An Example of a Ring Morita Equivalent to the Weyl Algebra A_1

S. P. Smith

Department of Mathematics, University of Leeds LS2 9JT, England Communicated by I. N. Herstein Received July 5, 1980

1. INTRODUCTION

If R is a prime, principal right ideal ring, then Goldie [2] shows that R is an $n \times n$ matrix ring over a right Ore domain D for some $n \ge 1$. Jategaonkar [3, p. 137] asks whether the right Ore domain D so determined is necessarily unique. The example produced below shows that the domain is not uniquely determined. The example is a noetherian domain S which is not isomorphic to the Weyl algebra A_1 , but satisfies $M_2(S) \cong M_2(A_1)$. It is, of course, well known that $M_2(A_1)$ is a principal right and left ideal ring.

Kaplansky asked the more general question: if A and B are right noetherian rings satisfying $M_n(A) \cong M_n(B)$, are A and B necessarily isomorphic? This more general question was answered in the negative by Jategaonkar [3, p. 44] and Knus [4, Example 4.1].

If I is a non-zero right ideal of A_1 , then by Webber [6] $I \oplus I = A_1 \oplus A_1$ and so $M_2(\operatorname{End}_{A_1}(I)) \cong M_2(A_1)$. It is natural to ask whether A_1 and $\operatorname{End}_{A_1}(I)$ are necessarily isomorphic. The ring S, produced below, is in fact isomorphic to $\operatorname{End}_{A_1}(I)$ for a right ideal I of A_1 . Thus this question also has a negative answer.

The author would like to thank J. C. Robson for bringing this question to his attention.

2. The Example

Let k be an algebraically closed field of characteristic zero. Let $A = A_1(k)$ denote the Weyl algebra over the field k with two generators p and q subject to the relation pq - qp = 1.

Put $I = p^2 A + (pq + 1)A$. Then I is a maximal, non-principal right ideal of A (see Rinehart [5]). As A is a prime, noetherian ring the endomorphism

ring of I is isomorphic to $S = \{x \in Q \mid xI \subseteq I\}$, where Q is the quotient division ring of A.

For $t \in \mathbb{Z}$, put $D(t) = \{x \in A \mid [pq, x] = tx\}$, where [a, b] denotes ab - ba. Then $A = \bigoplus_{-\infty}^{\infty} D(t)$ and

$$D(t) = q^{t}k[pq], \qquad t \ge 0$$
$$= p^{-t}k[pq], \qquad t < 0.$$

The subspaces D(t) give A the structure of a graded ring because $D(s) D(t) \subseteq D(s+t)$. As I is generated by homogeneous elements, $I = \bigoplus_{-\infty}^{\infty} (I \cap D(t))$. It is easy to check that

$$I \cap D(t) = (pq+1) q^{t} k[pq], \quad t \ge 0$$
$$= (pq+1)p k[pq], \quad t = -1$$
$$= p^{-t}k[pq], \quad t \le -2$$

PROPOSITION 1. The ring S is given by, $S = \bigoplus_{-\infty}^{\infty} E(t)$ where

$$E(t) = (pq + 1) q^{t} k[pq](pq + 1)^{-1}, \qquad t \ge 2$$

= (pq + 1)q k[pq], $t = 1$
= k[pq], $t = 0$
= (pq + 1)p k[pq], $t = -1$
= p^{-t} k[pq], $t \le -2.$

Proof. Notice that $x \in S$ if and only if $xp^2 \in I$ and $x(pq+1) \in I$. Thus $S = Ip^{-2} \cap I(pq+1)^{-1}$, and because p^2 and (pq+1) are homogeneous elements $S = \bigoplus_{-\infty}^{\infty} E(t)$ where $E(t) = (I \cap D(t-2))p^{-2} \cap (I \cap D(t))(pq+1)^{-1}$. We now show that E(t) is as claimed. First, observe that $p^{-1} = q(pq)^{-1}$ and $p^{-2} = q^2(pq)^{-1}(pq+1)^{-1}$.

(i) $t \ge 2$

$$E(t) = (pq + 1) q^{t-2} k[pq] p^{-2} \cap (pq + 1) q^{t} k[qp](pq + 1)^{+1}$$

$$= (pq + 1) q^{t} kpq^{-1} (pq + 1)^{-1} \cap (pq + 1) q^{t} k[pq](pq + 1)^{-1}$$

$$= (pq + 1) q^{t} k[pq](pq + 1)^{-1};$$

(ii) $t = 1$

$$E(1) = (pq + 1)p k[pq] p^{-2} \cap (pq + 1)q k[pq](pq + 1)^{-1}$$

$$= (pq + 1)q kpq^{-1} \cap (pq + 1)q k[pq](pq + 1)^{-1}$$

$$= (pq + 1)q k[pq];$$

(iii)
$$t = 0$$

 $E(0) = p^2 k[pq] p^{-2} \cap (pq+1)q k[pq](pq+1)^{-1}$
 $= k[pq];$

(iv)
$$t = -1$$

 $E(-1) = p^{3}k[pq]p^{-2} \cap (pq+1)pk[pq](pq+1)^{-1}$
 $= (pq+1)pk[pq];$
(v) $t \leq -2$

$$E(t) = p^{-t+2} k[pq] p^{-2} \cap p^{-t} k[pq](pq+1)^{-1}$$

= $p^{-t} k[pq].$ Q.E.D.

Look at pq as an element of S. It is clear, for all $t \in \mathbb{Z}$, that

$$E(t) = \{ x \in S \mid [pq, x] = tx \}.$$

It is now easy to see that pq is a strictly semi-simple element of S in the sense of Dixmier [1].

PROPOSITION 2. The rings S and A are not isomorphic.

Proof. Suppose $\theta: A \to S$ is an isomorphism. Then S may be considered as the Weyl algebra over k generated by the elements $\bar{p} = \theta(p)$ and $\bar{q} = \theta(q)$ subject to the relation pq - qp = 1. Now pq is a strictly semi-simple element of S and so by [1, Théorème 9.2] (under the additional hypothesis that k is algebraically closed) there exists an automorphism Φ of S such that $\Phi(pq) = \bar{p}\bar{q} + \beta$ for some scalars α, β with $\alpha \neq 0$. Let $\psi = \Phi^{-1}\theta$ and consider the new isomorphism $\psi: A \to S$.

Let $a = \psi(p)$, $b = \psi(q)$. From the above

$$ab = \psi(pq) = \Phi^{-1}(\bar{p}\bar{q}) = \alpha^{-1}(pq - \beta) \in E(0).$$

Considering $a = \sum a_t$, $b = \sum b_s$ with $a_t \in E(t)$ and $b_s \in E(s)$ it can be seen that the only way ab can be element of E(0) is if $a \in E(t)$ and $b \in E(-t)$ for some $t \in \mathbb{Z}$. If $a \in E(t)$ and $b \in E(-t)$ with either $t \ge 1$ or $t \le -1$, look at abas a polynomial in pq. By rearranging the terms in the expression for ab(using identities such as (pq)p = p(pq - 1)) it can indeed be made into a polynomial in pq. Moreover, the degree of ab as a polynomial in pq will be at least two—consequently $ab \ne a^{-1}(pq - \beta)$. However, if $a, b \in E(0)$, then [a, b] = 0 contradicting the fact that $[a, b] = \psi([p, q]) = 1$. We conclude that no such $a, b \in S$ can exist. Q.E.D. It seems likely that infinitely many different such endomorphism rings exist—it would be interesting to know whether this is in fact the case.

References

- 1. J. DIXMIER, Sur les Algebres de Weyl, Bull. Soc. Math. France 96 (1968), 209-242.
- 2. A. W. GOLDIE, Non-commutative principal ideal rings, Arch. Math. 13 (1962), 214-221.
- 3. A. V. JATEGAONKAR, "Left Principal Ideal Rings," Lecture Notes in Mathematics No. 123, Springer-Verlag, Berlin/Heidelberg/New York, 1970.
- 4. M. A. KNUS, Algebres d'Azumaya et modules projectifs, Comm. Math. Helv. 45 (1970), 372-383.
- 5. G. S. RINEHART, Note on the global dimension of a certain ring, *Proc. Amer. Math. Soc.* 13 (1962), 341-346.
- 6. D. B. WEBBER, Ideals and modules of simple hereditary rings, J. Algebra 16 (1970), 239-242.