The Global Homological Dimension of the Ring of Differential Operators on a Nonsingular Variety over a Field of Positive Characteristic

S. P. Smith*

Mathematics Institute, University of Warwick,
Coventry CV4 7AL, United Kingdom

Communicated by A. W. Goldie

Received April 10, 1984

1. Introduction

Let k be a commutative ring, and A a commutative k-algebra. In Section 2 we define $D(A)$ the ring of k-linear differential operators on A. If k is a field of characteristic zero and A is the coordinate ring of a nonsingular affine algebraic variety over k, then it is shown in [3, 5] that the global homological dimension of $D(A)$ (gl. dim $D(A)$), equals the dimension of the variety.

Here we prove that if k is an algebraically closed field of characteristic $p > 0$, and A is the coordinate ring of a nonsingular affine algebraic variety, X, over k then $\text{gl. dim } D(A) = \text{dim } X$. In [5] it is shown that the weak global dimension of $D(A)$ ($w\text{-dim. } D(A)$), equals dim X.

As $D(A)$ is not noetherian there is no apriori reason for $w\text{-dim } D(A)$ and gl. dim $D(A)$ to be equal. It is a relatively straightforward matter to see that $D(A)$ is a union of subalgebras each of which has global dimension equal to dim X, and so a theorem of Berstein [2] gives gl. dim $D(A) \leq \text{dim } X + 1$. So the point is to show that in this particular situation Berstein's result can be improved to show $\text{gl. dim } D(A) \leq \text{dim } X$. That the global dimension is bounded below by dim X is a consequence of the fact that $w\text{-dim } D(A) = \text{dim } X$.

2. Differential Operators

Let k be a commutative ring, and A a commutative k-algebra. Then $\text{End}_k A$ may be made into an $A \otimes_k A$-module by defining $((a \otimes b) \theta)(c) = \theta(b \cdot a \otimes c)$.

* Present address: Department of Mathematics, University of Washington, Seattle, WA 98195.
$a\theta(bc)$ for $\theta \in \text{End}_k A$ and $a, b, c \in A$. We write $[a, \theta]$ for $(a \otimes 1 - 1 \otimes a)\theta$, so $[a, \theta](b) = a\theta(b) - \theta(ab)$.

Definition 2.1. The space of k-linear differential operators of order $\leq n$ on A is defined inductively by $\text{Diff}^k_0 A = 0$, and for $n \geq 0$ $\text{Diff}^n_k A = \{ \theta \in \text{End}_k A \mid [a, \theta] \in \text{Diff}^{n-1}_k A \text{ for all } a \in A \}$. The ring of k-linear differential operators on A is $D(A) = \bigcup_{n=0}^\infty \text{Diff}^n_k A$.

Remark 2.2. (1) $\text{Diff}^1_k A$ is an $A \otimes A$-submodule of $\text{End}_k A$.

(2) If $\theta \in \text{End}_k A$, then $\theta \in \text{Diff}^n_k A$, if and only if, for all $a_0, a_1, \ldots, a_n \in A$ one has $[a_0 \ldots [a_n, \theta] \ldots] = 0$.

(3) The reader is referred to [6, 7, 8] for an introduction to differential operators on commutative rings.

Definition 2.3. Denote by $\mu: A \otimes_k A \to A$ the multiplication map $\mu(a \otimes b) = ab$. This is a k-algebra map (also an A-module map for either the right or left A-module structure on $A \otimes A$). Thus $I = \ker \mu$ is an ideal of $A \otimes_k A$.

Theorem 2.4 (Heynemann–Sweedler [7], Grothendieck [6]). Let $\theta \in \text{End}_k A$. Then $\theta \in \text{Diff}^n_k A$, if and only if, $\Gamma^{n+1} \cdot \theta = 0$.

From now on, char $k = p > 0$, and $A = k[t_1, \ldots, t_n]$ is a finitely generated commutative k-algebra. We also assume k is contained in A.

Definition 2.5. For $r \geq 0$, define A_\sim to be the subalgebra of A generated by k and all elements a^p with $a \in A$. Clearly $A = A_0 \supseteq A_1 \supseteq \cdots$, and for $r > s$, A_s is a finitely generated A_r-module.

Lemma 2.6. $A_\sim = k[t_1^p, \ldots, t_n^p]$.

Proof. By induction it suffices to prove the result for $r = 1$. Clearly $k[t_1^p, \ldots, t_n^p] \subset A_1$, so only the reverse inclusion must be established. Let $a \in A$, and write $a = \sum \lambda_j t^j$, where $\lambda_j \in k$ and $J = (j_1, \ldots, j_n)$ is a multi-index and $t^j = t_1^{j_1} \cdots t_n^{j_n}$ (there is not necessarily a unique such expression for a).

As char $k = p$, if $u, v \in A$ then $(u + v)^p = u^p + v^p$, so by induction (on the number of nonzero λ_j occurring in the expression for a), $a^p = \sum \lambda_j^p t^j$. But $(t^j)^p = (t_1^p)^{j_1} \cdots (t_n^p)^{j_n} \in k[t_1^p, \ldots, t_n^p]$.

Hence $a^p \in k[t_1^p, \ldots, t_n^p]$.

This shows that we could actually define A_\sim to be $k[t_1^p, \ldots, t_n^p]$ and that such a definition is independent of the choice of generators for A.

Theorem 2.7. $D(A) = \bigcup_{r=0}^\infty \text{End}_A A$.

Proof [5, Lemma 3.3]. Let $\theta \in D(A)$ of order $< p^r$. As $(1 \otimes t_j - t_j \otimes 1) \in I$ for all j, $(1 \otimes t_j - t_j \otimes 1)^{p^r} = 1 \otimes t_j^{p^r} - t_j^{p^r} \otimes 1 \in I^{p^r}$. Hence $0 = (1 \otimes t_j^{p^r} - t_j^{p^r} \otimes 1) \cdot \theta = -[t_j^{p^r}, \theta]$. Thus the action of θ on A commutes
with the action of \(A_r \) on \(A \) given by multiplication, as \(A_r = k[t_1', \ldots, t_n'] \). That is, \(\theta \in \text{End}_A A \). Hence \(D(A) \subseteq \bigcup_{r=0}^\infty \text{End}_A A \).

Conversely, let \(\theta \in \text{End}_A A \). Then certainly \(\theta \in \text{End}_A A \). We claim that \(\theta \) is a differential operator of order \(\leq s = np' - 1 \). To see this note that \(f^{r+1} \) is generated (as an ideal) by all \((1 \otimes t_1 - t_1 \otimes 1)^{h_1} \cdots (1 \otimes t_n - t_n \otimes 1)^{h_n}\) where \(j_1 + \cdots + j_n = np' \). This is because \(I \) is generated by \(1 \otimes t_1 - t_1 \otimes 1, \ldots, 1 \otimes t_n - t_n \otimes 1 \). As \(j_1 + \cdots + j_n = np' \) some \(j_i \geq p' \), and thus \((1 \otimes t_i - t_i \otimes 1)^{p' - 1} = 1 \otimes t_i' - t_i' \otimes 1 \) divides \((1 \otimes t_1 - t_1 \otimes 1)^{h_1} \cdots (1 \otimes t_n - t_n \otimes 1)^{h_n}\). But \(0 = -(t_{p'}', \theta) = (1 \otimes t_i - t_i \otimes 1)^{p'} \cdot \theta \), hence \((1 \otimes t_1 - t_1 \otimes 1)^{h_1} \cdots (1 \otimes t_n - t_n \otimes 1)^{h_n} \cdot \theta = 0 \) and \(f^{r+1} \cdot \theta = 0 \) as required.

Notation. Write \(D_r = \text{End}_A A \), so \(D(A) = \bigcup_{r=0}^\infty D_r \). Also write \(D = D(A) \).

Note that the action of \(A \) on itself by multiplication, enables us to consider \(A \) as a subalgebra of \(D \). In fact \(A = D_0 \), and \(D_0 \subseteq D_1 \subseteq \cdots \). Also notice that \(A_r \) is contained in the centre of \(D_r \). For each \(r, A \) is a finitely generated \(A_r \) module, generated by \(t_1^i \cdots t_n^i \) with \(0 \leq j_i < p' \) for \(i = 1, \ldots, n \). Hence \(D_r \) is a finitely generated \(A_r \)-module. In particular \(D_r \) is a finitely generated module over its centre, so satisfies a polynomial identity. However, \(D \) will not in general satisfy a polynomial identity (when \(A \) is a polynomial ring over \(k \), \(D \) does not satisfy a polynomial identity).

The following is used in Section 3.

Proposition 2.8. Let \(M \) be a \(D \)-module with a chain of k-vector subspaces \(M_0 \subseteq M_1 \cdots \) such that

(a) \(M = \bigcup_{r=0}^\infty M_r \),

(b) each \(M_r \) is a \(D_r \)-module, and for large \(r \), length \(D_r M_r \), \(\leq l \). Then \(M \) is of finite length as a \(D \)-module, and length \(D M \leq l \).

Proof. Suppose \(l = 1 \). We must show \(M \) is a simple \(D \)-module. Pick \(0 \neq m \in M, m' \in M \). For sufficiently large \(r, m, m' \in M_r \) and \(M_r \) is a simple \(D_r \)-module, so there exists \(d \in D_r \) with \(dm = m' \). Hence \(M \) is simple.

Suppose now \(l \geq 2 \), and the proposition is true for integers less than \(l \). If \(M \) is a simple \(D \)-module we are finished. So suppose \(M \) is not simple and pick a proper \(D \)-submodule, \(N \neq 0 \). Put \(N_r = M_r \cap N \), notice that \(N = \bigcup_{r=0}^\infty N_r \), and that each \(N_r \) is a \(D_r \)-module. We show that for large \(r \), length \(D_r N_r \leq l - 1 \). To see this pick \(m \in M \setminus N \). There exists \(s \) such that \(m \in M_r \) for all \(r \geq s \). But \(m \notin N_r \). Hence if \(r \geq s \), \(M_r \nsubseteq N_r \), so for large \(r \), length \(D_r N_r \leq l - 1 \). Applying the induction hypothesis length \(D N \leq l - 1 \).

We have shown that any proper submodule of \(M \) is of finite length \(\leq l - 1 \). Hence length \(D M \leq l \).
3. Global Dimension

Henceforth, \(k \) is an algebraically closed field with \(\text{char } k = p > 0 \), \(X \) is a nonsingular affine algebraic variety over \(k \), and \(A = \mathcal{O}(X) \) is the coordinate ring of \(X \).

Our immediate goal is statements (3) and (4) of Proposition 3.2. We begin with the following Lemma, parts (i) and (ii) of which are to be found in [5].

Lemma 3.1. Let \(R = \mathcal{O}(X) \) be the coordinate ring of a nonsingular affine variety \(X \) over an algebraically closed field \(k \) of characteristic \(p > 0 \). Let \(q = p' \). Define \(S \) to be the image of the map \(x \to x^q \) on \(R \). Then:

(i) \(S \cong R \) as rings,

(ii) \(R \) is a finitely generated projective \(S \)-module,

(iii) \(\text{Hom}_S(R, S) \) is a finitely generated projective \(R \)-module of rank 1.

Proof. The statements (i) and (ii) appear in [5] as Lemma 3.1 and Proposition 2.2. Because \(\text{Hom}_S(R, S) \) is a finitely generated projective \(S \)-module, it is also a finitely generated projective \(R \)-module by [5, Proposition 2.2]. It follows that the canonical \(S \)-algebra homomorphism \(R \to \text{End}_R(\text{Hom}_S(R, S)) \) is an isomorphism. Hence by [11, Proposition 7.5], \(\text{Hom}_S(R, S) \) is of rank 1 as an \(R \)-module.

Proposition 3.2. (1) \(D_r \) is Morita equivalent to \(A_r \), the progenerator being the \(D_r - A_r \) bimodule \(A \).

(2) For \(s \geq r \), \(D_s \) is a finitely generated projective right \(D_r \)-module and a generator in \(\text{Mod-D}_r \).

(3) \(D \) is a flat right \(D_r \)-module.

(4) If \(M \) is a simple \(D_r \)-module then \(D \otimes_{D_r} M \) is a simple \(D \)-module.

(5) \(D \) is a projective right \(D_r \)-module, for all \(r \geq 0 \).

(6) The above statements are true if "right" is replaced by "left."

Proof. (1) appears in the proof of [5, Lemma 3.4]. It is a consequence of the definition of \(D_r \) and of Lemma 3.1 with \(R = A, S = A_r \).

In order to prove (2) we recall the following consequence of the Morita Theorems: Let \(R \) be a commutative ring, \(P \) a progenerator in \(\text{Mod-R} \), and set \(D = \text{End}_R(P) \). If \(M \) is a \(D \)-module, then \(M \) is a progenerator in \(\text{Mod-D} \) if and only if its is a progenerator in \(\text{Mod-R} \).

Let \(s \geq r \). By the previous paragraph, to show \(D_s \) is a progenerator in \(\text{Mod-D}_r \), it is enough to show it is a progenerator in \(\text{Mod-A}_r \). However,
(again by the previous paragraph) D_s is a progenerator in Mod-A_r. By [5, Proposition 2.2] this ensures D_s is a projective A_r-module, and a generator (since over a commutative ring any faithful projective module is a generator).

This establishes (2) and (3) is a consequence since $D = \lim_{s \rightarrow r} D_s$ is a direct limit of flat D_r-modules.

Let M be a simple D_r-module and let $s \geq r$. Consider $A_r \subseteq A \subseteq A_r$. Clearly any simple A-module is a simple A_r-module (since k is algebraically closed). A simple A_r-module is of the form A_r/I for I a maximal ideal. But A is integral over A_r, so there is a maximal ideal J of A such that $I = J \cap A_r$. Hence $A_r/I \rightarrow A/J$ is an isomorphism of A_r-modules. Thus any simple A_r-module is also a simple A-module (although not uniquely). Now, if N is a simple A-module then $D_r \otimes_A N \cong (A \otimes_A \text{Hom}_{A_r}(A, A_r)) \otimes_A N \cong A \otimes_A N$ (where the final isomorphism uses the fact that $\text{Hom}_{A_r}(A, A_r)$ is a rank 1 projective A-module, and faithful). By the Morita Theorems, $D_r \otimes_A N$ is a simple D_r-module and every simple D_r-module is of the form $D_r \otimes_A N$ for a suitable simple A-module N.

Finally, with M as above, then $M \cong D_r \otimes_A N$ for some simple A-module N. Hence $D_r \otimes_D M \cong D_r \otimes_D(D_r \otimes_A N) \cong D_r \otimes_A N$ which is simple. Now we apply Proposition 2.8 to conclude that $D \otimes_D M$ is a simple D-module; for $s \geq r$ write M_s for the D_s-submodule of $D \otimes_D M$ generated by M, then M_s is certainly of length ≤ 1, being a homomorphic image of $D_r \otimes_D M$. This completes the proof of (4).

To see that (3) can be improved to show D is projective as a right D_r-module recall [1, Proposition 3]. As $D = \lim_{s \rightarrow r} D_s$, it is enough to show that each D_{s+1}/D_s is a projective right D_r-module for $s \geq r$. As D_s is a projective right D_r-module, it is enough to show that D_{s+1}/D_s is a projective right D_r-module, or equivalently, that $D_{s+1} = D_r \oplus W$ for some right D_r-module W. Observe that in the proof of (4) we have shown that if M is a simple D_r-module then $D_{s+1} \otimes_D M$ is a simple D_{s+1}-module, in particular nonzero. In the language of [12] this says that D_{s+1} is a faithfully projective right D_r-module. The conclusion of the Theorem in [12] gives the existence of the required W, proving (5).

Finally to see that the above statements are true if “right” is replaced by “left” is routine. For example, if $s \geq r$, to show that D_s is a projective left D_r-module, it is sufficient (by Morita equivalence) to show that $\text{Hom}_{A_r}(A, A_r) \otimes_D D_s$ is projective as a (left) A_r-module. But this is isomorphic to $A_r \otimes_A \text{Hom}_{A_r}(A, A_r)$ and this is projective as an A_r-module since $\text{Hom}_{A_r}(A, A_r)$ is a projective A_r-module. We leave the rest of the proof of (6) to the enthusiastic reader!

Lemma 3.4. Let J be a left ideal of D_r. There exists a left ideal J' of D_r, containing J such that
(i) \(pd_{D_r}(D_r/J') < \dim X \)

(ii) \(J'/J \) is of finite length.

Proof. \(D_r \) is noetherian so define \(J' \) to be the largest left ideal containing \(J \) such that \(J'/J \) is of finite length. Then \(D_r/J' \) contains no artinian sub-modules. Hence by [4, Corollary 5] \(pd_{D_r}(D_r/J') \leq \text{gl. dim } D_r - 1 = n - 1 \).

Alternatively, one can use the fact that \(D_r \) is Morita equivalent to \(A_r \), and use the fact that the lemma is true for \(A_r \), noting that the statements are Morita invariant.

Lemma 3.5. Let \(I \) be a left ideal of \(D_r \). Put \(I_r = I \cap D_r \). Then for each \(r \) there is a left ideal \(I'_r \) of \(D_r \) containing \(I_r \) such that, for all \(r \),

(i) \(I'_r/I_r \) is of finite length.

(ii) \(pd_{D_r}(D_r/I'_r) < \dim X \).

(iii) \(I'_r \subset I_r \).

Proof. After Lemma 3.4 we need only show we can choose the \(I'_r \) such that (iii) is satisfied. Suppose \(I_{r-1} \) has been chosen. Note that \(I_r + D_r I_{r-1}/I_r \cong D_r I_{r-1}/I_r \cap D_r I_{r-1} \), which is a homomorphic image of \(D_r I_{r-1}/D_r I_{r-1} \) (since \(I_{r-1} \subset I_r \)). But \(D_r I_{r-1}/D_r I_{r-1} \cong D_r \otimes_{D_{r-1}} (I_{r-1}/I_{r-1}) \) and hence \(I_r + D_r I_{r-1}/I_r \) is of finite length as a \(D_r \)-module. Now apply (3.4) to \(J = I_r + D_r I_{r-1} \), and put \(I'_r = J' \). Since \(J'/J \) is of finite length and \(J/I_r \) is of finite length, \(I'_r/I_r \) is of finite length.

In the next proof we will make frequent use of the fact that if \(0 \to X \to Y \to Z \to 0 \) is a short exact sequence of modules over a ring \(R \) with \(pd_R(Y) < n \) and \(pd_R(Z) \leq n \) then \(pd_R(X) < n \). The truth of this can be seen from considering the long exact sequence for \(Ext \); in particular,

\[\cdots \to Ext^n(Y,-) \to Ext^n(X,-) \to Ext^{n+1}(Z,-) \to \cdots \]

Theorem 3.6. If \(I \) is a left ideal of \(D_r \), then \(pd_D(I) < \dim X \).

Proof. Suppose \(\dim X = n \). Put \(I_r = I \cap D_r \), and choose the \(I'_r \) as in the lemma above. Put \(T_r = I \cap DI'_r \). First note that \(T_r/DI'_r \) is a submodule of \(DI'_r/DI'_r \cong D \otimes_{D_r} (I'_r/I_r) \) and hence of finite length. In particular, \(T_r \) is finitely generated as a left ideal, since \(DI'_r \) is finitely generated. We also have for all \(r \) that, \(T_{r-1} \subset T_r \) and \(I = \bigcup_{r=0}^\infty DI'_r = \bigcup_{r=0}^\infty T_r \).

We will next show that \(pd_D(T_r/T_{r-1}) < n \) for all \(r \), and hence by [1, Proposition 3], \(pd_D(I_r) < n \).

As \(T_r \) and \(T_{r-1} \) are finitely generated, there exists \(m \) with \(T_r = D(T_r \cap D_m) \) and \(T_{r-1} = D(T_{r-1} \cap D_m) \). Hence \(T_r/T_{r-1} \cong D \otimes_{D_m} (T_r \cap D_m/T_{r-1} \cap D_m) \).
Because \(I/T_r = I/I \cap D^r \simeq I + D^r/I \cap D^r \subset D/D^r \), there is a short exact sequence of \(D_m \)-modules \(0 \to I/T_r \to D/D^r \to Z \to 0 \). As \(D/D^r \simeq D \otimes_{D_r}(D_r/I_r) \) and \(D \) is flat as a right \(D_r \)-module, applying the functor \(D \otimes_{D_r} \) to a projective resolution of \(D_r/I_r \) (as a \(D_r \)-module) gives a projective resolution of \(D/D^r \) as a \(D \)-module. Hence \(pd_{D}(D/D^r) < n \) (as \(pd_{D_r}(D_r/I_r) < n \)). As \(D \) is projective as a left \(D_m \)-module, a \(D \)-projective resolution for \(D/D^r \) is also a \(D_m \)-projective resolution. Hence \(pd_{D_m}(D/D^r) < n \). But \(\text{gl. dim } D_m = n \), and hence \(pd_{D_m}(Z) \leq n \). Now we get \(pd_{D_m}(I/T_r) < n \).

Because \(T_r \cap D_m/T_r \cap D_m \simeq (T_r \cap D_m) + T_{r-1}/T_{r-1} \subset I/T_{r-1} \) there is a short sequence of \(D_m \)-modules

\[
0 \to T_r \cap D_m/T_r \cap D_m \to I/T_{r-1} \to Z \to 0.
\]

However, \(pd_{D_m}(Z) \leq n \) and \(pd_{D_m}(I/T_{r-1}) < n \), so \(pd_{D_m}(T_r \cap D_m/T_{r-1} \cap D_m) \leq n \). Applying the exact functor \(D \otimes_{D_m} \) gives \(pd_{D}(T_r/T_{r-1}) < n \).

Theorem 3.7. \(\text{gl. dim } D(A) = \dim X \).

Proof. Recall [9, Theorem 9.12] that \(\text{gl. dim } D = \sup \{ pd_{D}(D/I) \mid I \text{ is a left ideal of } D \} \). By (3.6), we get \(\text{gl. dim } D \leq \dim X \).

For the reverse inequality, observe that Chase [5] has already shown that \(\text{w-dim } D(A) \geq \dim X \).

Remark. The case of \(\text{gl. dim } D(k[t]) = 1 \) is proved in [10] using a slightly different argument to the above—the proof in [10] is somewhat cleaner than the above, and the comparison of the two proofs might be useful for the reader.

Acknowledgments

The Author wishes to thank L. Small for pointing out the existence of the papers [1, 2], and C. R. Hajarnavis for conversations concerning \(D(k[t]) \). The author would like to thank the referee of an earlier version of this paper for pointing out that a number of proofs could be considerably shortened. In particular, the arguments in Lemma 3.1 and Proposition 3.2(2) and (4) are those given by the referee.

References

