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1. Introduction

Let g be a finite-dimensional semi-simple Lie algebra over an algebraically closed
field k of characteristic zero and letg = n++rj + n~ be a triangular decomposition
of g. Denote by U = U(Q) the enveloping algebra of g. For Xe\)*, denote by Dk the
primitive factor ring £//annt/ ^W> where M(X) is the Verma module of highest weight
X—p (where p is the half-sum of the positive roots). The main aim of this paper is
to prove Theorem 3.9, which states that if A is regular, then gldim Dx < dim .̂ n+ -I- n{X),
where n{X) is a non-negative integer less than or equal to dimfcn+.

In [12] Levasseur computed the injective dimension of D^ in terms of the
Gelfand-Kirillov dimension of L{X), the unique simple quotient of M(X). For X
regular, Theorem 3.9 implies that the global dimension of D^ is finite and hence must
be equal to the injective dimension of Dk. It can be shown that this figure coincides
with the bound given in Theorem 3.9 (the authors would like to thank Levasseur for
pointing this out). On the other hand, if X is not regular, Joseph and Stafford [11]
have shown that gldim D^= oo.

Special cases of this result have already appeared in the literature. In particular
Stafford [17] computed the global dimension of Dk for all A el)* in the case when
g = si (2, C). On the other hand Roos [15] computed gldim D^ for general g when X
satisfies some transcendental but generic conditions.

This paper is divided into two distinct parts. In Section 2 we prove a result
analogous to a theorem of Roos relating the weak global dimension of a ring R to
that of certain sets of torsion-theoretic localisations. If R is a commutative ring and
{Si)tei is a s e t °f localisations of R such that © S{ is faithfully flat as an /^-module,
then it is well known that wgldim R = sup{wgldim St}. To what extent this result is
true for non-commutative rings is unknown. Roos and others have proved various
results under the assumption that wgldim R is finite (see for instance [3, 7, 13,14]).
We prove here a slightly more general sort of result than Roos's which does not require
this assumption. However, it is necessary to impose certain additional assumptions
on the localisations St. The special case of this result needed for the second part is
the following. Let R be a prime Noetherian ring and let St, i = 1, ..., n be a finite
collection of rings lying between R and its quotient ring. If © St is a faithfully flat
right /^-module and St ®R S} = S} ®R St as /?-/?-bimodules for all pairs (i,j), then

gldim R = wgldim R < sup {wgldim St + \fdR(St)}

(where lfdfi(5f) denotes the flat dimension of St as a left /^-module). An example is
given where the theorem fails if the condition that St ®R Sj = 5̂  ®R St is relaxed.
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In Section 3, we apply the results from the previous section to the ring Dk. Briefly
the idea is as follows. Let G/B denote the flag variety of the connected semi-simple
algebraic group G associated with g. Denote by 3>xtne sheaf of twisted differential
operators on GIB constructed in [2]. By translating the large Bruhat cell and taking
local sections of @)k we obtain a finite collection of rings {St} contained between Dx

and its ring of fractions. Each St is isomorphic to the «-th Weyl algebra (where
n = dimfcn+) and the construction of <2)k ensures that St ®DXSJ = Sj ®DxSt. When
X is dominant regular the equivalence of categories established by Beilinson and
Bernstein implies that S1 © ... © Sm is faithfully flat as a right ^-module. One may
now apply the results of Section 2, together with a result of Joseph and Stafford, to
obtain the theorem described above.

We should like to thank Ken Goodearl, Henryk Hecht, Tom Lenagan and Dragan
Milicic for their helpful comments.

2. Weak global dimension and localisation

For the applications in part 3, it is necessary to consider torsion-theoretic
localisation, a slightly more general type of localisation than the usual elementwise
Ore localisation. Let R be a (not necessarily commutative) ring. An hereditary torsion
class ZT for R is a collection of left /^-modules closed under quotients, submodules,
direct sums and extensions. The ring of quotients of R with respect to ^~ is defined
to be R*r = lim_ Homfl (/, R), where the direct limit is taken over the filter of all left
ideals / of R such that R/I belongs to 2T. There is a natural map (f>:R-* R?, and
Ry can then be considered via <j> as a left or right /^-module. If R$- is flat as a right
/^-module R^ is said to be a perfect left localisation of R, and in this situation 2T
consists precisely of those /^-modules M such that R$-®RM = 0. The torsion
submodule x(M) of an /^-module M is defined to be the largest submodule of M
belonging to F. If R& is a perfect localisation, then x(M) is precisely the kernel of
the natural map 0:M'-> R? ®R M. The reader is referred to [18] for a more complete
explanation.

If M is an /?-bimodule its flat dimension as left module is denoted lfdfl(M). When
there is no danger of ambiguity or when M is a left /^-module only, we write fdH(Af).

THEOREM 2.1. Let R be a ring and let Bx,..., Bn be a finite collection of perfect
left localisations of R with associated torsion classes 3Tlt ..., &~n, respectively. Suppose
that B1 © ... @Bn is faithfully flat as a right R-module and that each ^ is closed
under B} ®R -forj = 1, ..., n. Then

wgldim R ^ maxIwgldimi^ + lfdflCfy)}.
i

Proof. Clearly we may assume that max {wgldim Bt + \fdR{B^} = m < oo. For
each left /^-module M let n(M) be the number of distinct torsion classes amongst
«^i, ..., &~n to which M belongs. Suppose the theorem is false, and pick amongst all
/^-modules with flat dimension greater than m a module M such that n(M) is greatest
possible. Since Bx © ... © Bn is faithfully flat as a right /?-module, 9~x n ... 0 &~n = 0,
so that n(M) < n. Choose an index / such that M does not belong to ^ and let xt{M)
be the torsion submodule of M with respect to ^ . Then, if JV = M/x^M), there exist
exact sequences

0 >
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and
0 >N >Bt®N >Bt®N/N • ().

Now, by hypothesis, Bt® N belongs to all the torsion classes to which M belongs,
and hence so does Bt ® N/N. Because each Bi is a perfect left localisation of
R, Bt ®RBt is isomorphic to Bt as an /?-/?-bimodule [18, XI . 1.2]. The flatness of Bt

then implies that Bi ® {Bt ® N/N) = 0. Hence, n(Bt ® N/N) > n(M) and so the
choice of n(M) implies that fd f l ( ^ ® N/N) ^ m. Using the change-of-rings theorem
for flat dimension, fdR(Bt ®N)^ fdBi(Bt ® N)-\-\fdR(Bt) ^ m [4, p. 360, Example 5].
Thus, the exact-sequence lemma for flat dimension implies that fdR(N) ^ m.

Similarly, zt(M) belongs to «^, so that n{xt{M)) > tj(M). Hence, fdR(Tt(M)) ^ m
and the top exact sequence implies that idR{M) ^ m, a contradiction.

COROLLARY 2.2. Let R,BX,..., Bn be as in Theorem 2.1. If the Bt are also flat as
left R-modules, then

wgldim/? = max{wgldim Bt} = w g l d i m ^ © ... ® Bn).
i

The form in which we shall use this result in part 3 is as follows.

COROLLARY 2.3. Let Rbe a two-sided Noetherian prime ring with simple quotient
ring Q. Let Bx, ..., Bn be rings lying between R and Q such that ^ © ... ® Bn is a
faithfully flat right R-module. Suppose further that Bt ®RB^ B^ ®RBt as R-R-
bimodules for all i andj. Then

gldim/? ^ max{lgldim Bt
i

Proof Each Bi lies between R and Q and is flat as a right /^-module. Since Q
is a right Ore localisation ofR, Bt must be a perfect left localisation of R by [18, XI .3.4].
Also, each Bt is left Noetherian [18, XI .3.9], so that lgldim Bi = wgldim Bt. Of course,
since R is Noetherian on both the left and right, gldim R — lgldim R = wgldim R.

Hence, by Theorem 2.1, it suffices to check that the torsion class ^ associated
with the localisation Bt is closed under Bj ®R - for eachy' = 1, ...,n. Suppose that M
belongs to ^ . Then Bi ®R Bj ®R M ^Bi ®R Bt ®R M = 0. Hence, B^ ®R M belongs
to 3Tt, as required.

The following is a condition which is useful in checking the hypothesis of
Corollary 2.3. It will be used in the next section.

PROPOSITION 2.4. Let Rbe a prime Noetherian ring and let Sx and S2 be two perfect
left localisations ofR. Suppose that each Si is generated as a left and as a right R-module
by a subset Ct and that the elements of Cx commute with those of C2. Then
Sl®RS2 = S2®RS1as /?-/?-bimodules.

Proof Let SFi be the Gabriel topology associated with the localisation St of R,
that is, the set of all left ideals I of R such that St ® (R/I) = 0. If Q is the classical
quotient ring of R then St can be identified as the set {x e Q: Ix £ R for some Ie ^ } .
Let B be the subring of Q generated by Sx and S2. If suffices to show that S1®RS2 = B
as i?-Z?-bimodules.
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The flatness of Q as a left /^-module implies that Sx ®R Q embeds in Q ®R Q, which
is naturally isomorphic to Q. The composite embedding sends s ® q to sq. Further,
the flatness of Sx as a right i?-module implies that 5X ®R S2 embeds naturally in
Si ®R Q- Composing with the above map gives an isomorphism of i?-7?-bimodules
from Si ®R S2 to St S2. But since Cx and C2 commute and S{ = RCt = Ct R, it is clear
that B = Si S2. Hence we have an .R-if-bimodule isomorphism from 5X ®R S2 to 5 .

By analogy with Roos's result [14], there are two directions in which one might
hope to weaken the hypotheses of Theorem 2.1. First, one might conjecture that the
result is true for infinite sets of localisations {Bt}ieI, rather than just finite collections.
Secondly, one might think that the conditions on the torsion-classes can be omitted
completely. The former is an open question but the latter is false, as the following
example shows.

EXAMPLE 2.5. Let k be an algebraically closed field of characteristic zero and let
A be the Weyl algebra k[p, q], where pq — qp= 1. Let R be the subalgebra of A
generated by the elements q, qp, pqp. Then R is isomorphic to £/(sl(2, k))/(Q.+ \),
where Q is the Casimir element [16]. Now [16, Corollary 1] states that the sets k[q] — {0}
and k[pqp] — {0} are left and right Ore subsets of R, and that if Sx and S2 are the
respective localisations, then Sx © S2 is faithfully flat as both a right and left /^-module.
However, both St and S2 are isomorphic to the ring k(q)\p] which has global
dimension one, whilst R has infinite global dimension [17]. Of course, in this case, the
two Ore sets do not commute and Sr ®R S2 $ S2 ®R Sv

3. Global dimension of primitive factors of U(Q)

Let G be a connected semi-simple algebraic group over an algebraically closed field
k of characteristic zero. Fix a Borel subgroup B and a maximal torus H inside B, let
W be the Weyl group, put X = G/B and let dim X = n. Let g, b, I) be the Lie algebras
of G, B, H, respectively and put U = U(Q), the enveloping algebra of g. Let R be the
root system in h* with positive roots R+ and let/? be the half-sum of the positive roots.
For aeR, let sa be the corresponding reflection. A weight X is called dominant if
A(hy)${— 1, — 2, — 3, ...} for any yeR+. A weight X in b* is regular if
{weW\wX = X} = {e}.

For each X in h*, Bernstein and Beilinson construct a sheaf Q)k of twisted
differential operators on X. The construction is briefly as follows. Let & be the sheaf
of regular functions on X. Form the sheaf of algebras U° = 0®kU with
multiplication given by (f®Z)(g® Y) =fZ(g)® Y+fg®ZYforfgeO, Z,Yeq.
Since g acts as global vector fields on X there is a map a: 0 ® g -> Der 0, where Der 0
is the sheaf of fc-linear derivations. The kernel of a is denoted b° and there is a
surjection b° -*• & ® b. Thus, each X in b* induces a map X°: b° -> 0. Let Jk denote
the sheaf of ideals of 0 ® U generated by £ - (X-p)°(£) for £ e b°. Then ®k is defined
to be 0 (g) CZ/J^. For /I in b*, let M(X) be the Verma-module as defined in [6, 17.1].
Define Dk to be t/(g)/annc/ M(A).

THEOREM 3.1 [2]. (1) r(X, 2k) = Dk;

(2) If X is dominant and regular there is an equivalence of categories between the
category of left Dk-modules and the category of quasi-coherent left 3)k-modules given
by the mutually inverse functors M -> F ^ , Jt) and M ^>Q)k®DkM.
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COROLLARY 3.2. Suppose that X is dominant and regular.

(i) If U is an affine open subset ofX, then F(U, 3)k) is flat as a right Dk-module.

(ii) Let Vlt..., Vn bean affine open cover ofX and let St = T(Vt, 3k\ Then ©?_! St

is faithfully flat as a right L

Proof A left ^ -module is quasi-coherent if and only if it is quasi-coherent as
an <J?-module. The corollary then follows from the vanishing of cohomology on affine
algebraic varieties. The details may be found in [8].

PROPOSITION 3.3. Let V be an affine open subset ofX and let X be dominant regular.
Then T(V, @k) is contained between Dk and its quotient division ring.

Proof Let S = T(V, 2k). Since Fis affine, the maps between Sand the local rings
at points are just Ore localisations. Hence the quasi-coherence of Q>k implies that the
rings of local sections on affine open subsets of X can be viewed as subrings of a
common quotient division ring, say E. Define £ to be the constant sheaf whose module
of local sections at any affine open set is just E. The module of global sections is then
clearly also E. By Theorem 3.1, £ s E®Dk2)k.

Now since Kis affine there is an equivalence of categories between 5-modules and
^|K-modules, given by the mutually inverse functors F(V, - ) and -®s(@x\v)- Since
9k\v^S®s{9k\v), it is clear that S\v ^ E®DxS®s{2k\v). But equally clearly
(from the definition), T(V, 8) = E. Thus

E=T(V, E®DxS®s(®k\v)) s E®DxS.

Tensoring on the right over S with Eyields that E = E®SE ^ E®DxE. This implies

that the embedding of Dk in E must be that of Dx into its quotient division ring.

COROLLARY 3.4. Let V be an open affine subset ofX and let S = T(V, 2)k). Then
if X is dominant regular, S is a perfect left localisation of Dk.

Proof. By Corollary 3.2, S is flat as a right /^-module, and by Proposition 3.3,
S is contained between Dk and its quotient ring. The result then follows from
[18, XI.2.4].

THEOREM 3.5. Let glt ...,gt be representatives in G of the Weyl group. Let V be
the large Bruhat cell in X and let Vi=giV.IfXefy* is dominant and regular, then

gldim Dx ^ dim X+ max {lfd^ T( Vit 2)k)}.

Proof. Let St = T(Vt, 2)k) and let n = dimZ. Now the Vt are translates of V,
and so must be isomorphic to affine space of dimension n. Furthermore, it follows
from the definition of Q)k that the ring of local sections on Vi is just the ring of un-
twisted differential operators on Vt. Hence, St is isomorphic to An, the n-th Weyl
algebra. Thus, by [14], gldim St = gldim An = n. Since X is dominant and regular,
Corollary 3.4 and Proposition 3.3 imply that St is a perfect left localisation of Dk.
Moreover, it follows from the definition of Dk that St is generated as a left and right
Z)rmodule by Ct = T(Vt, 0). Since {glt ...,gt} is a full set of representatives of the
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Weyl group, the Vt form an open affine cover for X. Hence, noting that the Cf commute,
the theorem follows from Corollary 2.3 and Proposition 2.4.

In order to obtain a more precise bound on the global dimension, we first reduce
the problem to that of computing lfdO;r(K, Q)x). The following lemma will be used
twice. Its proof is straightforward and is left to the reader. We denote the right flat
dimension of an i?-/?-bimodule M by rfd^ M.

LEMMA 3.6. Let R, Slt S2 be rings and, for i=\,2,let faiR-* St be mono-
morphisms. Ifoi\Sx -*• S2 andfl'.R^* R are ring isomorphisms such that a$x = <f>2fi, then
Ifdfl S1 = \fdR S2 and rfd* S1 = rfd« S2.

LEMMA 3.7. For any open set U in X and any geG,

Proof. The map lg: X -> X defined by x -> gx is a morphism of algebraic varieties
and therefore induces a map (lg)m: 0 -• 0 such that (lg)+(T(U, 0)) = T(g~x U, 0). Extend
(lg)t to a map ng: IP -> U° by letting ng act via Ad (g) on elements of U(Q). Then n0

preserves the multiplication described above, so ng is a well-defined isomorphism of
sheaves of algebras. Let pg: Der 0 -> Der 0 be the induced map on the tangent sheaf,
and let a: 0 ® g -> Der 0 be the natural map described above. Then it follows from
the definition that catg = pg<x and hence that b° = kera is invariant under ng.
Moreover, since X°: b° -* 0 is a fibre map on the quotient 0 ® I), for any £ e b°, we have
that Kg A°(£) = A°ng(€). Hence the ideals Jk = (£-(X-p)°(£)) IP are invariant under
ng. Thus, for each Xel)*, ng induces a map ng k\Dx->Dk sending T(U,@x) to
F ^ " 1 U, <2>i) and inducing an automorphism on the global sections Dx. The result then
follows from Lemma 3.6.

DEFINITION 3.8. For Xel)*, write Rx for the root system Rx = {ae/?:a*(A)eZ},
and Wk for the Weyl group of Rk. Set R$ = Rx 0 R+. Let Ax be the corresponding set
of simple roots and 5^ the set of reflections corresponding to A .̂ Let lx: Wx -> Z+ be
the corresponding length function. Define «:!)*-• Z+ by n(X) = max{^(w):we Wx).
(See [9] for further details.)

A few remarks on n{X) may be made here. First, n{X) satisfies 0 ^ n{X) ^ dim X
for all /lei)*. If both X and —X are dominant regular (that is, for all aeR, <x*(A)£Z),
then n{X) = 0, whilst if X is dominant regular and integral (that is, a*(A) e N for all
<X€R), then n(X) = dimZ.

Secondly, for all weW, a. routine calculation reveals that WwX = wlVxw~1 and
RwX = wRx w'1. Thus, n(wX) = n(X) and hence n(X) depends only on the Weyl group
orbit of X.

THEOREM 3.9. If X is regular, then gldim Dx ^ dim X+n(X).

Proof. For X regular, there exists weW such that wX is dominant regular. Since
DwX = Dx and n(wX) = n(X), we may therefore assume that X is dominant. Let V be
the large Bruhat cell as before. Then, by Theorem 3.5 and Lemma 3.7, it suffices to
show that lfdD<ir(K, 9X) ^ n{X). Since by [1, p. 44] 9X is isomorphic to @<LX, the
opposite sheaf of Q)-X, this is equivalent to showing that rfdD > ir(K, ®-X) < n(X).
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Now let w0 be the longest element of the Weyl group, let // = vv0 X and let i'-D^-* An

be the embedding, described by Conze [5], of D_Wo k into the w-th Weyl algebra. Let
j:D_x -> r(V, @-x) be the restriction map. Then in [8] it is shown that there exist
isomorphisms z:D_x-*DfX and i//:r(V,@_x)->An such that ix — y/j. But then it
follows from Lemma 3.6 that

Now, in [11, Theorem 5.8] it is shown that rfdD (An) ^ n(/j). Moreover,
«(//) = n(-wQX) = n(w0X) = n(X). Hence, rfdD_A(r(F, 3)_x)) ^ n(X), as required.

COROLLARY 3.10. If X is regular, then gldimZ)^ = dimAr+«(A).

Proof. Let n = dim X. As above, we may assume that I is antidominant. It is
shown in [12] that inj d i m ^ ) = In — minweW {d(L(wXy)}, where L(wX) is the unique
simple factor of the Verma module M(wX) and d(-) denotes the Gelfand-Kirillov
dimension. If w0 is the longest element of the Weyl group, then certainly n(X) = lx(w0).
On the other hand, it is shown in [10, §8.18] that (for X antidominant and regular),
d(L(w0X)) = n — lx(w0). Hence

n+n(X) = n + lx(w0) = In - d(L(w0 X)) ^ inj dimCDJ.

Thus gldim Dx = n + n(X), as required.

Note. Bernstein has recently announced that Theorem 3.9 also follows from a
more general theorem on the vanishing of cohomology (similar to that in [2])
together with a spectral sequence of Grothendieck.
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