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Abstract. Let R be a finitely generated commutative algebra over an algebraically closed field k and
let A = R[t; σ, δ] be the Ore extension with respect to an automorphism σ and a σ -derivation δ. We
view A as the coordinate ring of an affine noncommutative space X. The inclusion R → A gives an
affine map ξ : X → SpecR, and X is a noncommutative analogue of A

1 × SpecR. We define the
fiber Xp of ξ over a closed point p ∈ SpecR as a certain full subcategory ModXp of ModA. The
category ModXp has the following structure. If p has infinite σ -orbit, then ModXp is equivalent to
the category of graded modules over the polynomial ring k[x] with deg x = 1. If p is not fixed by σ ,
but has finite σ -orbit, say of size n, then ModXp is equivalent to the representations of the quiver
Ãn−1 with the arrows all going in the same direction. If p is fixed by σ , then ModXp is equivalent
to either Mod k or Mod k[x]. It is also shown that X is the disjoint union of the fibers Xp in a certain
sense.
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1. Introduction

The algebraic structure of Ore extensions has been studied by many people; for
example, see [1, 2, 4–6]. In this paper we use the language developed by Rosenberg
[11] and Van den Bergh [15] to discuss a simple geometric question concerning an
Ore extension of a commutative ring.

Throughout let R be a finitely generated commutative algebra over an alge-
braically closed field k. Let R[t] be the polynomial extension. It is a tautology that
the inclusion R → R[t] induces a morphism of schemes ξ : SpecR[t] → SpecR
with the following properties: SpecR[t] is the disjoint union of the fibers ξ−1(p)

over the closed points of SpecR, and each fiber is isomorphic to the affine line
over k.

In this paper we prove a noncommutative analogue of this.
The ring R remains as before, but we replace R[t] by an Ore extension A =

R[t;σ, δ] where σ is a k-algebra automorphism of R and δ is a k-linear σ -derivation
of R. We will show that there are a limited number of possibilities for the fibers,
and that the noncommutative space with coordinate ring A is a disjoint union
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of these fibers in a suitable sense. Our results can be viewed as an exercise in
noncommutative algebraic geometry. The first problem is to define the terms.

We define spaces X = ModA and Y = ModR. The inclusion R → A induces
an affine map of spaces ξ : X → Y , by which we mean an adjoint triple of functors
(ξ ∗, ξ∗, ξ !), where each is right adjoint to the preceding one and ξ∗ is faithful. If p
is a closed point of SpecR, and Op is the corresponding simple R-module, we call
ξ ∗Op, which is isomorphic to A/mpA, the fiber module over p. We define a certain
full subcategory ModXp of ModA associated to ξ ∗Op and call Xp the fiber over
p (Definition 2.3).

THEOREM 1.1. The fibers Xp have the following structure.

(1) Xp
∼= A

1 if p = pσ and f (δ)(R) ⊂ mp for some nonzero polynomial f (t);
(2) Xp

∼= Spec k if p = pσ and the previous case does not occur;
(3) Xp

∼= GrMod k[u], deg u = 1, if the σ -orbit of p is infinite;
(4) Xp

∼= ModQ where Q is the quiver (6.1) of type Ãn with cyclic orientation if
the σ -orbit of p has size n, 2 � n < ∞.

If k is uncountable, then X is the disjoint union of the fibers.

With the exception of Mod k in part 2, the categories in Theorem 1.1 have
global dimension one and Krull dimension one. They are therefore reasonable
analogues of smooth curves. It is easy to see that all four possibilities can occur.
These categories also turn up as affine pieces of the exceptional curve in Van den
Bergh’s noncommutative blowing up [15]. They should therefore be considered as
appropriate noncommutative analogues of the affine line.

It is a tautology in the commutative case that every closed point of SpecR[t] lies
on one of the fibers. It is rather easy to prove a noncommutative analogue of this
(Proposition 3.4): every finite-dimensional simple A-module belongs to some fiber.
More precisely, every such module is a quotient of some fiber module. We prefer
to state this geometrically: every closed point of X lies on some fiber Xp. The
closed points of X are in bijection with the finite-dimensional simple A-modules,
and the degree of a closed point is the dimension of the corresponding simple mod-
ule. Analysis of the fibers gives complete information about the finite-dimensional
simple A-modules.

THEOREM 1.2. The degrees of the closed points on each fiber, equivalently the
dimensions of the simple A-modules on each fiber, are as follows (the numbering
of the four cases is the same as that in Theorem 1.1):

(1) the closed points are parametrized by x ∈ A
1, and deg x is the minimal degree

of a polynomial f (t) ∈ k[t] with the property that f (δ)(R) ⊂ mp;
(2) there are no closed points on these fibers;
(3) the closed points are indexed by Z, and all have degree one;
(4) there are n points of degree one and the other points, which are parametrized

by A
1\{0}, have degree n.
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In Section 8 we give a precise meaning to the phrase ‘X is the disjoint union
of the fibers’. We define the words ‘union’ and ‘disjoint’ in terms of Ext-groups.
The fact that X is the disjoint union of the fibers implies that there are no nonsplit
extensions between simple modules lying on different fibers. Although the results
in that section are satisfying, we remain uncertain whether we really do have good
notions of ‘union’ and ‘disjoint’. Other test cases need to be examined.

The classification of simple modules in Ore extensions has a long history. The
primary way in which this paper differs from what has been done before is that
our primary concern is the fibers, not the individual simple modules. Indeed, the
notion of a fiber in noncommutative geometry has not appeared before. However,
as Theorem 1.2 says, once one knows the fibers one can obtain a classification of
the finite-dimensional simples. Thus some of our results overlap those parts of [1]
and [5] that are concerned with classifying finite-dimensional simples.

Not only does classification of the fibers organize the data about finite dimen-
sional simples in an elegant and compact way, but it contains information about the
extension groups between the finite-dimensional simples. It also emphasizes the
similarity to the commutative situation. Finally, the four types of fibers described
in Theorem 1.1 are typical of the kinds of curves that can lie on noncommu-
tative spaces: these kinds of subspaces occur in a wide range of situations in
noncommutative geometry.

2. Definitions

We recall some definitions from [15] and [13]. A noncommutative space, or quasi-
scheme, is a Grothendieck category X = ModX. Objects in ModX are called
X-modules. Two spaces X and X′ are isomorphic if ModX is equivalent to ModX′.

The full subcategory of ModX consisting of the Noetherian X-modules is de-
noted by modX. If ModX is locally Noetherian, then modX determines ModX.

A map ξ : X → Y of noncommutative spaces is a natural equivalence class of
an adjoint pair of functors ξ∗: ModX → Mod Y , and its left adjoint ξ ∗: Mod Y →
ModX. If ξ∗ has a right adjoint, it is denoted by ξ !. A weakly closed subspace Z

of X is a full subcategory ModZ of ModX that is closed under subquotients and
direct sums, and such that the inclusion functor i∗: ModZ → ModX has a right
adjoint. If i∗ also has a left adjoint, Z is called a closed subspace of X.

If A is a ring, we denote by ModA its category of right modules. We say that
A is a coordinate ring of this space. When A is a ring, we will abuse language and
use the notations SpecA and ModA interchangeably.

Let X be a k-space, meaning that ModX is k-linear. A closed point x of X is a
closed subspace Mod x that is isomorphic to Spec k. The simple module in Mod x
is denoted by Ox . Thus, Mod x is the full subcategory of ModX consisting of all
direct sums of Ox . Since the inclusion i∗: Mod x → ModX has a right adjoint,
every direct product of copies of Ox is isomorphic to a direct sum of copies of Ox .
When X = SpecA, we call dimk HomA(A,Ox) the degree of x.
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It follows from [11, Proposition 6.4.1, p. 127] that every closed subscheme of
SpecA is of form ModA/I for some two-sided ideal I ⊂ A. In particular, if
x is a closed point of SpecA, then Mod x is equal to ModA/I where A/I ∼=
Mn(k) for some n. In particular, Ox is finite-dimensional. If A is an algebra over an
algebraically closed field k, it follows that there is a bijection between the closed
points of ModA and the finite-dimensional simple A-modules.

DEFINITION 2.1. Let X be a space endowed with a dimension function ∂ . For
each X-module L we define ModL to be the smallest full subcategory of ModX
satisfying the following conditions:

(1) if M is a Noetherian submodule of the injective envelope of L such that
∂(M + L/L) < ∂(L), then M is in ModL;

(2) ModL is closed under direct limits;
(3) ModL is closed under subquotients.

Hence, ModL is a weakly closed subspace of X. The main result in [13] is to
show that if L is a curve module in good position [13, Definition 5.1], then ModL
is isomorphic to GrModZn k[x1, . . . , xn]/(Kdim � n − 2) for some n. The case
discussed in Section 5 of this paper is the case when n = 1. The cases in the other
sections of this paper are like L not in good position.

Let σ be a k-algebra automorphism of R, and let δ be a k-linear σ -derivation
of R. We write rσ for the image of r ∈ R under σ . The Ore extension A =
R[t;σ, δ] is generated by R and t subject to the relations

tr = rσ t + δ(r)

for all r ∈ R. The ring A is Noetherian on both sides because R is. If R is a domain,
so is A.

Let p be a closed point in SpecR. We write mp for the maximal ideal of R
vanishing at p, and Op for the corresponding simple module R/mp. We write pσ

for the image of p under σ , and adopt the convention that rσ (p) = r(pσ ). Thus
σ−1(mp) = mpσ .

For each n � 0, define An to be the R-submodule of A generated by 1, t, t2,

. . . , tn. This is a free right (and left) R-module with basis given by the {t i | 0 �
i � n}. The filtration A0 ⊂ A1 ⊂ · · · makes A a filtered k-algebra. Each slice
An/An−1 is an invertible R-R-bimodule. It is isomorphic to σ−nR1

∼= 1Rσn ; this
is defined as the free right R-module with basis εn, and left action of R given by
r.εn = εnr

σ−n

. It is easy to check that Op ⊗R (An/An−1) ∼= Opσn .
If L is an R-module, we define Lσ to be the R-module which is equal to L as

an abelian group, but with a new R-action defined by � ∗ r = �rσ for � ∈ Lσ and
r ∈ R. For example, (Op)

σ ∼= Opσ .
We write X = ModA and Y = SpecR, and ξ : X → Y for the projection.

Explicitly, ξ ∗ = − ⊗R A, ξ∗ is the restriction of scalars, and ξ ! = HomR(A,−).
Let L be an R-module. The ascending filtration on A by the R-R-bimodules

An induces a filtration on ξ ∗L = L ⊗R A by the right R-submodules L ⊗R An.
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We call this the standard filtration on ξ ∗L. The slices associated to the filtration
are L ⊗R (An/An−1) ∼= Lσn

.

DEFINITION 2.2. If p ∈ SpecR is closed we call ξ ∗Op = Op ⊗R A = A/mpA

the fiber module over p. We denote it by Fp.

There is a right k[t]-module decomposition A = mpA ⊕ k[t], so as a right
k[t]-module, Fp

∼= k[t]. We write ε for a generator of Fp as a right k[t]-module.
The degree � n R-submodule of the canonical filtration on Fp is the linear span

of {εti | 0 � i � n}. The successive slices are simple R-modules, and starting at
the bottom these are Op, Opσ ,O

pσ2 , . . . . Thus, if p has infinite σ -orbit, then as an
R-module Fp is isomorphic to Op ⊕ Opσ ⊕ · · · .

Because Fp is a free k[t]-module of rank one, its Krull dimension over A is
either zero or one, and every proper quotient of it is finite-dimensional.

The natural dimension function on R-modules is Krull dimension, denoted
by Kdim. Because R is a finitely generated commutative k-algebra this equals
the Gelfand–Kirillov dimension, which is denoted by GKdim. We will use GK-
dimension as our dimension function on X = ModA, and we define the fiber Xp

to be ModFp as in Definition 2.1. The precise definition is the following.

DEFINITION 2.3. The fiber Xp over a closed point p ∈ SpecR is defined by
requiring ModXp to be the smallest full subcategory of ModX satisfying the
following conditions:

(1) if M is a submodule of the injective envelope of Fp such that M + Fp/Fp is
finite-dimensional, then M is in ModXp;

(2) ModXp is closed under direct limits;
(3) ModXp is closed under subquotients.

Sometimes it is simpler to describe the Noetherian category modXp. It is the
smallest full subcategory that is closed under finite direct sums, subquotients, and
satisfies condition (1).

Condition (3) ensures that the inclusion i∗: ModXp → ModX is exact. Con-
dition (2) ensures that i∗ has a right adjoint i!, so Xp is weakly closed in X.

If x is a closed point of X, we say that x lies on Xp if Ox is in ModXp. In that
case we simply write x ∈ Xp.

3. Structure of the Fiber Modules

From now on we fix the following notation: A = R[t, σ, δ], X = ModA, Fp is the
fiber module ξ ∗Op = A/mpA, and Xp is the fiber over p ∈ SpecR.

In several of this section’s proofs we let ε denote a k[t]-basis for Fp.

LEMMA 3.1. Suppose that r ∈ R, and f ∈ k[t]. If deg f = n, then εf.r =
ε(r(pσn

)f + g) where deg g � n − 1.
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Proof. Since the action of r on Fp is k-linear, it suffices to prove the result
for f = tn. We argue by induction on n. If n = 0, the result is true because
ε.R ∼= R/mp. If n � 1, then

εtn.r = εtn−1(rσ t + δ(r))

= ε(rσ (pσn−1
)tn−1 + h)t + εtn−1δ(r)

= εr(pσn

)tn + ε(ht + tn−1δ(r)).

The induction hypothesis gives deg h � n − 2 and deg tn−1δ(r) � n − 1, so the
result is proved. ✷
LEMMA 3.2. Let f ∈ k[t] be of degree n. The following are equivalent:

(1) εf.k[t] is an A-submodule of Fp;
(2) εf.r ∈ kεf for all r ∈ R;
(3) εf.r = r(pσn

)εf for all r ∈ R.

In this case, εfA ∼= Fpσn .
Proof. (3) ⇒ (2) This is obvious.
(2) ⇒ (3) By Lemma 3.1, εf.r = ε(r(pσn

)f + g) for some g ∈ k[t] of degree
� n − 1, so the only possibility is that g = 0 and εf.r = r(pσn

)εf .
(2) ⇒ (1) We must show that εf ti.r ∈ εf.k[t] for all i � 0, and all r ∈ R. This

is true for i = 0 by hypothesis. Now εf ti .r = εf ti−1.tr = εf ti−1.(rσ t + δ(r)).

By the induction hypothesis applied to f ti−1, this is in f.k[t].
(1) ⇒ (3) By Lemma 3.1, εf.r = ε(r(pσn

)f + g) for some g ∈ k[t] of degree
� n − 1. But εf.r ∈ εf.k[t], so g = 0. Hence (3) holds.

This completes the proof that the three conditions are equivalent. Now suppose
that the conditions hold. It follows at once from (3) that εf is annihilated by r −
r(pσn

) for all r ∈ R. Thus εfmpσn = 0. Hence εfA is a quotient of Fpσn . However,
as a k[t]-module, εfA ∼= k[t], so the map Fpσn → εfA must be bijective. ✷

One consequence of the preceding result is that a nonzero submodule of Fp is
necessarily isomorphic to Fpσn for some n � 0.

LEMMA 3.3. Let p and q be closed points of SpecR. Then Fp
∼= Fq if and only

if p = q.
Proof. Let ε be a k[t]-module basis for Fp , and let ε′ be a k[t]-module basis

for Fq . Suppose that ϕ: Fq → Fp is an isomorphism. Let f ∈ k[t] be such that
ϕ(ε′) = εf . Then εfmq = 0 and

Fp = εfA = εf (mqA ⊕ k[t]) = εf k[t].
Therefore deg f = 0, and it follows from Lemma 3.2, that q = p. ✷

Recall that the closed points of X are in bijection with the finite-dimensional
simple A-modules. The next result shows that each closed point of X lies on some
fiber Xp.
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PROPOSITION 3.4. Let x be a closed point of X. Then there is a closed point
p ∈ SpecR such that x ∈ Xp and, if deg x = n, there is an exact sequence

0 → Fpσn → Fp → Ox → 0. (3.1)

Proof. If N is a finite dimensional simple A-module, then it contains a simple
R-submodule. That submodule is isomorphic to some Op, and the inclusion Op →
N induces an A-module map ξ ∗Op → N . This map is surjective because N is
simple, and it is a right k[t]-module map, so its kernel equals εf.k[t] for some
f ∈ k[t]. Clearly deg f = dimN . The result now follows from Lemma 3.2. ✷
LEMMA 3.5. If q /∈ {p, pσ , pσ 2

, . . .}, then ExtiA(Fq, Fp) = 0 for all i.
Proof. Let N be an arbitrary right A-module. Since A is a free left R-module,

the change of rings spectral sequence [12, Theorem 11.54] shows that

ExtiA(Oq ⊗R A,N) ∼= ExtiR(Oq, ξ∗N). (3.2)

This is zero if q is not in the support of ξ∗N . ✷
PROPOSITION 3.6. Suppose that p �= pσ . Then

(1) Fp contains a copy of Fpσ of codimension one.
(2) δα(R) ⊂ mp for a unique α ∈ k where δα = δ + α(1 − σ ).

Because 1 − σ is a σ -derivation, the map δα in part (2) is a σ -derivation.
Furthermore R[t, σ, δ] = R[(t + α), σ, δα]. This is sometimes a useful change
of variables.

Proof. (1) It follows from the remarks in Section 2 that the composition factors
of the R-submodule kε+kεt of Fp are isomorphic to Op and Opσ . Since p �= pσ , it
is isomorphic to Op ⊕Opσ . Hence, ε(t +α)mpσ = 0 for a unique α ∈ k. Therefore
ε(t + α)k[t] is a codimension one A-submodule isomorphic to Fpσ .

(2) Suppose that ε(t + α) generates Fpσ . Changing the variable t to t + α, we
have the same σ , but the new derivation is δα. So it reduced to the case when α = 0.
Since εt generates Fpσ , the relation ta = aσ t + δα(a) shows that δα(R) ⊂ mp. ✷
LEMMA 3.7. Let f and g be elements in k[t] of the same degree. If εf.k[t] and
εg.k[t] are A-submodules of Fp, so is ε(αf + βg).k[t] for all α, β ∈ k.

Proof. This follows from criterion (3) in Lemma 3.2. ✷
PROPOSITION 3.8. Let p and q be closed points of SpecR. If dimk HomA(Fq,

Fp) � 2, then p has a finite σ -orbit.
Proof. Let ψ and θ be linearly independent maps Fq → Fp . Let ε be a k[t]-basis

for Fp , and let f, g ∈ k[t] be such that imψ = εf k[t] and im θ = εgk[t]. Since ψ
and θ are linearly independent, so are f and g. Set m = deg f and n = deg g. By
Lemma 3.2, q = pσn = pσm

. If m �= n, then p has a finite σ -orbit. On the other
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hand, suppose that deg f = deg g = n. Then there is a nonzero λ ∈ k such that
deg(λf + g) < n. However, ε(λf + g)k[t] = im(λψ + θ), whence q = pσd

for
some 0 � d < n. It follows that p has a finite σ -orbit. ✷
LEMMA 3.9. A fiber module Fp can have either zero, one, or infinitely many,
one-dimensional quotients. In particular,

(1) Fp has infinitely many one-dimensional quotients if and only if pσ = p and
δ(R) ⊂ mp; this is equivalent to the condition that mpA is a two-sided ideal
of A;

(2) Fp has exactly one one-dimensional quotient if and only if p �= pσ ;
(3) Fp has no one-dimensional quotient if and only if p = pσ and δ(R) �⊂ mp.

Proof. By Lemma 3.2(3), the one-dimensional quotients of Fp are those quo-
tients Fp/ε(t+λ).k[t] for which ε(t+λ).r = r(pσ )ε(t+λ) for all r ∈ R. However,
ε(t + λ).r = ε(rσ (p)t + λr(p) + δ(r)(p)). So λ must satisfy λ(r(p) − r(pσ )) +
δ(r)(p) = 0 for all r ∈ R. Viewing this as a system of equations in the unknown λ,
the system has either zero, one, or infinitely many solutions.

(1) The linear system has infinitely many solutions if and only if r(p)−r(pσ ) =
δ(r)(p) = 0 for all r. That is, if and only if, r − rσ ∈ mp and δ(r) ∈ mp for all
r ∈ R. Writing any r as the sum of an element in mp and a constant, one sees that
the first condition is equivalent to σ (mp) ⊂ mp; but this is just the condition that
pσ = p.

If mpA is a two-sided ideal, then, as k-algebras, A/mpA ∼= k[t], so it has
infinitely many one-dimensional quotients. Conversely, if Fp has infinitely many
one-dimensional quotients then σ (mp) ⊂ mp, and δ(mp) ⊂ mp, so tmp ⊂ mpA,
whence mpA is two-sided.

(2) If the linear system has only one solution, then there is an r such that r(p)−
r(pσ ) �= 0. This means that p �= pσ . Conversely, if p �= pσ , then Fp has a one-
dimensional quotient by Proposition 3.6(1). By case (1), Fp cannot have more than
one quotient. Case (3) follows from (1) and (2). ✷

4. Degree One Points, and Nonfixed Points of Spec R

By Lemma 3.9, if p is fixed by σ , then there are either no closed points x such that
ξ∗Ox is isomorphic to Op, or an affine line of them. When there is an affine line of
them, that line is SpecA/mpA, and the points on the line have degree one.

PROPOSITION 4.1. Suppose that p �= pσ . Then there is a unique degree one
closed point x ∈ X such that ξ∗Ox

∼= Op. The annihilator of Ox is AmpA.
Proof. If M is a one-dimensional A-module that is isomorphic to Op as an

R-module, then M is necessarily a quotient of Fp. However, by Lemma 3.9, Fp

has a unique one-dimensional quotient A-module. Define x to be the closed point
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of X for which Ox is that quotient. It follows from the proof of Proposition 3.6
that Oxmp = 0, whence ξ∗Ox

∼= Op. Certainly Ox is annihilated by AmpA. Since
p is not fixed by σ , there is r ∈ mp such that rσ /∈ mp. Now, evaluating the
image of 0 = rσ t + δ(r) − rt in A/AmpA, it follows that t + α ∈ AmpA for
some scalar α ∈ k; this is the scalar α in the proof of Proposition 3.6. Hence
dimk(A/AmpA) = 1. Thus, the annihilator of Ox is precisely AmpA. ✷

Let U be the open subscheme of SpecR on which σ is not the identity. By
Proposition 4.1, the degree one closed points of X that lie above U are in bijection
with the closed points of U . It is reasonable to ask if X contains a copy of U .

The proof of the following result is due to C. Ingalls. We thank him for allowing
us to include it here.

PROPOSITION 4.2. Suppose that R is a domain and that σ does not fix any closed
points of SpecR. Then ξ : X → SpecR has a section, the image of which consists
of the degree one closed points of X.

Proof. It suffices to show that there is a two-sided ideal J in A such that the
composition R → A → A/J is a ring isomorphism. We will do this by exhibiting
an element a ∈ R such that t + a is a normal element in A.

By Proposition 3.6, there is a k-valued map p �→ αp on the closed points of
SpecR such that δ(r) + αp(r − rσ ) ∈ mp for all r ∈ R. Since p is not fixed
by σ , there is an r in mp such that rσ /∈ mp. Hence, δ(r)(r − rσ )−1 is regular
at p, and so is in an open neighborhood of p. Since it takes the value αp, which
is uniquely determined by p, we can glue these to find a single a ∈ R such that
δ(r)+ a(r − rσ ) ∈ mp for all r ∈ R and all p. Since R is a domain, it follows that
δ(r)+ a(r − rσ ) = 0. It follows that (t + a)r = rσ (t + a) for all r ∈ R. It is clear
that A/(t + a) ∼= R.

Since A/(t + a) is commutative, the section consists of the degree one closed
points of X. ✷

The proof of Proposition 4.2 shows that A ∼= R[t + a;σ ]. This can be restated
as follows.

COROLLARY 4.3. Suppose that R is a domain and that σ does not fix any closed
points of SpecR. Then every σ -derivation of R is σ -inner.

5. When p has Infinite σ -Orbit

In this section we suppose that the σ -orbit of p is infinite. We will show that Xp
∼=

GrMod k[x], where deg x = 1. We use some of the ideas in [13].

PROPOSITION 5.1. Suppose that the σ -orbit of p is infinite.
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(1) There is a unique descending chain of submodules in Fp , namely

Fp ⊃ Fpσ ⊃ F
pσ2 ⊃ · · · .

(2) There are elements αi ∈ k such that the copy of Fpσn in Fp is the k[t]-
submodule generated by (t + α1) . . . (t + αn).

(3) The scalars αn satisfy (δ + αn(1 − σ ))(R) ⊂ mpσn .
(4) HomA(Fp, Fp) ∼= k.

Proof. (1) By Proposition 3.6(1) and induction on n, Fp has a submodule iso-
morphic to Fpσn . By Proposition 3.8 there is only one such submodule.

(2) If fn ∈ k[t] is such that εfnA ∼= Fpσn , then deg fn = n by Lemma 3.2.
(3) A computation shows that ε(t+α)k[t] is an A-submodule of Fp if and only if

δ(r)(p) = α(rσ−r)(p) for all r ∈ R; that is, if and only if (δ+α(1−σ ))(R) ⊂ mp.
An induction argument now establishes the result.

(4) Let ϕ: Fp → Fp be a nonzero map. Let f ∈ k[t] be such that ϕ(ε) = εf . If
r ∈ R, then

εf · r = ϕ(ε)r = ϕ(εr) = ϕ(εr(p)) = r(p)εf,

whence deg f = 0 by Lemma 3.2. ✷
COROLLARY 5.2. Suppose that the σ -orbit of p is infinite. Then there is a unique
finite-dimensional simple quotient of Fp , and that quotient has dimension one.

LEMMA 5.3. Let x be a closed point of degree n on X. Suppose there is a nonsplit
extension 0 → Fp → E → Ox → 0. Then Ox

∼= Fq/Fqσ
n for some qσ

n ∈
{p, pσ , pσ 2

, . . .}. If the σ -orbit of p is infinite, then n = 1.
Proof. By Proposition 3.4, there is a short exact sequence

0 → Fqσ
n → Fq → Ox → 0

for some closed point q in SpecR. This induces a long exact sequence

0 → HomA(Ox, Fp) → HomA(Fq, Fp) → HomA(Fqσ
n , Fp) →

→ Ext1A(Ox, Fp) → Ext1A(Fq, Fp) → Ext1
A(Fqσ

n , Fp) → · · · . (5.1)

Since Ext1A(Ox, Fp) �= 0, either HomA(Fqσ
n , Fp) or Ext1A(Fq, Fp) is nonzero.

It follows from Lemma 3.5 that either qσ
n

or q is in {p, pσ , pσ 2
, . . .}. If q ∈

{p, pσ , pσ 2
, . . .}, then of course qσ

n ∈ {p, pσ , pσ 2
, . . .}.

The last assertion of the lemma follows from Proposition 5.1. ✷
PROPOSITION 5.4. Suppose that the σ -orbit of p is infinite. Let x be a closed
point on X. If 0 → Fp → E → Ox → 0 is nonsplit, then E ∼= F

pσ−1 .
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Proof. Since the sequence does not split, E has no nonzero finite-dimensional
A-submodule. By Lemma 5.3, Ox

∼= Fq/Fqs and q ∈ {pσ−1
, p, pσ , pσ 2

, . . .}.
As an R-module, Fp

∼= Op ⊕ Opσ ⊕ O
pσ2 ⊕ · · · . Since Fq/Fqσ is isomor-

phic to Oq as an R-module, E is isomorphic to a direct sum of indecomposable
R-modules, each of which has length at most two, at most one of which has length
two. If E has an indecomposable R-submodule of length two, that submodule has
support {q}.

Now we show that E is a free k[t]-module of rank one. Since Fp is a k[t]-
submodule of E and is free of rank one, it suffices to show that E has no
k[t]-torsion. Suppose to the contrary that there is a nonzero element e ∈ E such that
e(t + λ) = 0 for some λ ∈ k. But E is a union of finite-dimensional
R-submodules, so eI = 0 for some ideal I in R such that dimk R/I < ∞.
Therefore eA = e(R ⊕ (t + λ)A) = eR is finite-dimensional. But this cannot
happen because E is nonsplit. Hence, E is a free k[t]-module of rank one.

Next we show that E is a semisimple R-module. If not, then it contains an inde-
composable R-submodule of length two, say L. Furthermore, SuppL = {q}. Now
ξ ∗L has a filtration by R-submodules (ξ ∗L)n := L⊗R An. Since (ξ ∗L)n/(ξ ∗L)n−1

is isomorphic to Lσn

, which has support {qσn}, it follows that, as an R-module,

ξ ∗L ∼= L ⊕ Lσ ⊕ Lσ 2 ⊕ · · · .
If K denotes the socle of L, then ξ ∗K ∼= K ⊕ Kσ ⊕ Kσ 2 ⊕ · · · . Since the socle
of a direct sum of modules is the direct sum of the individual socles, ξ ∗K is the
R-socle of ξ ∗L. Further, since K is an essential R-submodule of L, ξ ∗K is an
essential A-submodule of ξ ∗L. Since K ∼= L/K ∼= Oq , there is an exact sequence

0 → Fq
∼= ξ ∗K → ξ ∗L → Fq

∼= ξ ∗L/ξ ∗K → 0.

The submodule LA of E is a quotient of ξ ∗L, and has no nonzero finite-dimensional
A-submodules, so the only possibility is that LA ∼= ξ ∗L/ξ ∗K ∼= Fq . But this is a
semisimple R-module.

Therefore emq = 0 for some e ∈ E\Fp . Thus eA ∼= Fq . If eA = E, then Fp

embeds in Fq with codimension one, so q = pσ−1
by Proposition 5.1, and the proof

is complete.
Suppose to the contrary that eA �= E. Set n = dimk(E/eA). Since eA + Fp =

E, eA∩Fp has codimension one in eA and codimension n in Fp. Hence eA∩Fp
∼=

Fqσ
∼= Fpσn . Therefore q = pσn−1

. Let ε be a k[t]-basis for eA and ε′ a k[t]-basis
for the copy of F

pσn−1 in Fp . It follows from Proposition 5.1 that there is some
α ∈ k such that ε(t +α) is a scalar multiple of ε′(t +α). Thus (ε−λε′)(t +α) = 0
for some λ ∈ k. But E has no k[t]-torsion, so ε and ε′ are scalar multiples of each
other. Hence, eA ⊂ Fp. This is a contradiction. ✷
THEOREM 5.5 ([13]). Suppose a k-linear category C has the following proper-
ties:
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(1) C is generated by {O(i) | i ∈ Z
n} in the sense that the set of all subobjects of

all finite direct sums of the O(i)s generates C;
(2) if j � i (i.e., js � is for s = 1, . . . , n), then HomC(O(j),O(i)) = k;
(3) the only submodules of O(i) are copies of O(j) for j � i;
(4) if eu = (0, . . . , 1, . . . , 0) for u = 1, . . . , n are the obvious basis elements for

Z
n, then there are short exact sequences

0 → O(i − eu) → O(i) → pu,iu → 0,

and {pu,w | u ∈ {1, · · · , n}, w ∈ Z} is a complete set of isomorphism classes
of the simple objects in C;

(5) EndC(pu,w) ∼= k.

Then C is equivalent to GrModZn k[x1, . . . , xn]/(Kdim � n − 2).
Proof. This was proved in [13], but was not stated in quite this way.
All the proofs in [13, Section 6] apply to the present situation. For example,

the proof of [13, Proposition 6.1] can be applied to show that every submodule
of a finite direct sum of various copies of O(i) is also a finite direct sum of such
modules. Therefore the assertion follows from [13, Theorem 6.9]. ✷

Here we only need the case n = 1 of this theorem. In that case C is equivalent
to GrMod k[x], the category of graded modules over the polynomial ring generated
by an element of degree one.

THEOREM 5.6. Suppose that the σ -orbit of p is infinite.

(1) ModXp is equivalent to GrMod k[x].
(2) The closed points in Xp can be labelled xn, n ∈ Z, in such a way that ξ∗Oxn

∼=
Opσn , and for each n there is an exact sequence

0 → F
pσn+1 → Fpσn → Oxn → 0.

Proof. Write C for the full subcategory of ModX consisting of all subquotients
of finite direct sums of various copies of F

pσi . Lemma 3.2 and Proposition 5.4
shows that C satisfies the first condition in Definition 2.3, namely, every Noetherian
1-critical Xp-module is isomorphic to F

pσi for some i. Since C is closed under
finite direct sums and subquotients, it follows that C = modXp.

(2) Since every Noetherian Xp-module is a subquotient of a finite direct sum
of F

pσi , every simple Xp-module is a quotient of some F
pσi [14, Lemma 2.1].

By Proposition 5.1, Fpσn has a unique simple quotient, and that quotient is one-
dimensional. By Proposition 3.6 that quotient is isomorphic to Opσn as an
R-module. In other words ξ∗Oxn is isomorphic to Opσn .

(1) We now check that the hypotheses in Theorem 5.5 hold. Condition (1)
follows from the fact that every Noetherian 1-critical is isomorphic to F

pσi for
some i. Conditions (2) and (3) follow from Propositions 3.8 and 5.1(1). Condition
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(4) is part (2) of the present result, and condition (5) is clear. Therefore the assertion
follows from Theorem 5.5.

Under the equivalence of categories Fpσn corresponds to k[x](−n), the free
module with its generator in degree n. ✷

6. When p Has Finite σ -Orbit

In this section we suppose that the σ -orbit of p has size n for some integer n � 2.

LEMMA 6.1. Suppose that the σ -orbit of p has size n � 2. Then

δ(mpmpσ . . .m
pσn−1 ) ⊂ mpmpσ . . .m

pσn−1 .

Proof. Write I = mpmpσ . . .m
pσn−1 . Every element in I is a sum of elements

of the form ab where a ∈ mp and b ∈ mpσ . . .m
pσn−1 . It is clear that δ(ab), which

equals δ(a)b + aσ δ(b), vanishes at pσ . Thus δ(I ) ⊂ mpσ . Replacing p by pσi

,
and repeating the argument, we see that δ(I ) ⊂ m

pσj for all j . The ideals m
pσj ,

j ∈ Zn, are pairwise distinct, so their intersection equals their product. ✷
Lemma 6.1 does not extend to the case n = 1; to see this, take R = k[x],

σ = idR, and δ = d/dx.

PROPOSITION 6.2. Suppose that the σ -orbit of p has size n � 2. Then J :=
mpmpσ . . .m

pσn−1A is a two-sided ideal of A, and A/J ∼= S[t;σ, δ] where S is a
product of n copies of the field k, σ is a generator of Autk S, and δ is a σ -derivation
of S.

Proof. Write I = mpmpσ . . .m
pσn−1 . Thus J = IA. It is clear that J is closed

under left multiplication by R, so we need only check that tJ ⊂ J in order to show
that it is a two-sided ideal. However, tI ⊂ I t + δ(I ), and this is contained in IA

by Lemma 6.1. Hence, tJ ⊂ J .
Since I is stable under σ and under δ, σ induces an automorphism of R/I ,

which we denote by σ also, and δ induces a σ -derivation of R/I , which we denote
by δ. Set S = R/I . Thus S is a product of n copies of k. Since σ has order n,
it generates Autk S. Since A/I ∼= R/J ⊗R A as a right A-module, it follows that
A/I ∼= S[t;σ, δ] as claimed. ✷

If the σ -orbit of p has size n � 2, Fp is annihilated by mpmpσ . . .m
pσn−1 so, as

an R-module, it decomposes as a direct sum

Fp = (Fp)0 ⊕ (Fp)1 ⊕ · · · ⊕ (Fp)n−1,

where (Fp)i is the R-submodule supported at pσi

. We will show that A/AnnFp is
isomorphic to the representations of a certain quiver. The vertices of the quiver can
be thought of as the points in the orbit of p, and the component of Fp at the vertex
pσi

is the submodule supported at pσi

.
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LEMMA 6.3. Let S be a product of n � 2 copies of the field k. Let σ be a
generator of Autk S. Let {ei | i ∈ Zn} be a complete set of primitive orthogonal
idempotents for S, labeled so that eσi = ei+1. Let {νi | i ∈ Zn} be arbitrary scalars.
Then the linear map δ: S → S defined by δ(ei) = νi+1ei+1 −νiei is a σ -derivation
of S, and every σ -derivation arises in this way.

Proof. See [2, Lemma 1.4], [3, Lemma 6.1] and [4, Lemma 3.7]. ✷
Although the following is known in various forms (e.g., [4, Proposition 7.1] and

[3, Proposition 6.1]), we include a proof for the convenience of the reader.

PROPOSITION 6.4. Let S be a product of n � 2 copies of the field k. Let σ be a
generator of Autk S, and let δ be a σ -derivation of S. Then S[t;σ, δ] is isomorphic
to the path algebra of the quiver

��•−−−−→•−−−−→• · · · •−−−−→•−−−−→•
n − 1 n − 2 1 0 (6.1)

Proof. Let Q denote the quiver, and write B = S[t;σ, δ]. Clearly Autk S ∼= Zn.
Let {ei | i ∈ Zn} be a complete set of primitive orthogonal idempotents for S,
labeled so that eσi = ei+1. Thus tei = ei+1t + δ(ei) for all i. Let νi , i ∈ Zn, be such
that δ(ei) = νi+1ei+1 − νiei for all i. Define u = t +∑

i νiei . Then

uej = tej + νjej = ej+1t + δ(ej ) + νjej = ej+1t + νj+1ej+1 = ej+1u

for all j .
Clearly, B is generated by u and e0, . . . , en−1. Because uej = ej+1u for all j ,

uS = Su. Thus the powers of u form a basis for B as a left-, and as a right-,
S-module. Therefore B ∼= S[u;σ ]. We can thus make B a graded k-algebra with
B0 = S, and Bi = Sui = uiS for all i � 0.

Now the isomorphism becomes apparent. If εi denotes the trivial path at the
vertex labelled i, and xi denotes the arrow from the vertex i + 1 to the vertex i,
then the isomorphism is given by sending ei to εi and u to x0 + · · · + xn−1. Under
the isomorphism, xi corresponds to uei = t + νiei . ✷

We are now able to describe the fiber Xp.

PROPOSITION 6.5. Suppose that p is not fixed by σ , but has a finite σ -orbit. Let
B = A/AnnFp. If GKdimB = 1, then ModXp = ModB.

Proof. Because Fp is critical with respect to Krull dimension, its annihilator is
prime [9, Theorem 6.8.26]. So B is a prime Noetherian ring. Since GKdimB = 1,
B satisfies a polynomial identity. Thus B embeds in a finite direct sum of copies of
Fp. Hence B is in ModXp, and therefore ModB is contained in ModXp. To prove
equality it remains to show that a module M as in criterion (1) of Definition 2.3 is
a B-module. It suffices to show that if 0 → Fp → E → N → 0 is an essential
extension of Fp and dimk N < ∞, then E is a B-module. Because Fp is essential
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in E, E is also critical with respect to GKdim. By [9, Theorem 6.8.26], AnnE =
AnnFp, whence E is a B-module. ✷
THEOREM 6.6. Suppose that the σ -orbit of p has size n and that 2 � n < ∞.
Then ModXp = ModA/AnnFp , and this is equivalent to the category of repre-
sentations of the quiver (6.1).

The representation theory of this quiver is completely understood, so one has
complete information about Xp. For example, there are n closed points on Xp of
degree one, and all other closed points on Xp have degree n. The indecomposable
projectives in ModXp are, up to isomorphism, the F

pσi . For each i, there is an
injective map F

pσi+1 → F
pσi , and the cokernel is one-dimensional.

Suppose that the primitive orthogonal idempotents ei ∈ S = R/I are labelled
so that Ope0 �= 0. Then e1, which is equal to eσ0 , is in σ (mp) = m

pσ−1 , whence
O

pσi e−i �= 0. Therefore O
pσi

∼= e−iS, and F
pσi

∼= e−iB.

7. When p is Fixed by σ

In this section we suppose that pσ = p. The following is an immediate conse-
quence of Proposition 3.6.

PROPOSITION 7.1. If Fp is simple, then p is fixed by σ .

It is possible for Fp to be a simple module. This happens, for example, when A

is the Weyl algebra and k has characteristic zero.

PROPOSITION 7.2. If Fp is simple, then Xp
∼= Spec k.

Proof. We will show that the full subcategory, say C, of ModX consisting of
all direct sums of copies of Fp satisfies the three conditions in Definition 2.3. It is
clear that C satisfies conditions (2) and (3). To show that C satisfies condition (1)
it suffices to show that any exact sequence 0 → Fp → E → Ox → 0 in which Ox

is a finite-dimensional simple A-module splits.
Suppose to the contrary that there is a nonsplit sequence of this form. By

Lemma 5.3, Ox = Fq/Fqσ
n for some qσ

n ∈ {p, pσ , pσ 2
, . . .}. Since Fp is simple,

p = pσ and q = p. Thus Fq is simple, contradicting the hypothesis that Ox is
finite-dimensional.

Therefore ModXp consists of all direct sums of copies of Fp . To complete the
proof we must show that the endomorphism ring of Fp is isomorphic to k. Any
nonzero endomorphism of Fp is an automorphism because Fp is simple, and is a
k[t]-module map, so is given by multiplication by a nonzero scalar. ✷

Although Xp is isomorphic to Spec k, it is not a closed point in X. The inclusion
functor ModXp → ModX has a right adjoint but does not have a left adjoint. Thus
Xp is a weakly closed, but not a closed, subspace of X.
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In the rest of this section we consider the case when Fp is not simple. This
happens, for example, when σ is the identity and δ is zero.

PROPOSITION 7.3. Let

D = {d ∈ k[t] | dmp ⊂ mpA}.
Then there is an isomorphism :: D → EndA Fp defined by

:(d)(εa) = εda

for all a ∈ A. As a consequence, D is a subring of k[t].
Proof. We write I(mpA) for the idealizer of mpA in A. Since A = mpA⊕ k[t],

I(mpA) = mpA ⊕ D. It is easy to check that EndA(A/mpA) ∼= I(mpA)/mpA via
the map : [9, 1.1.11]. ✷

From now on we view Fp as a D-A-bimodule. If m ∈ M and d ∈ D, then we
write d.m to denote :(d)(m). Thus, if m = εa, then d.m = εda.

The right action of A on Fp restricts to give a right action of D on Fp also. Each
element of Fp is of the form εf for some f ∈ k[t]. But D is a subalgebra of k[t],
and k[t] is commutative, so d.εf = εdf = εf d, whence dm = md for all m ∈ Fp

and all d ∈ D. Thus we can unambiguously speak of the D-module structure on
Fp without specifying whether we mean the left or the right structure.

LEMMA 7.4. If p = pσ , then every nonzero submodule of Fp is isomorphic to
Fp, and is equal to dFp for some d ∈ D.

Proof. This is an immediate consequence of Lemma 3.2 because every A-sub-
module of Fp is a k[t]-submodule. ✷
LEMMA 7.5. If p = pσ , then D = k[u] for some u ∈ k[t]. If Fp is not simple,
then u /∈ k.

Proof. Write F = Fp . We show that D is closed under greatest common divi-
sors. If c, d ∈ D, then cF + dF is an A-submodule of F , so equals eF for some
e ∈ D. However, viewing F as a k[t]-module, eF is generated by the greatest
common divisor of c and d in k[t]. Hence e is a nonzero scalar multiple of that
greatest common divisor. Let u ∈ D be a polynomial of minimal t-degree and with
zero constant term. Let d ∈ D be another polynomial with zero constant term.
Then t divides the greatest common divisor of u and d, so by minimality of deg u,
u|d. Induction shows that d is a polynomial in u. ✷

As a right k[t]-module, Fp is isomorphic to k[t]. If deg u = n > 0, then k[t],
and hence Fp is a free D-module of rank n. A basis is given by ε, εt, . . . , εtn−1. In
particular, EndD Fp

∼= ModMn(k[u]). Because Fp is a free D-module, if a, b ∈ D,
then aFp ⊂ bFp if and only if b divides a.
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LEMMA 7.6. Suppose p = pσ . Then HomA(Fp, S) = k for every simple quotient
S of Fp .

Proof. If Fp is simple, this follows from Proposition 7.2. If Fp is not simple, then
S = Fp/(u + α)Fp for some α ∈ k. Since u + α acts centrally on Fp , every non-
zero homomorphism from Fp to S has kernel (u + α)Fp. Thus HomA(Fp, S) =
HomA(S, S) = k, where the last equality follows from the fact the only finite-
dimensional division algebra over k is k itself. ✷

We will use the following result [14, Corollary 1.2].

PROPOSITION 7.7 ([14]). Let k be algebraically closed field and C a k-linear
category. Suppose that

(1) C has a unique Noetherian 1-critical object up to isomorphism, say L;
(2) C = ModL;
(3) EndC L is isomorphic to a polynomial ring k[u];
(4) HomC(L, S) ∼= k for every simple quotient S of L.

Then L is a progenerator in C, and C is equivalent to Mod k[u].

PROPOSITION 7.8. Suppose that p = pσ . If Fp is not simple, then Xp
∼= A

1 and
every closed point on Xp has degree equal to that of the element u appearing in
Lemma 7.5.

Proof. If n = deg u, then EndD Fp is isomorphic to Mn(k[u]). The action of A
on Fp gives an injective map from B = A/AnnFp to EndD Fp. By an argument
similar to that in Proposition 6.5, ModXp = ModB. Since B is a Noetherian prime
ring satisfying a polynomial identity, there are nonzero morphisms between any
two uniform right ideals. So every Noetherian 1-critical B-module is isomorphic
to a submodule of Fp . The lemmas in this section show that the hypotheses of
Proposition 7.7 are satisfied, so Xp

∼= A
1. It follows from Lemma 7.4 that the

simple quotients of Fp have dimension deg u. ✷
The four cases in Theorem 1.1 now follow from Propositions 5.4, 6.5, 7.2,

and 7.8.
Finally we identify the element u that generates EndA Fp when p = pσ . This

allows one to determine the degree of the points on the fibers over the fixed point,
and thus completes the description of the finite-dimensional simple A-modules.

PROPOSITION 7.9. Suppose that p = pσ . The element u(t) in Lemma 7.5 can be
chosen to be a nonconstant polynomial of minimal degree such that u(δ)(mp)⊂ mp.

Proof. Define D′ = {f (t) ∈ k[t] | f (δ)(mp) ⊂ mp}. We will show that
D ⊂ D′, and if f (t) ∈ D′ is chosen to be a nonconstant polynomial of minimal
degree, then f (t) ∈ D. Then, because Lemma 7.5 implies that u is an element in D

of minimal positive degree, it will follow that D is generated by this particular f (t).
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We define k-linear operators νij : R → R for all integers i, j � 0 by

νij := the sum of all words in σ and δ having i δs and j σ s. (7.1)

For example, ν22 = δ2σ 2 + δσ δσ + δσ 2δ + σδ2σ + σδσδ + σ 2δ2. We define
ν00 = idR.

Let r, s ∈ R. An induction argument (cf. [7, Equation 1.1.4, p. 2]) on m shows
that

δm(rs) =
m∑

j=0

νm−j,j (r)δ
j (s) and tmr =

m∑
j=0

νm−j,j (r)t
j .

Let f (t) = ∑n
m=0 λmt

m be any element of k[t]. Then

f (δ)(rs) =
n∑

m=0

λm

m∑
j=0

νm−j,j (r)δ
j (s) =

n∑
j=0

(
n∑

m=j

λmνm−j,j (r)

)
δj (s) (7.2)

and, computing in the ring A,

f (t)r =
n∑

m=0

λm

m∑
j=0

νm−j,j (r)t
j =

n∑
j=0

(
n∑

m=j

λmνm−j,j (r)

)
tj . (7.3)

From the second of these equations, one sees that f (t)mp ⊂ mpA if and only if∑n
m=j λmνm−j,j (mp) ⊂ mp for all j = 0, . . . , n. Therefore, if f (t) ∈ D, then

f (δ)(rs) ⊂ mp for all r ∈ mp and s ∈ R so, setting s = 1, f (δ)(mp) ⊂ mp. Thus
D ⊂ D′.

Now suppose that f (t) ∈ D′ is chosen to have minimal positive degree. There-
fore the right-hand side of (7.2) belongs to mp if either r or s does. In particular, if
we fix r ∈ mp and set

µj =:
(

n∑
m=j

λmνm−j,j (r)

)
(p),

then
∑n

j=0 µjδ
j (s) ∈ mp for all s ∈ R. However,

µn = λnν0,n(r)(p) = λnσ
n(r)(p) = 0.

Therefore
∑n−1

j=0 µjδ
j (s) ∈ mp for all s ∈ R. In other words,

∑n−1
j=0 µj t

j is in D′.
But f (t) was chosen to have minimal positive degree, so µ1 = µ2 = · · · =
µn−1 = 0. Equivalently, if r ∈ mp, then

∑n
m=j λmνm−j,j (r) ∈ mp for j =

1, . . . , n − 1. However, this expression is also in mp when j = 0 and j = n;
for example,

n∑
m=0

λmνm,0(r) =
n∑

m=0

λmδ
m(r) = f (δ)(r)
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which is in mp by hypothesis. Therefore all the coefficients of tj in (7.3) belong to
mp, whence f (t)r ∈ mpA. Therefore f (t) ∈ D. ✷

In general, D is not equal to D′. For example, take A = k[x][t; id, δ] where
δ = d/dx and char k = 2. Then δi = 0 for all i > 1 so δ3(R) ⊂ m for all maximal
ideals m. Hence t3 ∈ D′, but it is not in D for any m.

8. Disjoint Union of Fibers

We would like to say that X is the disjoint union of the fibers Xp. For such a
statement to have some substance it must mean something a little different than it
does in the commutative case. In the commutative case it says that every point of X
lies on some fiber. We proved an analogue of this in Proposition 3.4. However, that
result is vacuous if A has no finite-dimensional simple modules (for example, if A
is the Weyl algebra over a field of characteristic zero). We therefore seek a result
which says something about all A-modules, a result which is a little like saying
that every subvariety of X meets some fiber, and that distinct fibers do not meet.
Following ideas in [8] and [10] we use Ext groups to give meaning to the words
‘meet’ and ‘disjoint’.

PROPOSITION 8.1. Let Xp be the fiber over a closed point p ∈ SpecR.

(1) ModXp is the full subcategory of ModX generated by all subquotients of all
possible direct sums of the Fpσn s for n ∈ Z.

(2) If M ∈ ModXp, then the support of ξ∗M is contained in the σ -orbit of p.
(3) Xp = Xq if and only if the σ -orbits of p and q are equal.

Proof. (1) By the analysis of all cases, every essential extension of Fpσn by a
finite-dimensional module is isomorphic to Fpσm for some m (see Propositions 5.4,
6.5, 7.2, and 7.8). Hence the assertion follows from the definition of ModXp.

(2) We observed in Section 2 that if p is a closed point of SpecR, then the
support of ξ∗Fpσn is contained in the σ -orbit of p. Therefore (1) implies (2).

(3) This follows from (1) and Lemma 3.3. ✷
Although (2) seems to say that f sends the fiber Xp to the σ -orbit of p that

statement should be interpreted carefully. For example, if R = k[x] and A =
k[x, ∂] where ∂ = d/dx, then F0 = A/xA is isomorphic as an R-module to the
injective envelope of R/(x) so, although ξ∗F0 is supported at 0, it is not a k[x]/(x)-
module. Parts (2) and (3) are a weak way of saying that distinct fibers are disjoint.
The next result is a stronger way of saying that distinct fibers are disjoint.

LEMMA 8.2. Let Xp and Xq be distinct fibers. Let L be an Xp-module and M an
Xq-module. Then ExtiX(L,M) = 0 for all i.
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Proof. Since Xp is locally Noetherian, it suffices to prove this when L is a
Noetherian Xp-module. Using the long exact sequence, we reduce it to the case
when L is critical. By the first part of Theorem 1.1, L is isomorphic to Fpsn or a
simple quotient of Fpsn . In both cases there is a short exact sequence 0 → L1 →
L0 → L → 0 in which L1 and L0 are isomorphic to (possibly different) F

pσj .
Therefore it suffices to prove the result when L is isomorphic to some F

pσj . For

simplicity, we may assume that L = Fp. But ExtiA(Fp,M) ∼= ExtiR(Op,M) (see
(3.2)), and this is zero because the support of ξ∗M is contained in the σ -orbit of q
which does not contain p. ✷

We need two lemmas before proving that the fibers ‘cover’ X.

LEMMA 8.3. Let B be a right Noetherian k-algebra and let M be a right
B-module. If dimk M is countable, then dimk ExtiB(N,M) is countable for all
finitely-generated right B-modules N .

Proof. Take a resolution of N by finitely-generated free modules. The assertion
follows from the fact that HomB(B,M) = M has countable dimension over k. ✷
LEMMA 8.4. Let k be uncountable and let B be a right Noetherian k-algebra
satisfying a polynomial identity. Let M be a nonzero right B-module such that
dimk M is countable. Then ExtiB(N,M) is nonzero for some i and some simple
right B-module N .

Proof. Suppose to the contrary that ExtiB(N,M) = 0 for all simple N and
all i. We will show that ExtiB(L,M) = 0 for all finitely generated L and all i.
By Noetherian induction we may assume that L is critical with respect to Krull
dimension. If KdimL = 0, then L is simple so ExtiB(L,M) = 0 by hypothesis.
Suppose that KdimL > 0, and that the Ext groups vanish for those L of smaller
Krull dimension. Using the long exact sequence for Ext and filtering L by appro-
priate submodules, we may assume that L ∼= B/P for some prime ideal P . The
GK-dimension of B/P is at least 1 because B/P is not simple. Hence the ring
of fractions Q := Q(B/P ) has uncountable dimension over k. Let a be a regular
element in B/P . The long exact sequence for Ext associated to the exact sequence

0 −→ B/P
a−→ B/P −→ B/P + aB −→ 0

shows that the induced action of a on ExtiB(B/P,M) is bijective.
Hence ExtiB(B/P,M) is a module over Q, so is either zero or has uncountable

dimension over k. By Lemma 8.3, it must be zero.
Thus ExtiB(L,M) = 0 for all Noetherian modules L. But this is absurd because

HomB(B,M) ∼= M �= 0. ✷
Roughly speaking, the next result says that every subspace of X meets some

fiber, or that the fibers cover X.
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PROPOSITION 8.5. Suppose that k is uncountable. If M is a nonzero finitely gen-
erated right A-module, then ExtiA(Fp,M) is nonzero for some i and some closed
point p ∈ SpecR.

Proof. Since ExtiA(ξ
∗Op,M) = ExtiR(Op,M) and since M has countable di-

mension over k, the result follows from the previous lemma. ✷
Combining Lemma 8.2 and Proposition 8.5, we say that X is a disjoint union of

fibers Xp. This is the second part of Theorem 1.1.
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