Primitive Ideals and Nilpotent Orbits in Type G_2

T. Levasseur*

Université Pierre et Marie Curie, Mathématiques, Tour 45–46, 4, place Jussieu, 75252 Paris Cedex 05, France

AND

S. P. Smith‡

University of Warwick, Coventry CV4 7AL, England

Communicated by Jacques Tits

Received April 13, 1986

1. INTRODUCTION

1.1. Throughout this paper all Lie algebras will be finite dimensional and defined over \mathbb{C}. Denote by g_2 the simple Lie algebra of type G_2. This paper examines the 8-dimensional nilpotent orbit in g_2 and the two completely prime primitive ideals associated to it. The main technique is to embed g_2 in $so(7)$ and to use information about the minimal nilpotent orbit in $so(7)$ and the Joseph ideal in $U(so(7))$ to obtain the required information about g_2.

Most of the questions we consider arise explicitly in two papers of Vogan [26, 27].

1.2. If g is any semi-simple Lie algebra, and J a primitive ideal of $U(g)$, then the associated variety $\mathcal{V}(J) \subseteq g^*$ is defined as the zeroes of the associated graded ideal, $gr J$, in $S(g)$, the symmetric algebra on g. Through the non-degeneracy of the Killing form, g and g^* are identified, and $\mathcal{V}(J)$ is considered as a subvariety of g. Let G denote the adjoint algebraic group of g. If $X \in g$, and $ad X$ acts nilpotently on g, we refer to $G \cdot X$ as a nilpotent orbit. By Joseph [20], $\mathcal{V}(J)$ is the closure of a single nilpotent G-orbit, which we denote by O_J. We say that O_J is associated to J, and conversely, that J is associated to O_J.

An ideal J of $U(g)$ is said to be completely prime if $U(g)/J$ contains no zero-divisors.

* Current address: Université de Bretagne occidentale, 29287 Brest Cedex, France.
‡ Current address: University of Washington, Seattle, WA 98195.
Let \(g \) be simple and not of type \(A_n \). Let \(O_{\text{min}} \) denote the (unique) minimal non-zero nilpotent orbit. There is a unique completely prime primitive ideal, denoted \(J_0 \) and called the Joseph ideal, associated to \(O_{\text{min}} \) \cite{13}. It is an important problem to be able to determine "many" completely prime ideals (see, for example, \cite{16,17}).

1.3. For \(g_2 \) the nilpotent orbits are of dimension 0, 6, 8, 10, 12. We denote by \(O_d \) the unique nilpotent orbit of dimension \(d \). In \cite{16,18} Joseph shows that there are exactly two completely prime primitive ideals associated with \(O_8 \). Let \(\alpha_1 \) and \(\alpha_2 \) be simple roots for \(g_2 \) with \(\alpha_1 \) short and \(\alpha_2 \) long. Let \(\bar{\alpha}_1 \) and \(\bar{\alpha}_2 \) be the corresponding fundamental weights. With the notation of 2.4, the two completely prime primitive ideals associated with \(O_8 \) are \(J_1 = J_1(\bar{\alpha}_1 + \bar{\alpha}_2) \) and \(J_2 = J_1(\bar{\alpha}_1 - \bar{\alpha}_2) \).

The following are the main results obtained in this paper:

(a) a new proof that \(J_1 \) is a completely prime ideal by showing that \(J_1 = J_0 \cap U(g_2) \), where \(J_0 \) is the Joseph ideal for \(\text{so}(7) \);

(b) the embedding \(U(g_2)/J_1 \subset U(\text{so}(7))/J_0 \) obtained from (a) is an equality;

(c) \(\bar{O}_8 \) (the Zariski closure of \(O_8 \) in \(g_2 \)) is not a normal variety; there is a natural map \(\pi: \text{so}(7) \to g_2 \) (see 2.5) such that \(\pi: \bar{O}_{\text{min}} \to \bar{O}_8 \) is bijective and \(\bar{O}_{\text{min}} \) is the normalisation of \(O_8 \) (here \(\bar{O}_{\text{min}} \) is the Zariski closure of the minimal orbit \(O_{\text{min}} \) in \(\text{so}(7) \));

(d) \(\bar{O}_8 \cap n^+ \) (where \(n^+ \) is the span of the positive root vectors in \(g_2 \)) has two irreducible components, \(V_1 \) and \(V_2 \) (both are singular varieties), and there is an algebra embedding \(U(g_2)/J_1 \subset \mathfrak{g}(V_1) \), the ring of differential operators on \(V_1 \), such that \(\mathfrak{g}(V_1) \) becomes a simple highest weight module for \(g_2 \);

(e) the graded ideal \(\text{gr} J_1 \) is not prime. There is an isomorphism of \(g_2 \)-modules \(S(g_2)/\text{gr} J_1 \cong C(\bar{O}_8) \) and \(C(O_8) \) is the ring of regular functions on the normalisation of \(O_8 \) (by \cite[Lemma 3.7]{2}).

1.4. The results given above answer a number of questions raised in \cite{26,27}. One other question of Vogan which we answer is the following. Consider \(g_2 \) as a subalgebra of \(\text{so}(8) \). Let \(G_2 \subset SO(8) \) be the closed connected subgroup of \(SO(8) \) with Lie algebra \(g_2 \). Does the minimal nilpotent \(SO(8) \)-orbit in \(\text{so}(8) \) (which is 10-dimensional) contain a dense open \(G_2 \)-orbit? We answer this in the affirmative in 2.7.

1.5. Each section of the paper begins with an extensive introduction, so we only briefly indicate here the format of the paper. In Section 2 we give details of the inclusions \(g_2 \subset \text{so}(7) \subset \text{so}(8) \) which will be used throughout. The inclusion \(g_2 \subset \text{so}(7) \) gives rise to a linear map \(\pi: \text{so}(7) \to g_2 \) (see 2.5). We examine the relationship between nilpotent orbits in \(\text{so}(7) \) and \(g_2 \) under
the action of π. In Section 3 we prove (a), (b), that $\bar{\mathcal{O}}_8$ is not normal, and part of (d). Sections 4 and 5 are devoted to a more detailed examination of $\mathcal{O}_8, \mathcal{O}_{\text{min}}$ and the components of $\mathcal{O}_8 \cap \mathfrak{n}_2^+$ and $\mathcal{O}_{\text{min}} \cap \mathfrak{n}_1^+$, where \mathfrak{n}_1^+ (respectively \mathfrak{n}_2^+) is the span of the positive root vectors in $\mathfrak{so}(7)$ (respectively \mathfrak{g}_2).

2. Embedding \mathfrak{g}_2 in $\mathfrak{so}(7)$

2.1. In this section we describe the inclusions $\mathfrak{g}_2 \subseteq \mathfrak{so}(7) \subseteq \mathfrak{so}(8)$ which will be used later. Apart from notation and terminology a key point is the introduction in 2.5 of a \mathfrak{g}_2-module map $\pi: \mathfrak{so}(7) \to \mathfrak{g}_2$. This map is obtained from the restriction $\mathfrak{so}(7)^* \to \mathfrak{g}_2^*$ by identifying each Lie algebra with its dual via the Killing form. There is a similar map $\pi_2: \mathfrak{so}(8) \to \mathfrak{g}_2$. Two results concerning \mathfrak{t}_C are proved in 2.6 and 2.7, respectively.

First some notation: let $\mathcal{O}_{\text{min}} \subseteq \mathfrak{so}(7)$ denote the minimal nilpotent $\mathfrak{so}(7)$ orbit, and $\mathcal{O} \subseteq \mathfrak{so}(8)$ the minimal nilpotent $\mathfrak{so}(8)$-orbit (these varieties are of dimensions 10 and 12, respectively). We show that $\pi(\mathcal{O}_{\text{min}}) = \mathcal{O}_8$, and $\pi_2(\mathcal{O}) = \mathcal{O}_{10}$. An immediate consequence of the second fact is that \mathcal{O} contains a dense G_2-orbit, where $G_2 \subseteq \mathfrak{so}(8)$ is the connected simple subgroup with Lie algebra \mathfrak{g}_2.

2.2. It is well known that \mathfrak{g}_2 embeds in $\mathfrak{so}(7)$, but for the convenience of the reader one such embedding is described below.

We shall consider inclusions $\mathfrak{g}_2 \subseteq \mathfrak{so}(7) \subseteq \mathfrak{so}(8)$. It will be notationally convenient to write $\mathfrak{g}_1 = \mathfrak{so}(7)$ and $\mathfrak{g}_0 = \mathfrak{so}(8)$. The subscripts $0, 1, 2$ will be used in an obvious way to distinguish root systems R_0, R_1, R_2, systems of simple roots A_0, A_1, A_2, and other objects associated to these three Lie algebras.

Let $\{e_i, e_{-i} \mid 1 \leq i \leq 4\}$ be a basis for \mathbb{C}^8. Let $E_{ij} \in \mathfrak{gl}(8)$ for $i, j \in \{1, 2, 3, 4\}$ be the usual matrix units. Define a Cartan subalgebra h_0 for $\mathfrak{so}(8)$ with basis $\{H_i = E_{ii} - E_{-i,-i} \mid 1 \leq i \leq 4\}$.

Take a dual basis to the H_i in h_0^*, $\{e_i \mid 1 \leq i \leq 4\}$. A root system for $\mathfrak{so}(8)$ is given by $R_0 = \{ \pm e_i \pm e_j \mid 1 \leq i < j \leq 4\}$ and a system of simple roots is given by $A_0 = \{e_1 - e_2, e_2 - e_3, e_3 - e_4, e_3 + e_4\}$.

The Dynkin diagram D_4 is labelled

\[
\begin{align*}
e_1 - e_2 & \\
e_2 - e_3 & \\
e_3 - e_4 & \\
e_3 + e_4 & \\
e_1 - e_3 & \\
e_2 - e_4 & \\
e_3 + e_4 & \\
e_2 + e_4 &
\end{align*}
\]
The symmetric group S_3 acts as diagram automorphisms, and hence as automorphisms of $so(8)$. Write

$$S_3 = \langle \sigma, \tau | \sigma(e_3 - e_4) = e_3 + e_4, \tau(e_1 - e_2) = e_3 + e_4, \tau(e_3 + e_4) = e_3 - e_4, \sigma^2 = \tau^2 = 1 \rangle.$$

Define $g_1 \subseteq so(8)$ to be the subalgebra of σ-invariants. Then $g_1 \cong so(7)$. Write $h_1 = h_0 \cap g_1$. This is a Cartan subalgebra for g_1, and has a basis $\{H_i | 1 \leq i \leq 3\}$. The root system for $so(7)$ is given by $R_i = \{\pm \eta_i, \pm \eta_i \pm \eta_j | 1 \leq i < j \leq 3\}$ and we take as simple roots $A_1 = \{\eta_1 - \eta_2, \eta_2 - \eta_3, \eta_3\}$. The inclusion $h_1 \subseteq h_0$ gives a restriction map $j: h_0^* \rightarrow h_1^*$ such that ker $j = \mathbb{C}e_4$ and for $1 \leq i \leq 3$, $j(e_i) = \eta_i$. Note in particular that $j(R_0) = R_1, j(A_0) = A_1$, and (when R^+ denotes the positive roots) $j(R_0^+) = R_1^+$. Write $\beta_1 = \eta_1 - \eta_2, \beta_2 = \eta_2 - \eta_3, \beta_3 = \eta_3$ for the simple roots. The corresponding fundamental weights are $\omega_1 = \eta_1, \omega_2 = \eta_1 + \eta_2, \omega_3 = \frac{1}{2}(\eta_2 + \eta_3)$.

2.3. Define $g_2 = so(8)^{S_3}$ to be the space of S_3 invariants. This subalgebra is simple of type $G_2[3, \text{Ex. 5.13, p. 238}].$ This gives the required inclusions $g_2 \subseteq g_1 \subseteq g_0$.

Define $h_2 = h_0 \cap g_2$. Since $H_{a_1} - a_1 - H_j = H_j$, a basis for h_2 is given by $\{H_1 - H_2 + 2H_3, H_2 - H_3\}$. This is a Cartan subalgebra for g_2. Fix simple roots $A_2 = \{a_1, a_2\}$ for g_2, with a_1 short and a_2 long. We give below the Chevalley basis for g_2 in terms of that for $so(7)$.

$$
\begin{align*}
X_{a_2} &= X_{\eta_2 - \eta_3}, & X_{-a_2} &= X_{\eta_3 - \eta_2} \\
X_{3a_1 + a_2} &= -X_{\eta_1 + \eta_3}, & X_{-(3a_1 + a_2)} &= X_{-(\eta_1 + \eta_3)} \\
X_{3a_1 + 2a_2} &= -X_{\eta_1 + \eta_2}, & X_{-(3a_1 + 2a_2)} &= X_{-(\eta_1 + \eta_2)} \\
X_{a_1} &= X_{\eta_1 - \eta_2 + \eta_3}, & X_{-a_1} &= X_{-(\eta_1 - \eta_2) + \eta_3} \\
X_{a_1 + a_2} &= -X_{\eta_1 - \eta_3} + X_{\eta_2}, & X_{-(a_1 + a_2)} &= -X_{-(\eta_1 - \eta_3) + \eta_2} \\
X_{2a_1 + a_2} &= -X_{\eta_2 + \eta_3} - X_{\eta_1}, & X_{-(2a_1 + a_2)} &= -X_{-(\eta_2 + \eta_3) - \eta_1} \\
H_{a_1} &= H_{\eta_1 - \eta_2} + H_{\eta_3} = H_1 - H_2 + 2H_3 \\
H_{a_2} &= H_{\eta_2 - \eta_3} = H_2 - H_3.
\end{align*}
$$

The fundamental weights of g_3 are denoted ω_1 and ω_2, where $\omega_i(H_{a_j}) = \delta_{ij}$ for $i, j \in \{1, 2\}$. Hence $\omega_1 = 2a_1 + a_2$, and $\omega_2 = 3a_1 + 2a_2$, while $\alpha_1 = 2\omega_1 - \omega_2$, and $\alpha_2 = -3\omega_1 + 2\omega_2$.

Remarks. (1) Because the S_3-action on $g_0 = so(8)$ is such that the
triangular decomposition $g_0 = n_0^+ \oplus h_0 \oplus n_0^-$ (with respect to R_0^+) is a decomposition into S_3-modules we have

$$n_2^+ = (n_0^+)^{S_3} \subseteq n_1^+ = (n_0^+)^g \subseteq n_0^+$$

and

$$h_2 = (h_0)^{S_3} \subseteq h_1 = (h_0)^g \subseteq h_0.$$

This is extremely convenient. It means that a highest weight module for $\text{so}(8)$ will contain a highest weight module for $\text{so}(7)$, which will contain a highest weight module for g_2. To understand how the weight of a highest weight vector changes when considered as an $\text{so}(8)$, $\text{so}(7)$, or g_2 weight vector is a matter of understanding the restriction maps $h_0^* \rightarrow h_1^*$ and $h_1^* \rightarrow h_2^*$.

(2) The restriction $j: h_0^* \rightarrow h_1^*$ is given in 2.2. The restriction $j: h_1^* \rightarrow h_2^*$ is given by $j(\eta_1 - \eta_2) = j(\eta_3) = \alpha_1$, and $j(\eta_2 - \eta_3) = \alpha_2$, and $\ker j = \mathbb{C}(\eta_1 - \eta_2 - \eta_3)$. In particular, $j(\eta_1) = 2\alpha_1 + \alpha_2$ and $j(\eta_2) = \alpha_1 + \alpha_2$. Thus the restriction $j: h_0^* \rightarrow h_2^*$ is given by $j(\epsilon_1 - \epsilon_2) = \alpha_1$, $j(\epsilon_2 - \epsilon_3) = \alpha_2$, $j(\epsilon_3 - \epsilon_4) = \alpha_1$, $j(\epsilon_3) = \alpha_1$, and $\ker j = \mathbb{C}(\epsilon_1 - \epsilon_2 - \epsilon_3) + \mathbb{C} \epsilon_4$.

(3) An important observation to make concerning the expressions above for the root vectors of g_2 in terms of the root vectors of $\text{so}(7)$ is the following. If $\beta \in R_1$ then there exists a unique $\alpha \in R_2$ such that X_β appears in the expression for X_α with a non-zero coefficient. See 2.6, where this observation is applied. It is not really a coincidence and would also hold for any pair of simple Lie algebras $g' \subseteq g$, where g' is the invariant in g under a group of diagram automorphisms for g (see [3, Ex. 5.13, p. 238]). In 2.7, this observation is applied to $\text{so}(7) \subseteq \text{so}(8)$.

2.4. Let $G_2 \subseteq SO(7)$ be the connected algebraic subgroup of $SO(7)$ with Lie algebra g_2. By [5, Théorème 1, p. 21.07] all connected simple algebraic groups over \mathbb{C} of type G_2 are isomorphic. In particular G_2 has centre $\{1\}$, is simply connected, and is of adjoint type.

Let $\mathcal{U} \subseteq G_2$ denote the set of unipotent elements, and $\mathcal{N} \subseteq g_2$ the set of nilpotent elements. Write $\phi: \mathcal{U} \rightarrow \mathcal{N}$ for the natural isomorphism (of G_2-varieties). Then $C_{G_2}(u) = C_{G_2}(\phi(u))$ for all $u \in \mathcal{U}$, where $C_{G_2}(\cdot)$ denotes the centraliser (see [4, p. 30]). In [4, p. 401] it is stated that if $u \in \mathcal{U}$ and dim $G_2 \cdot u = 8$, then $C_{G_2}(u)$ is connected. Hence if $X \in O_8$, then $C_{G_2}(X)$ is connected.

Notation. Let g be semi-simple with simple roots Δ and roots R. For each subset $S \subseteq \Delta$ we write p_S for the parabolic subalgebra of g generated by its Borel subalgebra b and $\{X_\alpha | \alpha \in S\}$. We write m_S for the nilpotent radical of p_S, q_S for the reductive part of p_S and I_S for the semi-simple part of q_S.

If $x \in R$, then $s_x \subseteq \mathfrak{g}$ denotes the $sl(2)$-subalgebra with basis X_x, H_x, X_{-x}.

If G is a connected algebraic group with Lie algebra \mathfrak{g}, the connected subgroups corresponding to ρ_x, m_x, etc., will be denoted by P_x, M_x, etc. In general, subalgebras of \mathfrak{g} are denoted by lowercase letters, and the corresponding connected subgroup is denoted by the corresponding uppercase letter. For example, the decomposition $so(7) = \mathfrak{g}_1 = \mathfrak{n}_1^+ \oplus \mathfrak{h}_1 \oplus \mathfrak{n}_1^-$ gives connected subgroups N_1^+, H_1, N_1^- of $SO(7)$.

If $X \in \mathfrak{g}$, the stabiliser of X in \mathfrak{g} is $\text{stab}_\mathfrak{g}(X) = \{X \in \mathfrak{g} | [X, Y] = 0\}$.

Let $\rho \in \mathfrak{h}^*$ denote the half-sum of the positive roots; thus ρ_1 denotes ρ for $so(7)$, ρ_2 denotes ρ for \mathfrak{g}_2. For $\lambda \in \mathfrak{h}^*$, let $M(\lambda)$ be the Verma-module of highest weight $\lambda - \rho$; $L(\lambda)$ denotes the unique simple factor module of $M(\lambda)$ and set $J(\lambda) = \text{Ann} \ L(\lambda)$, the annihilator of $L(\lambda)$.

The Weyl groups for $so(7)$ and \mathfrak{g}_2 will be denoted W_1 and W_2, respectively. If α is a root then s_α denotes the corresponding simple reflection.

Given an affine algebraic variety X, we denote by \check{X} the normalisation, and by $\mathcal{O}(X)$ the ring of regular functions on X. Sometimes the integral closure of $\mathcal{O}(X)$ in the field of rational functions on X will be denoted $\mathcal{O}(X)$. If Y is a closed subvariety of X, then the ideal of functions in $\mathcal{O}(X)$ vanishing on Y is denoted $\mathcal{I}(Y)$. If I is an ideal in $\mathcal{O}(X)$, then $\mathcal{I}(I)$ denotes the zero variety of I.

The Gelfand–Kirillov dimension of a \mathfrak{g}-module M is denoted by $d(M)$.

2.5. The embedding $\mathfrak{g}_2 \to \mathfrak{g}_1 - so(7)$ induces a linear map $\pi: \mathfrak{g}_1 \to \mathfrak{g}_2$ by first taking the dual $\rho: \mathfrak{g}_1^* \to \mathfrak{g}_1^*$, where ρ is the restriction, and then \mathfrak{g}_1 is identified with \mathfrak{g}_1^* via the Killing form on \mathfrak{g}_1 (denoted B_1), and \mathfrak{g}_2 is identified with \mathfrak{g}_2^* via the Killing form on \mathfrak{g}_2 (denoted B_2). Thus π is defined such that the following diagram commutes.

\[
\begin{array}{c}
\mathfrak{g}_1^* \\
\downarrow_{\rho} \\
\mathfrak{g}_1 \\
\uparrow_{\pi} \\
\mathfrak{g}_2 \\
\end{array}
\]

More specifically, π is defined as follows: given $X \in \mathfrak{g}_1$ then $\pi(X) \in \mathfrak{g}_2$ is the unique element of \mathfrak{g}_2 such that

\[B_2(\pi(X), Y) = B_1(X, Y) \quad \text{for all } Y \in \mathfrak{g}_2.\]

Lemma. There exists $0 \neq q \in \mathbb{C}$ such that $B_1|_{\mathfrak{g}_2 \times \mathfrak{g}_2} = q B_2$.

Proof. Recall that the Killing form on a complex simple Lie algebra is the unique (up to a scalar multiple) non-degenerate contravariant bilinear form, so we just have to check that the restriction of B_1 to $\mathfrak{g}_2 \times \mathfrak{g}_2$ is non-degenerate. If it is not, then the radical is a non-zero ideal of \mathfrak{g}_2, hence
equal to g_2, and we conclude that $B_1|_{g_2 \times g_2} = 0$. However, the restriction of B_1 to $h_1 \times h_1$ is an inner product, and so B_1 is non-zero on $h_2 \times h_2$, since $h_2 \subseteq h_1$.

Remark. The precise value of q is 5/4.

Lemma. π is G_2-equivariant (or equivalently, a g_2-module map).

Proof. Immediate, since B_1 is $SO(7)$-contravariant (hence G_2-contravariant), and B_2 is G_2-contravariant.

Remark. (1) Thus we may write $g_1 = g_2 \oplus g_2^\perp$, where g_2^\perp is the orthogonal to g_2, under the form B_1, or equivalently $g_2^\perp = \ker \pi$; furthermore, g_2^\perp is a g_2-submodule of $so(7)$ under the adjoint action of g_2 on $so(7)$. Returning to the definition of π, one has an alternative definition of π, namely that for $X \in g_1$, $\pi(X) \in g_2$ is the unique element such that $\pi(X) - qX \in g_2^\perp$ (where q is as in the above Lemma). In particular $\pi|_{n_2}: g_2 \rightarrow g_2$ is scalar multiplication by q.

(2) Observe that $\dim g_2^\perp = 7$, and since $[g_2, g_2^\perp] \neq 0$ (else g_2 becomes an ideal of $so(7)$!), the only possibility is that $g_2^\perp \cong E(\bar{\omega}_1)$, the unique 7-dimensional irreducible representation of g_2, of highest weight $\bar{\omega}_1$. Let $E(\bar{\omega}_1)_\lambda$ denote the λ-weight space. Recall that $\dim E(\bar{\omega}_1)_0 = 1$, and for each long root $\alpha \in R_2$, $X_\alpha \cdot E(\bar{\omega}_1)_0 = 0$. So $E(\bar{\omega}_1)_0 = \mathbb{C} H$, where $H \in h_1$ satisfies $[H, X_\alpha] = 0$ for all long roots $\alpha \in R_2$. Such an H is given by $H = H_2 + H_1 - H_1 = H_{n_2 + n_1} - \frac{1}{2} H_n$ (notation 2.2).

We need to know later a highest weight vector for g_2^\perp. For each short root $\alpha \in R_2$, $0 \neq [H, X_\alpha] \in E(\bar{\omega}_1)_\lambda$. Hence a highest weight vector is given by $X_{\eta_2} - X_{\eta_2 + \eta_1}$.

2.6. Write $N_i \subseteq g_i$ ($i = 1, 2$) for the cone of nilpotent elements. Because π is a g_2-module homomorphism, and is just multiplication by a non-zero scalar on g_2, it is an easy exercise to check that $\pi(N_1) \subseteq N_2$.

Recall that O_{\min} denotes the minimal non-zero nilpotent orbit in $so(7)$, and O_8 denotes the 8-dimensional nilpotent orbit in g_2. Our goal is the proposition below, that $\pi(O_{\min}) = O_8$.

It is well known that

(i) $O_{\min} = SO(7) \cdot X_\beta$ for any long root $\beta \in R_1$,

(ii) $O_8 = G_2 \cdot X_\alpha$ for any short root $\alpha \in R_2$,

(iii) $O_6 = G_2 \cdot X_\alpha$ for any long root $\alpha \in R_2$.

Recall Remark (3) of 2.3.

Lemma. Let $\beta \in R_1$, and let $\alpha \in R_2$ be the unique element such that X_β
appears in the expression for X_z with non-zero coefficient. Then there exists
$0 \neq c \in \mathbb{C}$ such that $\pi(X_\beta) = cX_z$.

Proof. From the definition of π in 2.5, we must show for some $0 \neq c \in \mathbb{C}$
that $cB_2(X_z, Y) - B_1(X_\beta, Y)$ is identically zero for all $Y \in g_2$. Thus we
require for all $\gamma \in R_2$, that $cB_2(X_z, X_\gamma) - B_1(X_\beta, X_\gamma)$ is zero. If $\alpha \neq -\gamma$ then
both terms of this expression are zero. If $\alpha = -\gamma$ then both terms are non-
zero and so there is a unique $0 \neq c \in \mathbb{C}$ such that the expression is zero. □

Remark. To be specific, c is given by $cB_2(X_z, X_\gamma) - B_1(X_\beta, X_\gamma)$.

Proposition. $\pi(O_{\min}) = O_8$.

Proof. Since $\dim O_{\min} = 8$, and π is a morphism of varieties, $\dim \pi(O_{\min}) \leq 8$, whence $\pi(O_{\min}) \subseteq O_8$ because $\pi(M_2) \subseteq M_1$. Notice that
$X_{q_2 - q_1} = X_{q_2} \in O_{\min} \cap g_2$. By 2.5, Remark (1), $\pi(X_{q_2 - q_1}) = qX_{q_2} \in O_8$, since $q \neq 0$. By the previous lemma, $\pi(X_{q_2 - q_1}) = cX_{q_2} \in O_8$, since $c \neq 0$. Hence, by
G_2-equivariance of π, $O_6 \cup O_8 \subseteq \pi(O_{\min})$. But $O_8 = O_8 \cup O_6 \cup \{0\}$. Hence
$O_8 \subseteq \pi(O_{\min})$, and there is equality. □

2.7. We now consider and give a positive answer to the following
question of Vogan [26]. Let O denote the minimal nilpotent orbit in $so(8)$
(it is of dimension 10); does O contain a dense G_2-orbit?

We consider, as before, $g_2 \subseteq so(7) \subseteq so(8)$. The preceding analysis gives
linear maps

\[
so(8) \xrightarrow{\pi_1} so(7) \quad \quad \pi_2 \quad \quad \quad \quad \quad \quad g_2
\]

such that $\pi_2 = \pi \circ \pi_1$, where π is the map introduced in 2.5, and π_1 and π_2
are defined in an analogous way. The fact that $\pi_2 = \pi \circ \pi_1$ is verified by
carefully considering the definitions in terms of the three Killing forms.
Since π_2 is G_2-equivariant, it is sufficient to show that for some $X \in O$,
$\pi_2(X) \in O_{10}$. Because, in that case, $\dim G_2 \cdot \pi_2(X) = 10$ and thus, $G_2 \cdot X \subseteq O$
is a 10-dimensional closed subvariety of a 10-dimensional irreducible
variety, hence equal.

Write O' for the 10-dimensional nilpotent orbit in $so(7)$. We show that
$\pi_1(O') = O'$ and that $\pi(O') = O_{10}$. This will give the result.

Lemma. $\pi_1(O') = O'$.

Proof. Recall that $O = SO(8) \cdot X_\gamma$, where $\gamma \in R_0$ is any root, and that
$O' = SO(7) \cdot X_\beta$, where $\beta \in R_1$ is any short root. Given the embedding of
so(7) in so(8), we have $X_{\eta_1} = X_{e_1 + e_4} + X_{e_1 - e_4}$. Remark (3) of 2.3 applies also to $so(7) \subseteq so(8)$. Thus by the lemma above, we have $\pi_1(X_{e_1 + c_4}) = cX_{\eta_1}$ for some $0 \neq c \in \mathbb{C}$. The proof is completed along the lines of the proposition of 2.6.

Lemma. $\pi(\mathcal{O}') = \mathcal{O}_{10}$.

Proof. Observe that $X_{\eta_1 - \eta_2} + X_{\eta_1 + \eta_2} \in \mathcal{O}'$. To see this simply compute the stabiliser of this element in $so(7)$, and check that it is of codimension 10 in $so(7)$. However, $\pi(X_{\eta_1 - \eta_2} + X_{\eta_1 + \eta_2}) = cX_{a_1} + dX_{3a_1 + 2a_2}$ for some $0 \neq c, d \in \mathbb{C}$. This element belongs to \mathcal{O}_{10}: again compute the stabiliser. The proof is completed along the lines of the proposition of 2.6.

Corollary. $\pi(\mathcal{O}) = \mathcal{O}_{10}$, whence the minimal nilpotent orbit in $so(8)$ contains a dense G_2-orbit.

3. The Joseph Ideal for $so(7)$ and Its Intersection with $U(\mathfrak{g}_2)$

3.1. In [16] Joseph showed that there were either exactly two completely prime primitive ideals of $U(\mathfrak{g}_2)$ associated to the orbit \mathcal{O}_8, or there were no completely prime primitives associated to \mathcal{O}_8. The candidates were $J(\frac{1}{2}(\bar{\omega}_1 + \bar{\omega}_2))$ and $J(\frac{1}{2}(5\bar{\omega}_1 - \bar{\omega}_2))$. These ideals will be denoted J_1 and J_2, respectively. Subsequently, Joseph [18] was able to explicitly construct a homomorphism from $U(\mathfrak{g}_2)$ into a domain, having kernel precisely J_1. Hence J_1 is completely prime, and thus both J_1 and J_2 are completely prime. A key result in this section is a new proof that J_1 is completely prime. This is done by showing that $J_1 = U(\mathfrak{g}_2) \cap J_0$, where J_0 is the Joseph ideal in $U(so(7))$. See 3.2.

The Joseph ideal for $so(7)$ may be realised as the kernel of an algebra homomorphism $\varphi: U(so(7)) \rightarrow \mathcal{D}(X)$, where $\mathcal{D}(X)$ denotes the ring of differential operators on the affine variety X defined by $\mathcal{O}(X) = \mathbb{C}[x, u_1, u_2, y_1, y_2]$ with relation $x^2 + u_1y_1 + u_2y_2 = 0$. This construction is made in [8], and the connection with the Joseph ideal is made explicit in [21]. There are, of course, many different choices for the map φ, but we choose one (given explicitly in 3.3) such that $\mathcal{O}(X)$ becomes a simple highest weight module for $so(7)$. A surprising fact is that even when $\mathcal{O}(X)$ is considered as a $U(\mathfrak{g}_2)$-module it remains simple. This has the further surprising consequence that the embedding $U(\mathfrak{g}_2)/J_1 \hookrightarrow U(so(7))/J_0$ is in fact an equality (see 3.9). The variety X is isomorphic to an irreducible component of $\mathcal{O}_{min} \cap \mathfrak{n}^+_2$ (and also isomorphic to an irreducible component of $\mathcal{O}_8 \cap \mathfrak{n}^+_2$). These components are studied in more detail in Section 5.
The equality between $U(g_2)/J_1$ and $U(so(7))/J_0$ gives an equality as g_2-modules between $S(g_2)/gr J_1$ and $S(so(7))/gr J_0$. But this last is isomorphic to $O(O_{min})$, whence as g_2-modules $S(g_2)/gr J_1 \cong O(O_{min})$. In Section 4 we show that $O(O_{min})$ coincides with the regular functions on the normalisation of O_8. These g_2-module isomorphisms are not algebra isomorphisms because (as is shown in 3.12), $gr J_1$ is not a prime ideal of $S(g_2)$. A further consequence of this is that O_8 cannot be a normal variety (see 3.13). Finally in 3.14 we show that J_1 and J_2 are related by the translation principle.

In a forthcoming paper with J.T. Stafford we shall show that the homomorphism $U(so(7))/J_0 \rightarrow \mathcal{D}(X)$ is an isomorphism.

3.2. Recall [13, Table 1] that the Joseph ideal J_0 in $U(so(7))$ is given by $J_0 = J(\lambda)$, where $\lambda = \frac{1}{2}\tilde{\omega}_1 + \frac{1}{2}\tilde{\omega}_2 + \tilde{\omega}_3$ (here $\tilde{\omega}_i$ is the fundamental weight for $so(7)$ corresponding to the simple root β_i). The highest weight vector e_μ of $L(\lambda)$ is of weight $\mu = \lambda - \rho_1 = -\eta_1 - \frac{1}{2}\eta_2$. After Remark (1) of 2.3, $U(g_2) \cdot e_\mu$ is a highest weight module for g_2, of highest weight $j(\mu)$, where $j: \mathfrak{h}^* \rightarrow \mathfrak{h}^*$ is the restriction. As in 2.3, let $\omega_1 = 2x_1 + x_2$, $\omega_2 = 3x_1 + 2x_2$ be the fundamental weights for g_2. Thus $j(\mu) + \rho_2 = j(-\eta_1 - \frac{1}{2}\eta_2) + 5x_1 + 3x_2 = - (2x_1 + x_2) - \frac{1}{2}(x_1 + x_2) + (5x_1 + 3x_2) = \frac{1}{2}(\tilde{\omega}_1 + \tilde{\omega}_2)$. Therefore $U(g_2) \cdot e_\mu$ is a non-zero quotient of $M(\frac{1}{2}(\tilde{\omega}_1 + \tilde{\omega}_2))$, annihilated by $J_0 \cap U(g_2)$. Hence, $J_0 \cap U(g_2) \subseteq J(\frac{1}{2}(\tilde{\omega}_1 + \tilde{\omega}_2))$.

However, $J_0 \cap U(g_2)$ is completely prime, and (using [1, Sect. 4])

$$8 = d(U(g_2)/J(\frac{1}{2}(\tilde{\omega}_1 + \tilde{\omega}_2)) \leq d(U(g_2)/J_0 \cap (g_2))$$

$$\leq d(U(so(7))/J_0) = \dim V(gr J_0) = \dim O_{min} = 8,$$

so we have equality throughout. Hence the result:

Theorem. $J(\frac{1}{2}(\tilde{\omega}_1 + \tilde{\omega}_2))$ is a completely prime ideal of $U(g_2)$. Furthermore, $J(\frac{1}{2}(\tilde{\omega}_1 + \tilde{\omega}_2)) = J_0 \cap U(g_2)$.

3.3. The homomorphism $\varphi: U(so(7)) \rightarrow \mathcal{D}(X)$ is defined below, where we have identified $so(7)$ with its image in $\mathcal{D}(X)$ under φ. These expressions may be found in [21], although the reader is warned that we have chosen a φ different (by composing with an automorphism of $so(7)$) from that given in [21]. Recall that $\mathcal{D}(X) \cong \mathbb{C}[x, u_1, u_2, y_1, y_2]/(x^2 + u_1 v_1 + u_2 v_2)$. Write

$$I = x \partial / \partial x + \sum_{i=1}^{2} (u_i \partial / \partial u_i + y_i \partial / \partial y_i)$$

$$A = \frac{1}{2} \partial^2 / \partial x^2 + \sum_{i=1}^{2} \partial^2 / \partial u_i \partial y_i.$$
Define \(\varphi \) as follows:

\[
\begin{align*}
X_{\eta_1 - \eta_2} &= \frac{1}{2} u_1 A - \partial/\partial y_1 (I + \frac{1}{2}) \\
X_{\eta_2 - \eta_3} &= y_1 \partial/\partial y_2 - u_2 \partial/\partial u_1 \\
X_{\eta_3} &= y_2 \partial/\partial x - 2x \partial/\partial u_2 \\
X_{\eta_1 - \eta_3} &= \frac{1}{2} u_2 A - \partial/\partial y_2 (I + \frac{1}{2}) \\
X_{\eta_2} &= y_1 \partial/\partial x - 2x \partial/\partial u_1 \\
X_{\eta_1} &= x A - \partial/\partial x (I + \frac{1}{2}) \\
X_{\eta_2 + \eta_3} &= y_1 \partial/\partial u_2 - y_2 \partial/\partial u_1 \\
X_{\eta_1 + \eta_2} &= \frac{1}{2} y_2 A - \partial/\partial u_2 (I + \frac{1}{2}) \\
X_{\eta_1 + \eta_3} &= \frac{1}{2} y_1 A - \partial/\partial u_1 (I + \frac{1}{2}) \\
H_{\eta_1 - \eta_2} &= (u_1 \partial/\partial u_1 - y_1 \partial/\partial y_1) - (I + \frac{1}{2}) \\
H_{\eta_2 - \eta_3} &= y_1 \partial/\partial y_1 - y_2 \partial/\partial y_2 + u_2 \partial/\partial u_2 - u_1 \partial/\partial u_1 \\
H_{\eta_3} &= 2(y_2 \partial/\partial y_2 - u_2 \partial/\partial u_2).
\end{align*}
\]

3.4. PROPOSITION. As an \(\text{so}(7) \)-module \(\mathcal{O}(X) \cong L(\eta_1 + \frac{1}{2}\eta_2 + \frac{1}{2}\eta_3) \).

Proof. This is implicit in [21, Sect. 3]. First \(\mathcal{O}(X) \) is generated by 1 as an \(\text{so}(7) \)-module because \(\mathcal{O}(X) \cong \varphi(U(\text{so}(7))) \). The elements of \(\eta_1^+ \) all annihilate 1 \(\in \mathcal{O}(X) \), so \(\mathcal{O}(X) \) is a highest weight module. The action of \(h_1 \) on 1 shows that the highest weight of \(\mathcal{O}(X) \) is \(-\frac{3}{2}\eta_1 \), and thus \(\mathcal{O}(X) \) is a homomorphic image of \(M(\eta_1 + \frac{3}{2}\eta_2 + \frac{1}{2}\eta_3) \). It remains to show that \(\mathcal{O}(X) \) is a simple \(\text{so}(7) \)-module. This we will not do, since it is established in 3.8 that \(\mathcal{O}(X) \) is simple even as a \(g_2 \)-module (and hence as an \(\text{so}(7) \)-module).

3.5. Using the embedding \(g_2 \cong \text{so}(7) \), explicit formulae for the basis elements of \(g_2 \) in \(\mathcal{O}(X) \) are given below:

\[
\begin{align*}
X_{\eta_2} &= y_1 \partial/\partial y_2 - u_2 \partial/\partial u_1 \\
X_{3\eta_1 + \eta_2} &= -\frac{1}{2} y_2 A + \partial/\partial u_2 (I + \frac{1}{2}) \\
X_{3\eta_1 + 2\eta_2} &= -\frac{1}{2} y_1 A + \partial/\partial u_1 (I + \frac{1}{2}) \\
X_{\eta_1} &= \frac{1}{2} u_1 A - \partial/\partial y_1 (I + \frac{1}{2}) + y_2 \partial/\partial x - 2x \partial/\partial u_2 \\
X_{\eta_1 + \eta_2} &= -\frac{1}{2} u_2 A + \partial/\partial y_2 (I + \frac{1}{2}) + y_1 \partial/\partial x - 2x \partial/\partial u_1 \\
X_{2\eta_1 + \eta_2} &= -x A + \partial/\partial x (I + \frac{1}{2}) - y_1 \partial/\partial u_2 + y_2 \partial/\partial u_1 \\
X_{-\eta_2} &= y_2 \partial/\partial y_1 - u_1 \partial/\partial u_2.
\end{align*}
\]
\[X_{-(3\lambda_1 + \lambda_2)} = -u_2 \]
\[X_{-(2\lambda_1 + 2\lambda_2)} = -u_1 \]
\[X_{-(2\lambda_1 + \lambda_2)} = y_1 + 2x\partial/\partial y_2 - u_2 \partial/\partial x \]
\[X_{-(2\lambda_1 + \lambda_2)} = -y_2 + 2x\partial/\partial y_1 - u_1 \partial/\partial x \]
\[X_{-(3\lambda_1 + 2\lambda_2)} = -2x - u_2 \partial/\partial y_1 + u_1 \partial/\partial y_2. \]

3.6. The first step in showing that \(A = \mathcal{O}(X) \) is a simple highest weight module for \(g_2 \) is to establish that \(A = U(n_{2-}) \cdot 1 \). This is done in 3.7.

Notation. Consider \(A \) as the factor of the polynomial ring in indeterminates \(x, u_1, u_2, y_1, y_2 \) by the ideal generated by \(x^2 + u_1 y_1 + u_2 y_2 \). Since \(A \) is a factor by a homogeneous ideal, the usual filtration by degree on the polynomial ring induces a filtration on \(A \) by degree. Write \(A_n = \{ a \in A \mid \deg(a) \leq n \} \). Thus \(A_n \) is spanned by monomials of the form \(u_1^{i_1} u_2^{i_2} y_1^{j_1} y_2^{j_2} x^k \) with \(i_1 + i_2 + j_1 + j_2 + k \leq n \). Write \(|a| = n \), for the least integer \(n \) such that \(a \in A_n \). Order the monomials of degree \(n \) lexicographically through \(u_1 < u_2 < y_1 < y_2 < x \). Give \(U(g_2) \) its usual filtration (so \(C + g_2 \) are all elements of degree \(\leq 1 \)). From the expressions in 3.5 it is clear that \(U_n(g_2) \cdot U_m(n_{2-}) = U_{n + m} \) for all \(n, m \).

3.7. **Lemma.** For all \(n \), \(U_n(n_{2-}) \cdot 1 = A_n \), and hence \(U(n_{2-}) \cdot 1 = A \).

Proof. It is clear that \(U_1(n_{2-}) \cdot 1 = A_1 \). Now argue by induction on \(n \). Let \(a = u_1^{i_1} u_2^{i_2} y_1^{j_1} y_2^{j_2} x^k \) with \(|a| = n \). To show \(a \in U_n(n_{2-}) \cdot 1 \) use induction with respect to the lexicographic ordering. For example, if \(i_1 = i_2 = j_1 = j_2 = 0, k \neq 0 \), then \(a = -X_{-(2\lambda_1 + \lambda_2)} \cdot x^{k-1} \in U_n(n_{2-}) \cdot 1 \). Using the expressions in 3.5 the details of the induction are straightforward.

3.8. **Lemma.** As a \(U(g_2) \)-module, \(\mathcal{O}(X) \cong L(\frac{1}{2}(-\tilde{\alpha}_1 + 2\tilde{\alpha}_2)) \).

Proof. Let \(j : \mathfrak{h}_2^* \to \mathfrak{h}_2^* \) be the restriction (see 3.4). After the proof of 3.4, using 3.5, the weight of \(1 \in \mathcal{O}(X) \) is \(j(-\frac{2}{3} \eta_1) = -\frac{2}{3} (2x_1 + \alpha_2) \). Hence, after 3.7, \(\mathcal{O}(X) \) as a \(U(g_2) \)-module is a factor of \(M(\frac{1}{2}(\tilde{\alpha}_1 + 2\tilde{\alpha}_2)) \).

In order to show that \(\mathcal{O}(X) \) is a simple \(U(g_2) \)-module, it is enough to show that given \(0 \neq a \in \mathcal{O}(X) \) there exists \(u \in U(g_2) \) such that \(u \cdot a = 1 \). The existence of such an element \(u \) will be obtained by an inductive argument through studying how the basis elements of \(n_{2+} \) given in 3.5 act on various subalgebras of \(\mathcal{O}(X) \). The reader will be able to supply the detailed proofs we do not give, but one must keep in mind the fact that \(I + \frac{1}{2} \) acts by (non-zero) scalar multiplication on each monomial \(u_1^{i_1} u_2^{i_2} y_1^{j_1} y_2^{j_2} x^k \), and that \(A \) acts trivially on \(\mathbb{C}[y_1, y_2] \subseteq \mathcal{O}(X) \).

If \(a \in \mathbb{C}[y_2] \setminus \{0\} \), \(a \in \mathbb{C}[y_1, y_2] \setminus \{0\} \), then for some \(n \in \mathbb{N} \),
PRIMITIVE IDEALS IN TYPE G_2

Note that the action of $X_{2a_1+a_2}$ on $\mathbb{C}[x, y_1, y_2]$ coincides with the action of $(y_1 \partial/\partial y_1 + y_2 \partial/\partial y_2 + 1) \partial/\partial x$. Hence, if $a \in \mathbb{C}[x, y_1, y_2] \setminus \{0\}$ then for some $n \in \mathbb{N}$, $X_{2a_1+a_2} \cdot a \in \mathbb{C}[y_1, y_2] \setminus \{0\}$. Note that the action of $X_{3a_1+2a_2}$ on $\mathbb{C}[x, y_1, y_2, u_2]$ coincides with the action of $-\frac{1}{4} y_2 \partial^2/\partial x^2 + (I - y_2 \partial/\partial y_2 + \frac{3}{2}) \partial/\partial u_2$. Hence, if $a \in \mathbb{C}[x, y_1, y_2, u_2] \setminus \{0\}$ then for some $n \in \mathbb{N}$, $X_{3a_1+2a_2} \cdot a \in \mathbb{C}[x, y_1, y_2] \setminus \{0\}$. Finally, if $0 \neq a \in \mathcal{O}(X)$ then for some $n \in \mathbb{N}$, $X_{3a_1+2a_2} \cdot a \in \mathbb{C}[x, y_1, y_2, u_2] \setminus \{0\}$. The result follows.

Remark. Notice that $s_{2_1} \cdot \frac{1}{2}(\tilde{\omega}_1 + \tilde{\omega}_2) = \frac{1}{2}(\tilde{\omega}_1 + 2\tilde{\omega}_2)$.

3.9. Theorem. The embedding $U(g_2)/J_1 \subseteq U(so(7))/J_0$ is an equality.

Proof. Put $\lambda = \eta_1 + \frac{3}{2} \eta_2 + \frac{7}{2} \eta_3$; by 3.4, as an $so(7)$-module, $\mathcal{O}(X) \cong L(\lambda)$. Set $\lambda_i = \frac{1}{2}(\tilde{\omega}_1 + 2\tilde{\omega}_2)$; by 3.8, as a g_2 module, $\mathcal{O}(X) \cong L(\lambda_i)$. Note in particular that λ_i is dominant regular (as is λ).

If M is a g_1-module (respectively, g_2-module), we write $L_1(M, M)$ for the space of g_1-finite (respectively, g_2-finite) linear maps from M to itself. There are natural maps $U(g_1)/J_0 \rightarrow L_1(L(\lambda), L(\lambda))$ and $U(g_2)/J_1 \rightarrow L_2(L(\lambda_1), L(\lambda_1))$, both of which are algebra homomorphisms. Because λ_i is dominant regular the last is an isomorphism by [14, Theorem 5.7]. Through the inclusion $g_2 \subseteq g_4$ and the identifications $L(\lambda) = \mathcal{O}(X) = L(\lambda_1)$, any g_1-finite map $L(\lambda) \rightarrow L(\lambda)$ is automatically a g_2-finite map $L(\lambda_1) \rightarrow L(\lambda_1)$. Thus we have the following commutative diagram of algebra homomorphisms:

$$\begin{array}{ccc}
U(g_2)/J_1 & \xrightarrow{j} & U(g_1)/J_0 \\
\downarrow \theta & & \downarrow \theta \\
L_2(L(\lambda_1), L(\lambda_1)) & \xleftarrow{} & L_1(L(\lambda), L(\lambda))
\end{array}$$

Here θ is the obvious composition. The diagram commutes, so θj is an isomorphism. In particular, θ is surjective. But it is also injective, being the composition of two injective maps. Thus θ is an isomorphism and we conclude that j must be an isomorphism.

3.10. We now consider $U(g_2)/J_1 = U((so(7))/J_0$. This ring is naturally endowed with two (distinct) filtrations, one coming from the natural filtration on $U(g_2)$, the other coming from the natural filtration on $U(so(7))$. Recall that as g_2-modules $U(g_2)/J_1 \cong S(g_2)/\text{gr} J_1$, and as $so(7)$-modules $U(so(7))/J_0 \cong S(so(7))/\text{gr} J_0 \cong \mathcal{O}(\mathcal{O}_{\text{min}})$, where this last isomorphism is a consequence of the fact that $\text{gr} J_0$ is prime, which is established in [7, Chap. IV]. The natural g_2-module structure on $U(g_2)/J_1$ coincides with that induced from the $so(7)$-module structure on $U(so(7))/J_0 = U(g_2)/J_1$ and the inclusion $g_2 \subseteq so(7)$. Hence we have:
LEVASSEUR AND SMITH

PROPOSITION. As g_2-modules $S(g_2)/\text{gr} \, J_1 \cong S(so(7))/\text{gr} \, J_0 \cong \mathcal{O}(\mathcal{O}_{\text{min}})$.

3.11. Two frequently used results are the following:

Lemma [2, Lemma 3.7]. Let G be a reductive group, and V a finite dimensional representation. Let $v \in V$, and suppose that $\text{codim}_{G \cdot v} \, G \cdot v \geq 2$. Then $\mathcal{O}(G \cdot v)$ is the integral closure of $\mathcal{O}(G \cdot v)$.

Theorem [25, Theorem 3]. Let G be a reductive algebraic group, and V a finite dimensional representation. If $v \in V$ is a highest weight vector, then $G \cdot v$ is a normal variety.

Remark. In particular, since \mathcal{O}_{min} is the orbit of the highest weight vector, \mathcal{O}_{min} is normal. Furthermore, combining these two results with Proposition 3.10, and the fact (to be established in 4.5) that \mathcal{O}_{min} is the normalisation of \mathcal{O}_8, it follows that $S(g_2)/\text{gr} \, J_1 \cong \mathcal{O}(\mathcal{O}_8)$ as g_2-modules.

3.12. **Proposition.** The ideal $\text{gr} \, J_1$ of $S(g_2)$, is not a prime ideal.

Proof. This is an easy consequence of computations in [27, Sect. 5]. Let E denote the 7-dimensional irreducible g_2-module. The multiplicity of E in a g_2-module M is denoted $[M: E]$. In [27, Sect. 5] Vogan shows that $[U(g_2)/J_1: E] = 1$ and $[U(g_2)/J_2: E] = 0$.

Observe that one therefore has

$$0 = [S(g_2)/\text{gr} \, J_2: E] \geq [S(g_2)/\sqrt{\text{gr} \, J_2}: E] = [S(g_2)/\sqrt{\text{gr} \, J_1}: E].$$

Hence, if $\text{gr} \, J_1$ were prime then $\sqrt{\text{gr} \, J_1} = \text{gr} \, J_1$, and $0 = [S(g_2)/\text{gr} \, J_1: E] = [U(g_2)/J_1: E] = 1$. This contradiction ensures that $\text{gr} \, J_1$ is not prime.

Remarks. (1) The isomorphism of g_2-modules in 3.10 cannot be an algebra isomorphism because $\mathcal{O}(\mathcal{O}_{\text{min}})$ is prime, but $\text{gr} \, J_1$ is not a prime ideal.

(2) Consider the following filtrations on $U(g_2)/J_1$ giving a commutative associated graded algebra. The natural one induced from g_2 does not give a prime ring (by the above Proposition). The filtration induced by $so(7)$ and the equality $U(g_2)/J_1 = U(so(7))/J_0$ does give a prime ring since $\text{gr} \, J_0$ is prime [8]. The embedding $U(g_2)/J_1 \subset \mathcal{D}(X)$ allows one to filter $U(g_2)/J_1$ by the order of the differential operators (here the filtration subspaces are not finite dimensional) and the associated graded algebra is a subalgebra of $\mathcal{D}(X)$, which is a prime ring. Hence with the differential operator filtration $U(g_2)/J_1$ gives a prime associated graded algebra.

3.13. **Theorem.** \mathcal{O}_8 is not a normal variety.
PRIMITIVE IDEALS IN TYPE G_2

Proof. Recall that $\tilde{O}_8 = O_8 \cup O_8 \cup \{0\}$, hence the codimension of O_8 in \tilde{O}_8 is 2. Thus by Lemma 3.11 $\mathcal{O}(\tilde{O}_8) = \mathcal{O}(O_8)$, where \tilde{O}_8 denotes the normalisation of O_8. Suppose that O_8 is normal. Let E be the 7-dimensional irreducible representation of \tilde{O}. Then

$$0 = [S(g_2)/\sqrt{\text{gr} J_2}; E] = [\mathcal{O}(\tilde{O}_8); E] = [\mathcal{O}(O_8); E],$$

where the first equality comes as in the proof of 3.12. However, $[\mathcal{O}(O_8); E] = \dim_c(\mathcal{E}^*)$, where $\mathcal{E} = C_{G_2}(X_{11})$, and \mathcal{E}^* is the dual of \mathcal{E} (actually isomorphic to \mathcal{E}), and \mathcal{E}^* denotes the space of \mathcal{S}-invariants. By 2.4, \mathcal{S} is connected, so $\mathcal{E}^* = (\mathcal{E}^*)^*$ the space of invariants under \mathcal{S}, the Lie algebra of \mathcal{S}. But $\mathcal{S} = \{X \in g_2 | [X, X_{11}] = 0\}$. This is easily calculated and so is the space $(\mathcal{E}^*)^*$. One finds $\dim(\mathcal{E}^*)^* = 1$. This contradiction ensures that O_8 is not normal.

3.14. We now show that J_1 and J_2 are related by the translation principle.

Let g be an arbitrary semi-simple Lie algebra, with Cartan subalgebra h, and Weyl group W. If $\mu \in h^*$, set $W_\mu = \{w \in W | w(\mu) - \mu \in Q(R)\}$, where $Q(R) = \sum_{x \in R} Z_x$, and R is the set of roots. If M is a g-module, and $\mu \in h^*$ write $M_\mu = \{m \in M \}$ for each $z \in Z(g)$ such that $(z - \chi_\mu(z))^m = 0$, where $Z(g)$ denotes the centre of U and $\chi_\mu: Z(g) \to \mathbb{C}$ is the central character with ker $\chi_\mu \subseteq \text{Ann} M(\mu)$.

Theorem [11]. Let $\lambda \in h^*$, and let E be a finite dimensional simple g-module with extreme weight ν. Suppose, for all weights $\nu' \neq \nu$ of E, that $\lambda + \nu' \notin W_{\lambda + \nu}(\lambda + \nu)$. Then

$$(L(\lambda) \otimes E)_{\lambda + \nu} \cong L(\lambda + \nu)$$

(or zero).

Denote by $\mathcal{V}(L(\lambda))$ the associated variety of $L(\lambda)$ determined by $\text{ann}(\text{gr} L(\lambda))$. Then $\mathcal{V}(L(\lambda)) \subseteq n^+$, and in the situation of the above theorem $\mathcal{V}(L(\lambda + \nu)) = \mathcal{V}(L(\lambda))$.

3.15. The variety X introduced in 3.1 and 3.3 is isomorphic to an irreducible component of $\tilde{O}_8 \cap n^+_2$. In Section 5, this irreducible component is denoted \mathcal{V}_1, and for the rest of this section we shall refer to X as \mathcal{V}_1.

We now look for weights $\lambda_1, \lambda_2 \in h_2^*$ such that

(a) $J_1 = J(\lambda_1), J_2 = J(\lambda_2)$;

(b) $\mathcal{V}(L(\lambda_1)) = \mathcal{V}(L(\lambda_2)) = \mathcal{V}_1$;

(c) there exists a finite dimensional irreducible E, and

$$L(\lambda_1) \otimes E \cong L(\lambda_2).$$

The λ_1 which will be successful is that given in 3.9, namely...
λ₁ = \(\frac{1}{3}(−ω₁ + 2ω₂) \). The arguments in 3.8 and 3.9 guarantee that \(J(λ₁) = J₁ \). Furthermore, it is shown in [19, Example 10.1] that \(V(L(λ₁)) = V₁ \) (see the description of \(V₁ \) given in 5.3).

Set \(λ₂ = \frac{1}{3}(4ω₂ − 5ω₁) = s₂(\frac{1}{3}(5ω₁ − ω₂)) \). One may check that \(λ₁ \) and \(λ₂ \) are both dominant regular. Define \(v = λ₂ − λ₁ = −α₁ \), and note that \(v \) is an extreme weight of \(E \), the 7-dimensional irreducible representation of \(g₂ \). A simple exercise ensures that the condition \(λ₁ + v' \not\in W₁(λ₂) \) is satisfied for all weights \(v' \not= v \) of \(E \). Hence one obtains \((L(λ₁) ⊗ E) \cong L(λ₂) \). Thus conditions (b) and (c) are satisfied. Finally, to see that \(J(λ₂) = J(\frac{1}{3}(5ω₁ − ω₂)) \), recall [12], that if \(α \) is simple and \((α', μ) \not\in \mathbb{Z} \), then \(J(sαμ) = J(μ) \).

4. Normalisation of \(\tilde{O}_8 \)

4.1. The main result in this section is Theorem 4.5, which says that the normalisation of \(\tilde{O}_8 \), denoted by \(\tilde{O}_8 \), is isomorphic to \(O_{\text{min}} \), with \(π: O_{\text{min}} \to \tilde{O}_8 \) being the natural projection from the normalisation. One of the main steps is to show that \(π: O_{\text{min}} \to \tilde{O}_8 \) is bijective (and hence birational). This involves decomposing \(O_{\text{min}} \) as a union of \(G₂ \)-orbits, to obtain in Corollary 4.4 that \(O_{\text{min}} = \{0\} \cup O₆ \cup G₂X_{ₙ₁−ₙ₂} \). Since \(π: O_{\text{min}} \to \tilde{O}_8 \) is bijective, and codim\(O_{\text{min}} \backslash G₂X_{ₙ₁−ₙ₂} \)= 2, the results of 3.11 imply that \(O_{\text{min}} \) is the normalisation of \(\tilde{O}_8 \). Recall that we have already given a proof that \(\tilde{O}_8 \) is not normal in 3.13; we give, in 4.6, another proof of this result using the isomorphism, \(O_{\text{min}} \cong \tilde{O}_8 \) and the result of 3.9 which says that \(U(g₂)/J₁ = U(so(7))/J₀ \).

4.2. PROPOSITION. \(O_{\text{min}} \) contains a unique dense (open) \(G₂ \)-orbit, \(V₈ := G₂ \cdot X_{ₙ₁−ₙ₂} \). Furthermore \(π: V₈ \to O₈ \) is an isomorphism of varieties.

Proof. As observed in 2.6, \(π(X_{ₙ₂−ₙ₁}) = c \cdot X_{ₙ₁+ₙ₂} \) for some \(c \in \mathbb{C}^* \). Hence, as \(π \) is \(G₂ \)-equivariant, \(π(G₂ \cdot X_{ₙ₁−ₙ₂}) = G₂ \cdot X_{ₙ₁+ₙ₂} = O₈ \). Thus \(G₂ \cdot X_{ₙ₁−ₙ₂} \subseteq O_{\text{min}} \) is a closed irreducible subvariety of \(O_{\text{min}} \), of dimension at least 8, so we must have equality.

For the second assertion, write \(T = Cg₂(X_{ₙ₁−ₙ₂}) \) and \(S = Cg₂(X_{ₙ₁+ₙ₂}) \). By the first part of the proof \(T \subseteq S \), and thus we may consider \(π: G₂ / T \to G₂ / S \). Both these are smooth varieties so it is sufficient to show that \(π \) is bijective to get the isomorphism (see Zariski's Main Theorem [6, Chap. 5]). Both \(S \) and \(T \) are subgroups of \(G₂ \) of dimension 6, so \(\dim S / T = 0 \). But by 2.4, \(S \) is connected. Thus \(S / T = \{1\} \) and \(π \) must be bijective.

Remark. It follows from the proposition that \(π: O_{\text{min}} \to \tilde{O}_8 \) is birational, being bijective on a dense open subset [10, Theorem 4.6].
4.3. **Lemma.** The G_2-orbits in \mathfrak{g}_2^\perp are

(a) the zero orbit \{0\};

(b) a 6-dimensional orbit $G_2 \cdot Y$, where $Y \in \mathfrak{g}_2^\perp$ is the highest weight vector;

(c) a 1-parameter family of 6-dimensional orbits generated by the non-zero multiples of the zero weight vector $H \in \mathfrak{g}_2^\perp$.

Proof. The annihilator in \mathfrak{g}_2 of an element of \mathfrak{g}_2^\perp is a subalgebra of codimension at most 7. Using [3, Chap. VIII, Sect. 10, Corollaire 1] the only such subalgebras are conjugate to one of the following: \mathfrak{g}_2 itself, the commutator $\mathfrak{p}^-_2 = [\mathfrak{p}_{2_1}, \mathfrak{p}_{2_2}]$, and the subalgebra $\mathfrak{s} \cong sl(3)$ generated by the long root vectors. Looking for elements of \mathfrak{g}_2^\perp annihilated by these subalgebras immediately gives the orbits listed above.

Corollary. $\mathbf{O}_{\text{min}} \cap \mathfrak{g}_2^\perp = \emptyset$.

Proof. Let $X \in \mathbf{O}_{\text{min}} \cap \mathfrak{g}_2^\perp$. Conjugate by a suitable element of G_2, and apply the lemma. Case (c) cannot occur since H is ad-semi-simple, and X is ad-nilpotent. Hence we may assume (after 2.5, Remark (2)) that $X = X_{\eta_1} - 2X_{\eta_2} + \eta_3$. However, this element does not belong to \mathbf{O}_{min}, since the codimension of its stabiliser in $so(7)$ is greater than 8.

4.4. **Proposition.** If $X \in \bar{\mathbf{O}}_{\text{min}} \setminus \mathfrak{g}_8^\perp$, then $X \in \mathfrak{g}_2$.

Proof. Let $X \in \bar{\mathbf{O}}_{\text{min}} \setminus \mathfrak{g}_8^\perp$. Write $X = X'' + X'$ with $X'' \in \mathfrak{g}_2$, $X' \in \mathfrak{g}_2^\perp$. Assume $X' \neq 0$, and we obtain a contradiction. After 2.5, $\pi(X)$ is a non-zero scalar multiple of X''. By (4.2) $7 \geq \dim \pi(G_2 X) = \dim G_2 X''$. But X'' is nilpotent by 2.6, and by Corollary 4.3, $X'' \neq 0$. Hence $X'' \in \mathbf{O}_6$. Conjugating by an element of G_2, we may assume that X'' is the highest root vector in \mathfrak{g}_2. Hence $\text{Stab}_{\mathfrak{g}_2} X'' = \mathfrak{p}''_{\mathfrak{s}} = [\mathfrak{p}_{2_1}, \mathfrak{p}_{2_2}]$.

As $X' \neq 0$, the description of the G_2-orbits in \mathfrak{g}_2^\perp ensures that $\text{Stab}_{\mathfrak{g}_2} X'$ is either a G_2-conjugate of $\mathfrak{s} \cong sl(3)$, or a G_2-conjugate of $\mathfrak{p}''_{\mathfrak{s}} = [\mathfrak{p}_{2_1}, \mathfrak{p}_{2_2}]$. In particular, $\dim(\text{Stab}_{\mathfrak{g}_2} X') = 8$.

Since X' and X'' belong to distinct \mathfrak{g}_2-modules, $\text{Stab}_{\mathfrak{g}_2} X = (\text{Stab}_{\mathfrak{g}_2} X') \cap (\text{Stab}_{\mathfrak{g}_2} X'')$. But $\dim G_2 X \leq 7$, whence $\dim(\text{Stab}_{\mathfrak{g}_2} X') \geq 7$. Since any proper subalgebra of $\mathfrak{s} \cong sl(3)$ has dimension at most 6, we conclude that $\text{Stab}_{\mathfrak{g}_2} X'$ is conjugate to $\mathfrak{p}''_{\mathfrak{s}}$.

As $\mathfrak{p}''_{\mathfrak{s}}$ and $\mathfrak{p}''_{\mathfrak{s}}$ are not conjugate, $\text{Stab}_{\mathfrak{g}_2} X$ is a codimension 1 subalgebra of $\mathfrak{p}''_{\mathfrak{s}} = \mathfrak{C} \mathfrak{H}_{\alpha_1} \oplus \mathfrak{C} \mathfrak{X}_{2_1} \oplus \mathfrak{n}^+_2$. The only possibility, up to G_2-conjugacy, is $\mathfrak{C} \mathfrak{H}_{\alpha_1} \oplus \mathfrak{n}^+_2$. But this does not stabilise any (non-zero) vector in \mathfrak{g}_2^\perp. This contradiction proves $X' = 0$.

Corollary. $\mathbf{O}_{\text{min}} = \{0\} \cup \mathbf{O}_6 \cup \mathfrak{g}_8^\perp$, and $\pi: \mathbf{O}_{\text{min}} \to \mathbf{O}_8$ is bijective.
Proof. It is an immediate consequence of the proposition that \(\tilde{O}_{\text{min}} = \{ 0 \} \cup O_6 \cup \mathcal{V}_8 \). Recall that \(\tilde{O}_8 = \{ 0 \} \cup O_6 \cup O_8 \). By (4.2), \(\pi: \mathcal{V}_8 \to O_8 \) is bijective. As \(O_6 \subseteq g_2 \), and \(\pi|_{g_2} \) is multiplication by a non-zero scalar, \(\pi: O_6 \to O_6 \) is bijective (in fact an isomorphism).

4.5. Theorem. \(\tilde{O}_{\text{min}} \) is the normalisation of \(\tilde{O}_8 \), and \(\pi: \tilde{O}_{\text{min}} \to \tilde{O}_8 \) is the natural projection from the normalisation.

Proof. By 4.4 the codimension of \(G_2 X_{\eta - \eta} \setminus G_2 X_{2 \eta} = \tilde{O}_{\text{min}} \setminus \mathcal{V}_8 \) in \(\tilde{O}_{\text{min}} = G_2 X_{\eta - \eta} \) is 2. Thus by 3.11 we have that the integral closure of \(\mathcal{O}(\tilde{O}_{\text{min}}) \) is \(\mathcal{O}(G_2 \cdot X_{\eta - \eta}) \), that is, \(\mathcal{O}(\tilde{O}_{\text{min}}) = \mathcal{O}(G_2 \cdot X_{\eta - \eta}) \simeq \mathcal{O}(G_2) T \), where the \(\sim \) denotes the integral closure and \(T = C_{G_2}(X_{\eta - \eta}) \). Similarly we have \(\mathcal{O}(\tilde{O}_8) = \mathcal{O}(G_2 \cdot X_{a_1 + a_2}) \simeq \mathcal{O}(G_2) S \), where \(S = C_{G_2}(X_{a_1 + a_2}) \) as in 4.2. But as \(S = T \) (see the proof of 4.2), we obtain

\[
\mathcal{O}(\tilde{O}_8) \cong \mathcal{O}(\tilde{O}_{\text{min}}) = \mathcal{O}(\tilde{O}_{\text{min}}).
\]

The last equality is true because of the normality of \(\tilde{O}_{\text{min}} \) (see 3.11). Finally the birationality of \(\pi: \tilde{O}_{\text{min}} \to \tilde{O}_8 \) gives the result.

4.6. We can now offer a second proof of the non-normality of \(\tilde{O}_8 \) (see 3.13 for a first one). We know that \(\mathcal{O}(\tilde{O}_{\text{min}}) = S(so(7))/\text{gr} J_0 \) is the normalisation of \(\mathcal{O}(\tilde{O}_8) \) by 4.5 and by 3.10, \(S(so(7))/\text{gr} J_0 \) is isomorphic as a \(g_2 \)-module to \(S(g_2)/\text{gr} J_1 \). As \(\mathcal{O}(\tilde{O}_8) = S(g_2)/\sqrt{\text{gr} J_2} \), if we denote by \(E \) the \(g_2 \)-module \(E(\omega_1) \) we get as in 3.12: \([\mathcal{O}(\tilde{O}_{\text{min}}): E] = [S(g_2)/\text{gr} J_1: E] = 1 \) and on the other hand,

\[
[\mathcal{O}(\tilde{O}_8): E] = [S(g_2)/\sqrt{\text{gr} J_2}: E] \leq [S(g_2)/\text{gr} J_2: E] = 0.
\]

Hence \(\mathcal{O}(\tilde{O}_{\text{min}}) \neq \mathcal{O}(\tilde{O}_8) \) and \(\tilde{O}_8 \) is not normal.

5. Components of \(\tilde{O} \cap n^+ \)

5.1. In this section we show that \(\tilde{O}_{\text{min}} \cap n^+_1 \) and \(\tilde{O}_8 \cap n^+_2 \) have two irreducible components. These components are explicitly described in terms of their defining equations. Writing \(\tilde{O}_8 \cap n^+_2 = \mathcal{V}_1 \cup \mathcal{V}_2 \) and \(\tilde{O}_{\text{min}} = \tilde{\mathcal{V}}_1 \cup \tilde{\mathcal{V}}_2 \) for the two decompositions into irreducible components, each \(\tilde{\mathcal{V}}_i \) is the normalisation of \(\mathcal{V}_i \), and \(\pi: \tilde{\mathcal{V}}_i \to \mathcal{V}_i \) is the normalisation map. In fact, \(\mathcal{V}_1 \simeq \tilde{\mathcal{V}}_1 \) but \(\mathcal{V}_2 \not\simeq \tilde{\mathcal{V}}_2 \). The failure of \(\pi: \tilde{\mathcal{V}}_2 \to \mathcal{V}_2 \) to be an isomorphism can eventually be used to give a third proof of the non-normality of \(\tilde{O}_8 \) (see 5.10). In 5.11 we describe the (unique) component of \(\tilde{O}_6 \cap n^+_2 \).

5.2. It is already shown in [19, Example 10.1] that \(\tilde{O}_8 \cap n^+_2 \) has two
irreducible components. We recall some other facts presented in [19] which will be useful. For the purposes of 5.2, \(g \) will denote an arbitrary semi-simple Lie algebra over \(\mathbb{C} \), \(G \) the adjoint algebraic group of \(g \), \(B \) the Borel subgroup, \(W \) the Weyl group of \(g \), \(n \) the upper triangular part of \(g \), and for each \(w \in W \), \(w(n) \) denotes the linear span of \(\{X_{w(x)} | X_{w} \in n\} \). Each \(G(n \cap w(n)) \) contains a unique dense nilpotent orbit, denoted \(St(w) \) after Steinberg, who proved its existence [26]. Thus \(St: W \to \mathcal{N}/G \), the space of nilpotent orbits, denotes the obvious map. This map is surjective but not injective in general. For \(w \in W \), set \(V(w) = B(n \cap w(n)) \cap St(w) \). Let \(O \) be a nilpotent orbit.

Proposition [23]. The irreducible components of \(O \cap n \) all have dimension equal to \(1/2 \dim O \).

Proposition [19, (2.6), (9.6)]. The irreducible components of \(O \cap n \) are precisely the \(V(w) \) for \(w \not\in St^{-1}(O) \). The number of irreducible components of \(O \cap n \) equals the number of distinct \(B(n \cap w(n)) \) such that \(w \in St^{-1}(O) \).

Remark. The irreducible components of \(O \cap n \) are the \(V(w) \) for \(w \in St^{-1}(O) \).

5.3. Using 5.2, it is easy to prove the following.

Proposition. (a) There are two irreducible components of \(O_8 \cap n_2^+ \). These are

\[
\mathcal{V}_1 := \overline{V(x_{3a_1+2a_2})} = \overline{P_{a_2} \cdot X_{a_1}} \subseteq m_{a_2},
\]

\[
\mathcal{V}_2 := \overline{V(x_{3a_1+2a_2})} = \overline{P_{a_1} \cdot X_{a_1+a_2}} \subseteq m_{a_1}.
\]

(b) There are two irreducible components of \(O_{\text{min}} \cap n_1^+ \). These are

\[
\mathcal{\tilde{V}}_1 := \overline{P_{\eta_2-\eta_3, \eta_3} \cdot X_{\eta_1-\eta_2}} \subseteq m_{\eta_2-\eta_3, \eta_3},
\]

\[
\mathcal{\tilde{V}}_2 := \overline{P_{\eta_1-\eta_2, \eta_3} \cdot X_{\eta_1-\eta_3}} \subseteq m_{\eta_1-\eta_2, \eta_3}.
\]

5.4. The main properties of the components \(\mathcal{V}_i \) and \(\mathcal{\tilde{V}}_i \) which will be proved in the rest of Section 5 are the following:

(a) \(\mathcal{\tilde{V}}_1 \) is the cone \(t_1^2 + \cdots + t_3^2 = 0 \) in \(\mathbb{C}^5 \), and is therefore normal. Furthermore, \(\pi: \mathcal{\tilde{V}}_1 \to \mathcal{V}_1 \) is an isomorphism of varieties.

(b) \(\mathcal{\tilde{V}}_2 \) is normal, and \(\dim(\text{Sing } \mathcal{\tilde{V}}_2) = 1 \).

(c) \(\mathcal{V}_2 \) is not normal; the singular locus of \(\mathcal{V}_2 \) equals its non-normal locus and is of dimension 3.

(d) \(\pi: \mathcal{\tilde{V}}_2 \to \mathcal{V}_2 \) is the normalisation of \(\mathcal{V}_2 \).
5.5. Proof that \(\pi(\tilde{\mathcal{V}}_i) = \mathcal{V}_i \). Note that \(\mathcal{P}_{a_1} \subseteq \mathcal{P}_{a_2 - n_2} \) and \(\mathcal{P}_{a_2} \subseteq \mathcal{P}_{a_1 - n_2, n_3} \) (see 2.2, 2.3). Thus \(\pi |_{\mathcal{V}_i} \) is \(\mathcal{P}_{a_1} \)-equivariant (\(i = 1, 2 \)).

Because \(\pi(\mathcal{O}_{\text{min}}) = \mathcal{O}_8 \) by (2.6), and \(\pi(n_1^+) = n_2^+ \), we obtain \(\pi(\tilde{\mathcal{V}}_i) \subseteq \mathcal{O}_8 \cap n_2^+ \). But \(X_{a_1 + 2} \in \pi(CX_{n_1 - n_2}) \subseteq \pi(\tilde{\mathcal{V}}_1) \) and \(X_{a_1 - a_2} \in \pi(CX_{n_1 - n_2}) \subseteq \pi(\tilde{\mathcal{V}}_2) \). Hence, by \(\mathcal{P}_{a_1} \)-equivariance, irreducibility of \(\pi(\tilde{\mathcal{V}}_i) \), and dimension reasons it follows that \(\pi(\tilde{\mathcal{V}}_i) = \mathcal{V}_i \) (\(i = 1, 2 \)). Now observe that \(\pi : \mathcal{O}_{\text{min}} \to \mathcal{O}_8 \), being a finite morphism (4.5), is closed and so \(\pi(\tilde{\mathcal{V}}_i) = \mathcal{V}_i \).

5.6. Proof that \(\pi : \tilde{\mathcal{V}}_1 \to \mathcal{V}_1 \) is an isomorphism. Note that \(\pi : m_{n_2 - n_1, n_3} \to m_{n_2} \) is an isomorphism of vector spaces. Hence \(\pi \) restricts to an isomorphism on any subvariety; in particular, \(\pi : \tilde{\mathcal{V}}_1 \to \pi(\tilde{\mathcal{V}}_1) = \mathcal{V}_1 \) is an isomorphism.

5.7. We now want to show that the \(\tilde{\mathcal{V}}_i \) are normal varieties, and that \(\pi : \tilde{\mathcal{V}}_1 \to \mathcal{V}_1 \) is the normalisation map. To do this we shall give an explicit description of \(\mathcal{O}(\tilde{\mathcal{V}}_1) \) and \(\mathcal{O}(\mathcal{V}_1) \).

Lemma. Let \(f = X^{2}_{-n_1} + 4X_{-(n_1 - n_2)}X_{-(n_1 + n_2)} + 4X_{-(n_1 - n_3)}X_{-(n_1 + n_3)} \). Then the ideal of functions in \(S(m_{n_2 - n_3, n_3}) \) vanishing on \(\tilde{\mathcal{V}}_1 \) is generated by \(f \).

Proof. After 5.3, \(\tilde{\mathcal{V}}_1 = \overline{\mathcal{P}_{n_2 - n_3, n_3}} \cdot \frac{X_{n_1 - n_2}}{X_{n_1 - n_2}} \). Because \(m_{n_2 - n_3, n_3} \) is abelian, and \(\mathcal{Q}_{n_2 - n_3, n_3} = L_{n_2 - n_3, n_3} \times \mathbb{C}^* \) we have \(\tilde{\mathcal{V}}_1 = \overline{L_{n_2 - n_3, n_3}} \cdot \frac{X_{n_1 - n_2}}{X_{n_1 - n_2}} \). It is easily to see that \(L_{n_2 - n_3, n_3} \) is of type \(B_2 \) and \(m_{n_2 - n_3, n_3} \) is its natural 5-dimensional irreducible representation. Thus we may think of \(L_{n_2 - n_3, n_3} \) being \(\text{SO}(5) \) embedded in \(\text{SO}(7) \) and \(m_{n_2 - n_3, n_3} \cong \mathbb{C}^5 \). There are only three \(\text{SO}(5) \)-orbits in \(\mathbb{C}^5 \), namely \(\{0\} \), the 4-dimensional orbit of isotropic vectors for the associated quadratic form, and the open orbit of non-isotropic vectors. Hence \(\tilde{\mathcal{V}}_1 \) must be the orbit of isotropic vectors, since \(\dim \mathcal{V}_1 = 4 \). Note that \(f \) is invariant under \(l_{n_2 - n_3} \). Hence \(V(f) \) is a 4-dimensional irreducible \(\text{SO}(5) \)-variety, and so equals the closure of the unique 4-dimensional \(\text{SO}(5) \)-orbit.

Corollary. \(\tilde{\mathcal{V}}_1 \) is a normal variety.

Proof. By the lemma above, \(\mathcal{O}(\tilde{\mathcal{V}}_1) \) is the ring of functions on a quadratic cone in \(\mathbb{C}^5 \), hence \(\mathcal{O}(\tilde{\mathcal{V}}_1) \) is integrally closed (see [9, II, Ex. 6.4] for example).

Remark. Using the comorphism of \(\pi : m_{n_2 - n_3, n_3} \cong m_{n_2} \), it is easily seen that the ideal of functions vanishing on \(\mathcal{V}_1 = \pi(\tilde{\mathcal{V}}_1) \) is generated in \(S(m_{n_2}^-) \) by the quadratic polynomial

\[
X^2_{-a_1 - a_2} - 4X_{-a_1}X_{-3a_1 - 2a_2} + 4X_{-a_1 - a_2}X_{-3a_1 - a_2}.
\]

This shows that the primitive factor rings \(U(g_2)/J_1 \) and \(U(\text{so}(7))/J_0 \) are
realised as differential operators on the rings of functions \(\mathcal{O}(V_1) \cong \mathcal{O}(V'_1) \) (see 3.3 and 3.5).

5.8. **Lemma.** \(\mathcal{O}(\tilde{V}_2) \cong \mathbb{C}[u_0] \otimes \mathbb{C}[u_1, u_2, u_3, u_{-1}, u_{-2}, u_{-3}] / I \) where \(I \) is the ideal generated by

\[
4u_1 u_3 - u_2^2, \quad 4u_{-1} u_3 - u_{-2}^2, \quad u_1 u_{-2} - u_2 u_{-3},
\]

\[
u_1 u_{-1} - u_3 u_{-3}, \quad u_2 u_{-1} - u_{-2} u_{-3}.
\]

Proof. By (5.3), \(\tilde{V}_2 = \overline{P_{\eta_1 - \eta_2, \eta_1} \cdot X_{\eta_1 - \eta_3}} \). Let \(U \) denote the product of the \(\exp(\mathrm{ad} CX_\alpha) \) for \(\alpha \neq \eta_2 + \eta_1, X_\alpha \in m_{\eta_1 - \eta_2, \eta_3} \). Note that \(m_{\eta_1 - \eta_2, \eta_3} = \mathbb{C}X_{\eta_1 - \eta_2, \eta_3} \cdot \mathbb{C}X_{\eta_1 - \eta_3} \).

We need to describe \(\mathbb{C}X_{\eta_1 - \eta_2, \eta_1} \cdot X_{\eta_1 - \eta_3} \). To do this we may think of \(\mathbb{C}X_{\eta_1 - \eta_2, \eta_1} \) as a \(\mathbb{C}X_{\eta_1 - \eta_2, \eta_3} \)-module into \(\mathbb{C}X_{\eta_1 - \eta_2, \eta_3} \cdot \mathbb{C}X_{\eta_1 - \eta_3} \).

Under this identification, the element \(X_{\eta_1 - \eta_3} \) becomes \(-1/2Y_{31} \) and we must compute \(\mathbb{C}X_{\eta_1 - \eta_2, \eta_1} \cdot X_{\eta_1 - \eta_3} = GL(2) \times SL(2) \cdot Y_{31} \). This equals

\[
\left(\begin{array}{cc}
 a^2 & ab \\
 2ac & bc + ad \\
 c^2 & cd
\end{array} \right)
\]

where \(Y \in M_{3 \times 2}(\mathbb{C}), g_1 = \left(\begin{array}{cc}
 a & b \\
 c & d
\end{array} \right) \in GL(2), g_2 = \left(\begin{array}{cc}
 \alpha & \gamma \\
 \beta & \delta
\end{array} \right) \in SL(2) \). Under this identification, the element \(X_{\eta_1 - \eta_3} \) becomes \(-1/2Y_{31} \) and we must compute \(\mathbb{C}X_{\eta_1 - \eta_2, \eta_1} \cdot X_{\eta_1 - \eta_3} = GL(2) \times SL(2) \cdot Y_{31} \). This equals

\[
\left(\begin{array}{cc}
 ab^2 & \gamma b^2 \\
 2abcd & 2\gamma bd \\
 ad^2 & \gamma d^2
\end{array} \right) (\alpha, \gamma, b, d) \in \mathbb{C}^4
\]

It is now easy to obtain, \(\dim \mathbb{C}X_{\eta_1 - \eta_2, \eta_1} \cdot X_{\eta_1 - \eta_3} = 3 \), and \(\mathcal{O}(\tilde{V}_2) \cong \mathbb{C}[u_1, u_2, u_3, u_{-1}, u_{-2}, u_{-3}] / I \) with \(I \) as described in the statement of the lemma. Hence the result.

Corollary. \(\tilde{V}_2 \) is a normal variety, whose singular locus is of dimension 1.

Proof. Given the above description of \(\mathcal{O}(\tilde{V}_2) \cong \mathbb{C}[u_0] \otimes \mathbb{C} \), the analysis of the singularities of \(\tilde{V}_2 \) depends only on \(R \). Looking at the Jacobian matrix of \(I \), the only singular point of \(\text{Spec} R \) is \(0 \in F = M_{3 \times 2}(\mathbb{C}) \). To prove
that R is normal recall that (with the notation of the previous proof), $Q_{q_1 - q_2 - q_3} \cdot X_{q_1 - q_2 - q_3} \simeq GL(2) \times SL(2) \cdot Y_{11} = GL(2) \times SL(2) \cdot Y_{11}$. As Y_{11} is the highest weight vector in the 6-dimensional irreducible representation of $GL(2) \times SL(2)$, this orbit closure is normal by Theorem 3.11.

5.9. Lemma. $\mathcal{O} \cdot (\mathcal{Y}_2) \simeq \mathbb{C}[v_0] \otimes \mathbb{C}[v_1, v_2, v_3, v_4]/(d)$, where

$$d = v_2^3 v_3^2 + 18v_1 v_2 v_3 v_4 - 4v_1 v_3^3 + 4v_2^3 v_4 - 27v_1^2 v_4^2$$

is the discriminant of a cubic form.

Proof. Recall from 5.3 that $\mathcal{V}_2 = \mathbb{C}[X_{a_1 + a_2}]$, and note that as a \mathcal{Q}_1-module m_{a_1} decomposes as $\mathbb{C}[X_{a_1 + a_2}] \langle 0 \rangle $, and $\mathcal{Q}_1 \simeq CH \oplus s_{a_1}$ for some $H \in h_2$. Write $P_{a_1} = Q_{a_1} M_{a_1}, Q_{a_1} \simeq \mathbb{C} \times SL(2), M_{a_1} = U \cdot \exp(ad \mathbb{C}[X_{a_1 + a_2}])$, where U is the product of the exp(ad $\mathbb{C}[X_{a_1 + a_2}]$) for $X_{a_1 + a_2}$. We obtain $P_{a_1} \cdot X_{a_1 + a_2} = \mathbb{C}[X_{a_1 + a_2}] \cdot X_{a_1 + a_2}$. Consider $S^2(\mathbb{C}^3)$ as having basis $t_{1}^2 = X_{a_1 + a_2}, 3t_{1}t_{2} = X_{a_1 + a_2}, 3t_{1}t_{2}^2 = X_{a_1 + a_2}$ and give $SL(2)$ its natural action. Hence to compute $P_{a_1} \cdot X_{a_1 + a_2}$ we must determine the orbit of $t_{1}^2 t_{2}^2$ under $SL(2)$. This is done in [22, pp. 827–828]. We find $\mathcal{O} \cdot (SL(2) \cdot t_{1}^2 t_{2}^2) = \mathbb{C}[v_1, v_2, v_3, v_4]/(d)$, where the v_i are the coordinate functions with respect to the basis $\{t_{1}^2 t_{2}^2, t_{1} t_{2}^3, t_{1} t_{2}^3, t_{2}^3\}$. The result follows.

Corollary. (i) \mathcal{V}_2 is not a normal variety: the singular locus of \mathcal{V}_2 is equal to its non-normal locus, and is of dimension 3.

(ii) $\pi: \tilde{\mathcal{V}}_2 \to \mathcal{V}_2$ is the normalisation of \mathcal{V}_2.

Proof. By the above lemma it is sufficient to analyse the variety $Q_{a_1} \cdot X_{a_1 + a_2} \simeq SL(2) \cdot t_{1}^2 t_{2}^2$. By [22, pp. 827–828] we have

$$Q_{a_1} \cdot X_{a_1 + a_2} = Q_{a_1} \cdot X_{a_1 + a_2} \cup Q_{a_2} \cdot X_{a_2} \cup \{0\},$$

$$\text{Reg } Q_{a_1} \cdot X_{a_1 + a_2} = \text{Nor } Q_{a_1} \cdot X_{a_1 + a_2} = Q_{a_1} \cdot X_{a_1 + a_2}$$

(where Reg and Nor denote the regular, and normal locus). Thus the singular locus $\text{Sing } \mathcal{V}_2 = \mathbb{C}[X_{a_1 + a_2}] \cdot X_{a_2}$ is of dimension 3 and is also the non-normal locus of \mathcal{V}_2.

In 5.5, we showed that $\pi: \tilde{\mathcal{V}}_2 \to \mathcal{V}_2$ is a bijective morphism and thus birational [10, Theorem 4.6]. The diagram of morphisms and varieties

$$\begin{array}{ccc}
\mathcal{O}_8 & \xrightarrow{\big} & \tilde{\mathcal{V}}_2 \\
\pi \downarrow & & \downarrow \\
\mathcal{O}_{10} & \xrightarrow{\big} & \mathcal{V}_2
\end{array}$$
gives for the coordinate rings

\[O(\tilde{\mathcal{O}}_{\text{min}}) \longrightarrow O(\tilde{\mathcal{V}}_2) \]

\[\pi^* \]

\[O(\mathcal{O}_8) \longrightarrow O(\mathcal{V}_2) \]

Since \(O(\tilde{\mathcal{O}}_{\text{min}}) \) is the integral closure of \(O(\mathcal{O}_8) \) by 4.5, it follows that \(O(\tilde{\mathcal{V}}_2) \) is integral over \(O(\mathcal{V}_2) \) (by means of \(\pi^* \)). However, \(O(\mathcal{V}_2) \) is integrally closed by 5.8. Thus \(O(\tilde{\mathcal{V}}_2) \) is the integral closure of \(O(\mathcal{V}_2) \).

5.10. We can now give a more geometrical proof of the non-normality of \(\tilde{\mathcal{O}}_8 \). If \(\tilde{\mathcal{O}}_8 \) were normal, then \(\pi: \tilde{\mathcal{O}}_{\text{min}} \rightarrow \tilde{\mathcal{O}}_8 \) would be an isomorphism by 4.5. This would restrict to give an isomorphism of the closed subvariety \(\tilde{\mathcal{V}}_2 \) with its image \(\pi(\tilde{\mathcal{V}}_2) = \mathcal{V}_2 \). However, by (5.8) and (5.9), \(\tilde{\mathcal{V}}_2 \) is normal and \(\mathcal{V}_2 \) is not, so \(\tilde{\mathcal{V}}_2 \) and \(\mathcal{V}_2 \) are not isomorphic.

5.11. To complete the picture of the components of the nilpotent orbits in \(g_2 \) we consider \(\tilde{\mathcal{O}}_6 \cap \mathfrak{n}_2^+ \). We use the notation of 5.2.

Lemma. \(\tilde{\mathcal{O}}_6 \cap \mathfrak{n}_2^+ \) is irreducible and equal to \(V(s_{2s_1 + s_2}) = P_{s_1} \cdot X_{s_2} \).

Proof. The only possibility for \(\mathfrak{n}_2^+ \cap w(\mathfrak{n}_2^+) \) to contain no short root vectors is \(w = s_{2s_1 + s_2} \). In that case, \(\mathfrak{n}_2^+ \cap w(\mathfrak{n}_2^+) = \mathbb{C}X_{s_2} \). It is easy to see that \(\dim P_{s_1} \cdot X_{s_2} = 3 \), and the lemma follows.

Corollary. \(O(\tilde{\mathcal{O}}_6 \cap \mathfrak{n}_2^+) = \mathbb{C}[v_0] \otimes \mathbb{C}[v_1, v_2, v_3, v_4]/J \), where \(J \) is the ideal generated by

\[9v_1 v_4 - v_2 v_3, \quad v_3^2 - 3v_2 v_4, \quad v_2^2 - 3v_1 v_3. \]

Proof. We adopt the notation of the proof of Lemma 5.9. We have \(P_{s_1} \cdot X_{s_2} = \mathbb{C}[X_{2s_1 + 2s_2}] \otimes Q_{s_1} \cdot X_{s_2} \), and \(Q_{s_1} \cdot X_{s_2} \simeq GL(2) t_2^3 = \{ bt_1^3 + 3b^2 dt_1 t_2 t_3 + 3bd^2 t_1 t_2^2 + d^3 t_3^2 \mid (b, d) \in \mathbb{C}^2 \} \). From this we deduce easily that \(O(\tilde{Q}_{s_1} \cdot X_{s_2}) \simeq \mathbb{C}[v_1, v_2, v_3, v_4]/J \), where \(J \) is as described above. For dimension reasons,

\[P_{s_1} \cdot X_{s_2} = \tilde{\mathcal{O}}_6 \cap \mathfrak{n}_2^+ = \mathbb{C}X_{2s_1 + 2s_2} \otimes Q_{s_1} \cdot X_{s_2}. \]

Remark. The variety \(\tilde{\mathcal{O}}_6 \cap \mathfrak{n}_2^+ \) is normal, by Theorem 3.11, because \(\tilde{Q}_{s_1} \cdot X_{s_2} \) is the orbit of the lowest weight vector in the 4-dimensional irreducible representation of \(GL(2) \simeq Q_{s_1} \). Notice that the singular locus of \(\tilde{\mathcal{O}}_6 \cap \mathfrak{n}_2^+ \) is \(\mathbb{C}X_{2s_1 + 2s_2} \times \{ 0 \} \).

An alternative proof of the normality of \(\tilde{Q}_{s_1} \cdot X_{s_2} \) would be to remark that \(O(\tilde{Q}_{s_1} \cdot X_{s_2}) \) is the invariant ring of a polynomial ring in two variables under the action of the finite group \(\mathbb{Z}/3\mathbb{Z} \).
NOMENCLATURE

We give a list of frequently used notation and the section in which it is introduced.

1.1 \(\mathfrak{g}_2 \);
1.2 \(\mathbf{O}_{\text{min}} ; \)
1.3 \(\mathbf{O}_d, J_0, J_1, J_2 ; \)
2.2 \(\mathfrak{g}_0, \mathfrak{g}_1, R_i, D_i (i = 0, 1, 2) ; \)
2.3 \(n^+_i, h_i, n^-_i ; \)
2.4 \(C_G(\mathfrak{g}), p_S, \mathfrak{s}_S, n^+_S, l_S, \mathfrak{s}_2, M(\lambda), L(\lambda), J(\lambda), \rho_i, W_i (i = 0, 1, 2), s_\alpha, \Theta(X), \Theta(\hat{X}) = \mathcal{O}(\hat{X}), P_S, Q_S, M_S, L_S, \mathcal{R}(\mathbf{O}_{\text{min}}), V(I), d(M) ; \)
2.5 \(\pi, \mathfrak{g}^3_2 ; \)
2.7 \(\mathbf{O}, \mathbf{O}^c ; \)
3.12 \([M: E] ; \)
4.2 \(\mathcal{Y}_8 ; \)
5.2 \(\text{St}(w), w(\eta), V(w) ; \)
5.3 \(\mathcal{Y}_1, \mathcal{Y}_2, \mathcal{Y}_1, \mathcal{Y}_2. \)

ACKNOWLEDGMENTS

This research began while the first author was visiting the University of Warwick, as a British SERC Visiting Research Fellow, and continued while the second author was a guest of the University of Paris VI. The second author was supported by a British SERC Research Assistantship. We thank these organisations for the support and hospitality, and also C. R. Hajarnavis and R. Rentschler for arranging the visits to Warwick and Paris, respectively. We thank the referee whose suggestions improved an earlier version of this paper.

REFERENCES

1. W. BORHO AND J. C. JANTZEN, Uber primitive Ideale in der Einhullenden einer halbein-
2. W. BORHO AND H. KRAFT, Uber Bahnen und Deformationen bei linearen Aktionen
4. R. W. CARTER, “Finite Groups of Lie Type: Conjugacy Classes and Complex Characters,”
5. C. CHEVALLEY, Les groupes de type \(G_2 \), in “Séminaire Chevalley 1956–58,” Vol. II.
8. A. B. GONCHAROV, Constructions of the Weil representations of certain simple Lie
23. N. Spaltenstein, On the fixed point set of a unipotent element on the variety of Borel subgroups, Topology 16 (1977), 203–204.