is a subset of G, then CG(S) is a subgroup of G.

Proof. Certainly the identity of G commutes with all elements in S—it
commutes with all elements in G! If x and y commute with all elements in
S so do x−1 and xy. To see this let g ∈ S. The cancellation law implies
that xg = gx if and only if x−1(xg)x−1 = x−1(gx)x−1, i.e., if and only
if gx−1 = x−1g, so x−1 ∈ CG(S). Furthermore, xyg = xgy = gxy so
xy ∈ CG(S). �

4.3. The subgroup generated by a subset of G. If S is a subset
of G we introduce the notation

〈S〉 := {the smallest subgroup of G containing S}

and call 〈S〉 the subgroup of G generated by S. For the definition to make
sense we must check there is a smallest such subgroup: if H and K are
subgroups containing S, then H ∩K is a subgroup containing S, so one sees
that

〈S〉 = the intersection of all the subgroups of G that contain S.

Notice that Proposition ??.2.6 says that the symmetric group Sn is gen-
erated by transpositions. However, one can be efficient and generate it with
just n− 1 transpositions. Show that Sn = 〈(1 2), (2 3), . . . , (n− 1n)〉.

Lemma 2.19. If x ∈ G, then 〈x〉 = {xn | n ∈ Z}.
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Proof. Certainly {xn | n ∈ Z} is a group: it contains the identity, x0,
and contains inverses, (xn)−1 = x−n, and is closed under products, xmxn =
xm+n. Hence {xn | n ∈ Z} is a subgroup of G that contains x.

Let H be a subgroup of G containing x. Then H contains xn for all
n > 0 because it is closed under multiplication; H contains inverses so
contains x−1, and products of x−1 with itself, so contains x−n for all n > 0;
H contains the identity so contains x0 too. Thus, H contains {xn | n ∈ Z}.
Hence {xn | n ∈ Z} is the smallest subgroup of G containing x. �

4.3.1. Exercise. If a1, . . . , an ∈ Z show that 〈a1, . . . , an〉 = dZ where d
is the greatest common divisor of a1, . . . , an.

4.3.2. A non-example. Let H be the subset of the group G = (Q−{0}, ·)
consisting of the negative integers and 1. This fails to be a subgroup because
the product of two elements in H need not belong to H; but it satisfies all
the other axioms.

4.4. Two subgroups of G. Suppose H and K are subgroups of G.
We have seen that H ∩K is also a subgroup of G. It is the largest subgroup
of G contained in both H and K.

4.4.1. The abelian case. There is an analogy with least common multi-
ples. If a and b are non-zero integers, then Za∩Zb = Zc where c is the least
common multiple of a and b. For example, 20Z ∩ 12Z = 60Z.

It is natural to ask if we can do something similar with greatest common
divisors. We can. The smallestsubgroup that contains 20Z and 12Z is 4Z
and 4 = gcd{12, 20}. If A and B are subsets of the integers we sometimes
write

A+B := {a+ b | a ∈ A and b ∈ B}.

For example, 20Z + 12Z = 4Z. If A and B are subgroups of Z, then A+B is
a subgroup of Z and is the smallest subgroup that contains both A and B.

If a and b are non-zero integers, then Za+ Zb = Zd where d = gcd{a, b}
and Zd is the smallest subgroup of Z that contains both Za and Zb.

We extend this notation in an obvious way.

Proposition 2.20. Let H and K be subgroups of an abelian group
(G,+). Define

H +K := {x+ y | x ∈ H and y ∈ K}.

Then H + K is a subgroup of G and is the smallest subgroup that contains
both H and K.

Proof. �

In other words, H + K is the subgroup of G generated by H ∪K. We
also write H +K = 〈H,K〉.
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4.4.2. The non-abelian case. If G is not abelian a little more care is
required. First we will write G multiplicatively and we define

AB := {ab |a ∈ A and b ∈ B}

whenever A and B are subsets of G.

Proposition 2.21. Let H and K be subgroups of a group G. If HK =
KH, then HK is a subgroup of G and is the smallest subgroup that contains
both H and K.

Proof. �

You might want to look ahead to Theorem 2.33 for a result that is
somewhat in the same spirit as Proposition 2.21.

5. Cosets and Lagrange’s Theorem

5.1. Let H be a subgroup of G. For each element x ∈ G, we define

xH := {xh | h ∈ H}.

We call the sets xH the right cosets of H in G.
There is a similar notion of left cosets.
Because e ∈ H, x ∈ xH, so G is the union of the right cosets.

Lemma 2.22. If H is a subgroup of G, then G is the disjoint union of
the distinct right cosets xH.

Proof. If xH ∩ yH 6= φ, then xa = yb for some a, b ∈ H. If c ∈ H, then
xc = xaa−1c = yba−1c which is in yH because a, b, c ∈ H. Hence xH ⊂ yH.
Similarly, yH ⊂ xH; thus xH = yH. �

It follows from the disjointness result that xH is the unique right coset
of H that contains x.

Lemma 2.23. If H is a subgroup of G, then |xH| = |H|.

Proof. There is a map H → xH, h 7→ xh; this map is surjective and is
injective because if xh = xh′, then h = h′; hence xH has the same number
of elements as H. �

Proposition 2.24 (Lagrange’s Theorem). Let H be a subgroup of a
finite group G. Then |H| divides |G|, and |G|/|H| is the number of right
cosets of H in G.

Proof. Since G is a disjoint union of sets xH, each of which has the same
number of elements as H,

|G| = n|H|
where n is the number of right cosets of H in G. �

Of course, |G|/|H| is also the number of left cosets of H in G.
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5.1.1. Warning: Although the number of left cosets of H is the same as
the number of right cosets of H, in general a left coset is not a right coset.
For example, if H is the subgroup {1, (12)} of S3, then

(13)H = {(13), (13)(12)} = {(13), (123)}
but

H(13) = {(13), (12)(13)} = {(13), (132)} 6= (13)H.

Let H be a subgroup of a group G. The index of H in G is

[G : H] := the number of cosets of H in G.

The proof of Lagrange’s theorem tells us the following.

Corollary 2.25. If H be a subgroup of a group G, then

|G| = |H| · [G : H].

Proof. This is because G is the disjoint union of the cosets of H, each of
which has |H| elements, and there are [G : H] different cosets. �

5.2. Coset notation. We extend the notation xH for a coset of a
subgroup by writing

xS := {xs | s ∈ S}
for any subset S ⊂ G. Likewise,

Sx := {sx | s ∈ S}.
More generally, if T is another subset of G we write

ST := {st | s ∈ S, t ∈ T}.
This notation behaves in a nice way. For example, x(yS) = (xy)S and
(xS)y = x(Sy), so we simply write xyS and xSy for these subsets. Similarly,
x(ST ) = (xS)T , and so on.

6. Cyclic groups

6.1. Definition. A group G is cyclic if it is generated by one element,
i.e., if G = 〈x〉 for some x. We then call x a generator of G and say that x
generates G.

Equivalently, G is cyclic if it equals {xn | n ∈ Z} for some x ∈ G. Note
we do not insist that xn and xm are different if m and n are different.

The group of nth roots of unity,

µn := {z ∈ C | zn = 1},

is cyclic. For example, e2πi/n is a generator for µn. In fact, if r is any integer
relatively prime to n, e2rπi/n is a generator for µn.

The group of integers (Z,+) is cyclic. Clearly, Z = 〈1〉 and Z = 〈−1〉.
A cyclic group is abelian because xmxn = xm+n = xn+m = xnxm.
Every group contains a cyclic subgroup, namely 〈x〉 for any x ∈ G.
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6.2. The order of an element. The order of an element x ∈ G is the
smallest positive integer n such that xn = 1. If there is no such n we say
that x has infinite order.

Proposition 2.26. The order of x is equal to the number of elements
in 〈x〉.

Proof. Suppose first that x has infinite order. If 〈x〉 was finite there would
be integers m 6= n such that xm = xn. But then xm−n = xn−m = 1 so x
would have finite order. This contradiction shows the result is true when x
has infinite order.

Now suppose x has finite order, n say. We will show that

〈x〉 = {1, x, x2, . . . , xn−1}
and that these n elements are distinct from one another. If m is any integer,
then m = nq + r for some q, r ∈ Z such that 0 ≤ r ≤ n− 1. It follows that

xm = xna+r = xnaxr = (xn)axr = xr.

Hence 〈x〉 = {1, x, x2, . . . , xn−1}.
If xi = xj for some integers 0 ≤ i < j ≤ n − 1, then xi−j = xj−i = 1,

so x|i−j| = 1; but 0 < |i − j| < n, contradicting the hypothesis that x has
order n. �

Proposition 2.27. Let x be an element in a finite group G. Then
(1) x has finite order;
(2) the order of x divides |G|;
(3) x|G| = e.

Proof. (1) Since 〈x〉 is finite the order of x is finite.
(2) The order of x is the number of elements in 〈x〉, and Lagrange’s

Theorem tells us that this number divides |G|.
(3) This follows at once from (2) because xrs = (xr)s. �

It is important to distinguish between the order of an element and the
order of a group. There are infinite groups in which every element has finite
order. For example, the group of all subsets of Z with group operation

A⊕B = {x | x ∈ A ∪B but x /∈ A ∩B}
is infinite but every element in it has order two (except the identity which
has order one).

6.2.1. An infinite group all of whose elements have finite order. Let G
be the subgroup of (Q,+) consisting of those fractions a/b such that b is a
power of 2; that is

G :=
{a
b

∣∣∣ a, b ∈ Z, b = 2d for some d ≥ 0
}
.

Notice that Z is a subgroup of G. The quotient G/Z is an infinite group,
and every element in it has finite order because if g ∈ G, then g = a/2d
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for some d and, if we set n = 2d, ng = g + · · · + g ∈ Z. Hence, in G/Z,
n(g + Z) = ng + Z = Z, the identity element to G/Z.

6.3. A convenient notation: addition of subsets of Z. If A and
B are subsets of Z we introduce the notation

A+B := {a+ b | a ∈ A, b ∈ B}.
This operation of + is simply a notational convenience. It does not make
the set of all subsets of Z a group (why not?). However, this addition is
commutative, i.e., A+B = B+A, associative, i.e., A+(B+C) = (A+B)+C,
and has an identity, namely the empty set {0}.

If A consists of a single element, say A = {a}, we write a + B rather
than A+B.

6.3.1. Warning. This notation for addition of subsets should not be con-
fused with the notation for set difference. If A and B are subsets of a set
X we write A − B for {a ∈ A | a /∈ B}. Sorry about this, but we have to
deal with the language as it is spoken. Before getting too annoyed talk to
a non-native English speaker about the words thought, through, rough, and
thorough. Ugh!

6.4. The groups Z/d. Let’s start with the case d = 5. The group Z/5
has five elements. (We pronounce Z/5 as zee mod five.) Its elements are the
following subsets of Z:

5Z := {5n | n ∈ Z},
1 + 5Z := {1 + 5n | n ∈ Z},
2 + 5Z := {2 + 5n | n ∈ Z},
3 + 5Z := {3 + 5n | n ∈ Z},
4 + 5Z := {4 + 5n | n ∈ Z}.

For brevity we will write r′ = r + 5Z for all integers r. Thus

Z/5 := {0′, 1′, 2′, 3′, 4′}.
Note that 2′ = 2+5Z = 7+5Z = 7′, and so on. Notice too, that if 0 ≤ r ≤ 4,
then r′ consists of the integers that leave a remainder of r when divided by
5. To make Z/5 a group we define an addition on it by declaring that

r′ + s′ = (r + s)′.

The addition is well-defined (why?) and the addition table is

+ 0′ 1′ 2′ 3′ 4′

0′ 0′ 1′ 2′ 3′ 4′

1′ 1′ 2′ 3′ 4′ 0′

2′ 2′ 3′ 4′ 0′ 1′

3′ 3′ 4′ 0′ 1′ 2′

4′ 4′ 0′ 1′ 2′ 3′
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To verify that this addition rule makes Z/5 a group you must check
associativity, the existence of an identity, and existence of inverses. Asso-
ciativity follows from the associative law A+ (B + C) = (A+ B) + C that
was mentioned above for subsets of Z. It is clear that 0′ is an identity in
Z/5. Inverses exist because r′ + (5 − r)′ = 0′. Hence (Z/5,+) is a group.
It is an abelian group because r′ + s′ = s′ + r′, i.e., because the addition of
subsets of Z is commutative.

In the preceding example no special properties of the number 5 were
used. For every positive integer d we define

Z/d := {r + dZ | 0 ≤ r ≤ d− 1}

and make Z/d a group by defining

(r + dZ) + (s+ dZ) := (r + s) + dZ

Proposition 2.28. For every integer d ≥ 1 there is an abelian group
with d elements, namely Z/d.

Proof. Use the same arguments as those we used above to show that the
addition on Z/5 made it a group. �

Proposition 2.29. Let G be a cyclic group and d a positive integer.
Then

(1) G is isomorphic to Z if it is infinite;
(2) G is isomorphic to Z/d if it has d elements.

Proof. By hypothesis, G = 〈x〉 = {xn | n ∈ Z}. Define f : Z→ G by

f(n) := xn.

Notice that f(m+ n) = xm+n = xmxn = f(m)f(n). If f is bijective it is an
isomorphism so in that case G ∼= Z.

Now assume f is not bijective. In that case xn = xm for some n 6= m. If
follows that xn−m = xm−n = 1. Let d be the smallest positive integer such
that xd = 1. Define

g : Z/d→ G by f(r + dZ) := xr.

Then g is surjective, and therefor bijective because |G| = d = |Z/d|. Also

f
(
(r + dZ) + (s+ dZ)

)
= f

(
(r + s) + dZ

)
= xr+s

= xrxs

= f(r + dZ)f(s+ dZ)

for all r and s. Hence f is an isomorphism; i.e., G ∼= Z/d. �

The previous result says the only cyclic groups are Z and Z/d, d > 0.
Up to isomorphism!
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Corollary 2.30. Let n be a positive integer. Then there is an isomor-
phism

µn ∼= Z/n
between the group of complex nth roots of unity and Z/n.

Proof. Since µn is cyclic, generated by e2πi/n for example, the corollary
follows from Proposition 2.29. �

The next result says that if p is a prime number there is only one group
having p elements, namely Z/p.4

Theorem 2.31. If p is a positive prime number, there is, up to isomor-
phism, a unique group with p elements, namely Z/p. In other words, if G is
a group having p elements then G ∼= Z/p.

Proof. Let p be a positive prime and G a group with p elements.
We fix an an element x in G that is not the identity. Then the order of

x is ≥ 2 and divides |G| by Proposition 2.27, so must be p. By Proposition
2.26, the order of x is the number of elements in 〈x〉. Thus

G = {1, x, . . . , xp−1}.
In particular, G is a cyclic group with p elements so G is isomorphic to Z/p
by Proposition 2.29. �

7. The product of two groups

7.1. The definition. Let G and H be groups. We make their cartesian
product

G×H = {(g, h) | g ∈ G, h ∈ H}
into a group by declaring the product to be

(2-3) (a, x).(b, y) := (ab, xy)

for a, b ∈ G and x, y ∈ H. We call this the product of the groups G and H.

7.1.1. Exercises.
(1) Show (2-3) makes G×H a group.
(2) Show that G×H ∼= H ×G.
(3) If H1 and H2 are isomorphic groups show that G×H1 is isomorphic

to G×H2.
(4) Let G1, G2, H1, and H2 be groups. Suppose that G1

∼= G2 and
H1
∼= H2. Show that G1 ×H1

∼= G2 ×H2.

7.1.2. Remark. If G and H are abelian we often call their direct product
the direct sum and denote it by G⊕H.

4When I say “only” I should add the qualifier “up to isomorphism”, but I’m not doing
that because it would make the sentence a little clunky and I want to encourage you to
add that qualifier internally.
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7.1.3. An important isomorphism. When you encountered complex num-
bers did you learn that every non-zero complex number can be written in a
unique way as

reiθ

where r is a positive real number and θ ∈ [0, 2π)? I hope so. We will review
that in a moment but if you already know that fact are you aware that it is
really saying that there is an isomorphism

f : (R>0, ·)× U(1)→ (C− {0}, ·)
given by the formula f(r, eiθ) := reiθ.

7.2. An example. Let F = ({0, 1},+) be the group with addition
0 + 0 = 1 + 1 = 0 and 0 + 1 = 1 + 0 = 1. Then F × F has four elements,
(0, 0), (0, 1), (1, 0), and (1, 1). It is simpler to write these as 00, 01, 10, and
11. The group operation on G × G given by (??) is This is the group in

+ 00 01 10 11
00 00 01 10 11
01 01 00 11 10
10 10 11 00 01
11 11 10 01 00

example 2.3.11. Now you know why we labeled it F2.
Of course, F ∼= Z/2 so F2 ∼= (Z/2)× (Z/2).
Suppose that X is a set and X = Y tZ, i.e., X = Y ∪Z and X ∩Z = φ.

Then X!× Z! is a subgroup of X!.
More to say!

7.2.1. Products of several groups. Let G, H, and K, be groups. It is
easy to show that

(G×H)×K ∼= G× (H ×K)
so we just writeG×H×K for this group. This idea extends to arbitrary finite
collections of groups. If G1, . . . , Gn are groups the elements of G1×· · ·×Gn
are ordered n-tuples (x1, . . . , xn) with xi ∈ Gi and this set is made into a
group by declaring that

(x1, . . . , xn)(y1, . . . , yn) = (x1y1, . . . , xnyn).

7.3. The Chinese Remainder Theorem. We will now prove the
Chinese Remainder Theorem, a result that is an important step towards the
classification of all finite abelian groups (up to isomorphism, of course!).

Theorem 2.32 (The Chinese Remainder Theorem). Suppose d and e
are positive integers. If gcd(d, e) = 1, then there is an isomorphism

f : Z/de ∼−→ (Z/d)× (Z/e)

given by f(r + deZ) := (r + dZ, r + eZ).
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Proof. First we will show f is well defined. If r + deZ = s + deZ, then de
divides r − s so r − s ∈ dZ and r − s ∈ eZ. It follows that r + dZ = s+ dZ
and r + eZ = s+ eZ. Hence f is well-defined.

We will now show f is injective. It will follow from this that f is bijective
because the sets Z/de and (Z/d)× (Z/e) have the same number of elements.
By Lemma 2.9(2), to show f is injective we need only show that if f(r +
deZ) = (dZ, eZ), then r ∈ deZ.

Suppose f(r + deZ) = (dZ, eZ). Then r ∈ dZ and r ∈ eZ; say r = du =
ev. Because gcd(d, e) = 1 there are integers a and b such that ad+ be = 1.
It follows that

u = adu+ beu = aev + beu = e(av + bu).

Hence r = du = de(av + bu) ∈ edZ. Thus r + edZ = edZ. Thus,
f−1

(
(dZ, eZ)

)
= {deZ} and it follows from Lemma 2.9(2) that f is injective

and therefore bijective.
Finally, the calculation

f
(
(r + deZ) + (s+ deZ)

)
= f

(
(r + s) + deZ

)
= (r + s+ dZ, r + s+ eZ)

= (r + dZ, r + eZ) + (s+ dZ, s+ eZ)

= f(r + deZ) + f(s+ deZ)

shows f is an isomorphism. �

Thus, for example,

Z/60 ∼= Z/5× Z/12 ∼= Z/5× Z/4× Z/3.
In contrast, we have already seen that

Z/4 6∼= Z/2× Z/2.
7.3.1. History. The Chinese Remainder Theorem appeared in ancient

times in the following form: if m1, . . . ,mn are pairwise relatively prime
integers, and a1, . . . , an are any integers, then there is an integer d such
that d ≡ ai(modmi) for all i. This statement appears in the manuscript
Mathematical Treatise in Nine Sections written by Chin Chiu Shao in 1247
(search on the web if you want to know more).

7.4. How to recognize a product. If we have a group G and can
then show it is a product of two smaller groups we have made progress:
generally speaking smaller groups are easier to understand than large ones
so we can understand G by understanding the two factors in its expression
as a product. The next result gives a criterion for recognizing when a group
can be written as a product of two of its subgroups.

Theorem 2.33. Let H and K be subgroups of a group G. Suppose that
hk = kh for all h ∈ H and k ∈ K. If HK = G and H ∩K = {e}, then

G ∼= H ×K.
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The map f : H ×K → G given by f(h, k) := hk is an isomorphism

Proof. Since HK = G, f is surjective. Furthermore, if x = (h, k) and
y = (h′, k′), then

f(xy) = f
(
(h, k) · (h′, k′)

)
= f(hh′, kk′)

= hh′kk′

= hkh′k′

= f(h, k)f(h′, k′)

= f(x)f(y).

We will now use Lemma 2.9 to show that f is injective. If f(h, k) = e, then
hk = e so h = k−1 and therefore h ∈ H ∩K. But H ∩K = {e} so h = e
and k = e. Hence f−1(e) = (e, e) and Lemma 2.9 implies f is injective. �

In the situation of the Theorem 2.33 we usually write

G = H ×K.

This equality means, among other things, that every element in G can be
written in a unique way as a product hk, i.e., given g ∈ G, there is a unique
h in H and a unique k in K such that g = hk.

7.4.1. The abelian case. If H and K are subgroups of an abelian group
(G,+) such that H +K = G and H ∩K = {0}, then Theorem 2.33 tells us
that G = H ×K. We will make use of this in the proof of Theorem 2.36 in
the next section.

8. Finite abelian groups

In the section we classify all finite abelian groups. Our treatment follows
J.S. Milne’s notes at http://www.jmilne.org/math/CourseNotes/GT.pdf.

First, because all the groups in this section are abelian we will use the
symbol + for the group operation in each.

In the next section we introduce the idea of a basis for a finite abelian
group. The analogy with the idea of a basis for a vector space should help
you. First observe that Rn is an abelian group under the usual addition of
vectors. Although the only element of finite order in Rn is the zero vector,
i.e., the identity don’t let that worry you. Recall that a basis for Rn is a
subset {vi | i ∈ I} that spans it and is linearly independent. The spanning
condition means that every element in Rn can be written as a sum

∑
i λivi

for some λis in R, and the linear independence means that if
∑

i λivi = 0,
then all λi are zero. Of course a basis for Rn must consist of exactly n
elements and leads to an isomorphism

Rn = Rv1 × · · · × Rvn.
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8.1. The notion of a basis for a finite abelian group. A basis for
an abelian group G is a subset {x1, . . . , xn} such that

G = 〈x1〉 × 〈x2〉 × · · · × 〈xn〉.

Lemma 2.34. A set {x1, . . . , xn} is a basis for G if and only if
(1) every element in G can be written as a1x1 + · · · + anxn for some

a1, . . . , an ∈ Z and
(2) a1x1 + · · ·+ anxn = 0 implies a1x1 = a2x2 = · · · = anxn = 0.

Proof. Exercise. �

Lemma 2.35 (Milne). Suppose G is generated by {x1, . . . , xn}. Suppose
a1, . . . , an are integers whose greatest common divisor is 1. Then G is gen-
erated by a set {y1, . . . , yn} where y1 = a1x1 + · · ·+ anxn.

Proof. If some ai < 0 we replace ai by −ai and xi by −xi. This allows us to
assume that all ais are positive. We argue by induction on s = a1 + · · ·+an.
If s = 1, the hypotheses imply G is generated by x1 and y1 = x1 so the
result is obviously true.

Now suppose s > 1. Then at least two ai are positive, say a1 ≥ a2 > 0.
It is clear that

G = 〈x1, . . . , xn〉 = 〈x1, x2 + x1, x3, . . . , xn〉
and gcd{a1 − a2, a2, a3, . . . , an} = 1. But the sum of these numbers is less
than s so the induction hypothesis implies that G is generated by a set
{y1, . . . , yn} where

y1 = (a1 − a2)x1 + a2(x2 + x1) + a3x3 + · · ·+ anxn

= a1x1 + · · ·+ anxn.

This completes the proof. �

Theorem 2.36. Every finite abelian group has a basis. In other words,
if G is a finite abelian group, there are positive integers n1, . . . , nk such that

G ∼= (Z/n1)× · · · × (Z/nk).

Proof. [Milne] Let G be a finite abelian group. We will argue by induction
on the number of generators of G. If G has a single generator it is cyclic and
therefore has a basis. We therefore assume that G needs n > 1 generators.
We pick a generating set {x1, . . . , xn} with x1 having minimal order. We
will show that

〈x1〉 ∩ 〈x2, . . . , xn〉 = 0
which, by the remarks in section 7.4.1, implies that G = 〈x1〉× 〈x2, . . . , xn〉,
so proving the theorem.

Suppose the intersection is not zero. Then there are integers a1, . . . , an
such that

a1x1 + · · ·+ anxn = 0
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and a1x1 6= 0. Of course, we can assume that a1 is strictly smaller than
the order of x1. Let d = gcd{a1, . . . , an} and define bi := ai/di. Then
gcd{b1, . . . , bn} = 1 so the lemma implies that G = 〈y1, y2, . . . , yn〉 with
y1 = b1x1 + · · ·+ bnxn. But

dy1 = a1x1 + · · ·+ anxn = 0

and d divides a1 so is ≤ a1 < order(x1). This contradicts the choice of x1.
�

The integers n1, . . . , nk are not uniquely determined by G. For example,
the Chinese Remainder Theorem tells us that

Z/mn ∼= (Z/m)× (Z/n)

if gcd(m,n) = 1. However, using the Chinese Remainder Theorem and fac-
toring the nis and then using the Chinese remainder theorem to multiply the
factors together in appropriate ways we can show there are prime numbers
p1, . . . , pm, possibly with repetitions, and integers r1, . . . , rm such that

G ∼=
Z
pr11
× · · · × Z

prmm

and the primes and the ris are uniquely determined by G. We can also use
the Chinese Chinese Remainder Theorem to deduce that

G ∼=
Z
a1
× · · · × Z

a`
where a1 divides a2, a2 divides a3, and so on and so on. The ais are uniquely
determined by G.

For example, if

G =
Z
18
× Z

40
× Z

8
× Z

48
,

then
G ∼=

Z
2
× Z

8
× Z

8
× Z

16
× Z

3
× Z

9
× Z

5
and

G ∼=
Z
2
× Z

8
× Z

24
× Z

720
.

There are lots of other ways of writing this group. For example, using the
Chinese Remainder Theorem we could remove the factor of 5 from 720 and
then replace 24 by 24× 5 = 120 to write

G ∼=
Z
2
× Z

8
× Z

120
× Z

144
.

Endless fun.


