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1. INTRODUCTION

If R is a prime, principal right ideal ring, then Goldie [2]| shows that R is
an n X n matrix ring over a right Ore domain D for some n > 1. Jategaonkar
[3, p. 137] asks whether the right Ore domain D so determined is necessarily
unique. The example produced below shows that the domain is not uniquely
determined. The example is a noetherian domain S which is not isomorphic
to the Weyl algebra 4,, but satisfies M,(S)=M,(4,). It is, of course, well
known that M,(A4,) is a principal right and left ideal ring.

Kaplansky asked the more general question: if 4 and B are right
noetherian rings satisfying M, (4)=~ M, (B), are A and B necessarily
isomorphic? This more general question was answered in the negative by
Jategaonkar [3, p. 44] and Knus [4, Example 4.1].

If 7 is a non-zero right ideal of 4,, then by Webber [6] I®I=4,D A4,
and so M,(End, (1)) = M,(4,). It is natural to ask whether 4, and End, ()
are necessarily isomorphic. The ring S, produced below, is in fact
isomorphic to End, (7) for a right ideal 7 of 4,. Thus this question also has
a negative answer.

The author would like to thank J. C. Robson for bringing this question to
his attention.

2. THE EXAMPLE

Let k be an algebraically closed field of characteristic zero. Let 4 = A4, (k)
denote the Weyl algebra over the field & with two generators p and g subject
to the relation pqg — gp = 1.

Put 7= p’4 + (pq + 1)A. Then I is a maximal, non-principal right ideal
of A (see Rinehart [5]). As A4 is a prime, noetherian ring the endomorphism
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ring of I is isomorphic to S ={x€ Q|xI I}, where Q is the quotient
division ring of 4.

Fojr t€Z, put D(t)= {x € A||pq, x] = tx}, where [a, b] denotes ab — ba.
Then’d = ® %, D(¢) and

D(1) = q'k[ pql, t>0
=p 'klpgl, <0

The subspaces D(¢) give A the structure of a graded ring because D(s) D(¢) =
D(s +t). As I is generated by homogeneous elements, I = @ >, (I N D(¢)).
It is easy to check that

IND()=(pg+1)q'k[pg), >0
= (pq + L)p k[ pq], t=—1
= p~'k| pql, 1< -2
PROPOSITION 1. The ring S is given by, S = @, E(t) where

E()=(pg+ 1)q" klpgl(pg+ 1)~', t>2

= (pg + 1)q k[ pq}, t=1
= k| pql, 1=0
=(pq + D)p k| pq), t=—1
=p~'k[pq], 1< -2

Proof. Notice that x€ S if and only if xp* €I and x(pg+ 1)EL
Thus S=Ip 2N I(pg+1)~', and because p’ and (pg+ 1) are homo-
geneous elements S=@®%_ E() where E@{)=INDt—-2)p N
(IN D)) pg+ 1)~'. We now show that E(t) is as claimed. First, observe
that p~' = q(pg)~"' and p~*=¢*(pg)~"' (pg+ 1)~".

i t>2
E®)=(pg+1)q" *k(pgl p7>*N"(pg+ 1) q" klgp](pg+ 1*'
=(pg+ 1)q' klpqgl(pq)~"' (pg+ 1)""' N (pg + 1)q' k[ pg)(pg + 1)~
=(pg+1)q" k[ pgl(pg + 1)7";
(i) t=1
E(1)=(pg+ Dpklpglp~ >N (pg+ 1)q k[ pq)(pg+ 1)~
=(pq+ Vg klpql(pg) ' N\ (pqg+ 1)g k[ pql(pg + 1)
=(pq+ 1)q k[ pql;
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(i) =0
E©)=p’klpglp~* N (pg + 1)gklpql(pg+ 1)
= k| pql;
(iv) t=-1

E(—1)=p’k[pql p~> " (pg + 1) pk [pq](pg + 1)~
=(pg + )p k[ pq];
v) t£-2

E@)=p """ klpalp > Np~'k|pgl(pg+ 1)
=p k| pq] Q.E.D.
Look at pg as an element of S. It is clear, for all ¢ € Z, that
E(t)= (xE 5| | pg x] = x}.

It is now easy to see that pg is a strictly semi-simple element of § in the
sense of Dixmier [1].

ProposiTiON 2. The rings S and A are not isomorphic.

Progf. Suppose 8: 4 —» S is an isomorphism. Then S may be considered
as the Weyl algebra over k generated by the elements p = 8(p) and § = 6(q)
subject to the relation pg — gp = 1. Now pq is a strictly semi-simple element
of § and so by [1, Théoréme 9.2] (under the additional hypothesis that k is
algebraically closed) there exists an automorphism @ of S such that
@(pq) = pq + B for some scalars a, § with a # 0. Let y = @ ~' and consider
the new isomorphism y: 4 — S.

Let a = w(p), b = w(q). From the above

ab=y(pq) =P~ (p7) = '(pq—p) € E(0).

Considering a=)"a,, b=)_ b, with a,€ E(¢) and b, € E(s) it can be seen
that the only way ab can be element of E(0) is if « € E(f) and b € E(—t) for
some t € Z. If a € E(t) and b € E(—t) with either ¢ > 1 or t < —1, look at ab
as a polynomial in pg. By rearranging the terms in the expression for ab
(using identities such as (pq)p = p(pq — 1)) it can indeed be made into a
polynomial in pg. Moreover, the degree of ab as a polynomial in pg will be
at least two—consequently ab # a ~'(pg — ). However, if a, b € E(0), then
[a,b] =0 contradicting the fact that [a,b]=w(|p,q])=1. We conclude
that no such a, b € § can exist. Q.E.D.
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It seems likely that infinitely many different such endomorphism rings
exist—it would be interesting to know whether this is in fact the case.
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