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1. INTRODUCTION

Let & be a commutative ring, and 4 a commutative k-algebra. In Sec-
tion 2 we define D(A) the ring of k-linear differential operators on A. If k is
a field of characteristic zero and A4 is the coordinate ring of a nonsingular
affine algebraic variety over &, then it is shown in [3, 5] that the global
homological dimension of D(4) (gl. dim D(A4)), equals the dimension of the
variety.

Here we prove that if k is an algebraically closed field of characteristic
p>0, and 4 is the coordinate ring of a nonsingular affine algebraic variety,
X, over k then gl. dim D(A)=dim X. In [5] it is shown that the weak
global dimension of D(A) (w-dim. D(4)), equals dim X.

As D(A) is not noetherian there is no apriori reason for w-dim D(A4) and
gl. dim D(A) to be equal. It is a relatively straightforward matter to see that
D(A} is a union of subalgebras each of which has global dimension equal
to dim X, and so a theorem of Berstein [2] gives gl. dim D(4) <dim X + 1.
So the point is to show that in this particular situation Berstein’s result can
be improved to show gl. dim D(A4)<dim X. That the global dimension
is bounded below by dimX is a consequence of the fact that
w-dim D(A4)=dim X.

2. DIFFERENTIAL OPERATORS

Let £ be a commutative ring, and 4 a commutative k-algebra. Then
End, 4 may be made into an 4 ®, A-module by defining ((a® b)0)(c) =
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af(bc) for 8eEnd, 4 and a, b, ce A. We write [a, 0] for (a®1—1®a)0,
so [a, 0](b)=ab(b)— 0(ab).

DerINITION 2.1, The space of k-linear differential operators of order <n
on A is defined inductively by Diff;' 4=0, and for n=0 Difff 4 =
{0€End, A|[a, 0] Diff; ="' A for all ae A}. The ring of k-linear differen-
tial operators on A is D(A)=\)_, Diff} A.

Remark 22. (1) Diff{ 4 is an 4 ® A-submodule of End, 4.
(2) If 6eEnd 4, then OeDiff;4, if and only if, for all
dy, d;,., 4, € A one has [agla, - [a,,0] -1]1=0.
(3) The reader is referred to [6, 7, 8] for an introduction to differen-
tial operators on commutative rings.

DerNITION 2.3, Denote by u:A®, 44— A4 the multiplication map
ula®b)=ab. This is a k-algebra map (also an 4-module map for either
the right or left 4-module structure on 4 ® A). Thus 7= ker y is an ideal of
A®, A.

THEOREM 2.4 (Heynemann—Sweedler [7], Grothendieck [6]). Ler e
End, 4. Then 0 € Diff? A, if and only if, I'*'-0=0.

From now on, chark=p>0, and A =k[1,,.., {,] is a finitely generated
commutative k-algebra. We also assume k is contained in A.

DEerFmNITION 2.5, For r>0, define A4, to be the subalgebra of A4
generated by k and all elements a” with ae 4. Clearly A=A4,2 4,2 -,
and for r>s, A, is a finitely generated A4,-module.

LEMMA 2.6, A,=k[t],.., t7].

Proof. By induction it suffices to prove the result for r=1. Clearly
k[t],...t!Jc A,, so only the reverse inclusion must be established. Let
ae€ A, and write a=3, 4,t’, where i,ek and J= (j,,..., j,) is a multi-index
and 1/ =¢/1--- ¢t/ (there is not necessarily a unique such expression for a).
As chark=p, if u,ve A then (u+v)”"=u”+v”, so by induction (on the
number of nonzero i, occurring in the expression for a), a” =Y, A7(t’)".
But (¢/)” = (¢7) - (17) e k[t],.... t7]. Hence a”ek[tf,..., 7] 1

This shows that we could actually define 4, to be k[+7,..., t7"] and that
such a definition is independent of the choice of generators for A.

THEOREM 2.7. D(A)=\)*,End, A.

Proof [5, Lemma 33] Let 6e D{(4) of order <p" As
(1®1,—1,®1)el for all j, (1 ®t,—t,®1)”'=1®t["—-t["®lel”'. Hence
0=(1@t/"—1"'®1)-0= —[+/", 0]. Thus the action of # on 4 commutes
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with the action of 4, on A4 given by muitiplication, as A, =k[t{,.., t7].
That is, 0e End ,, A. Hence D(4)<= (), End, A.

Conversely, let 8e End, A. Then certainly 6 € End, 4. We claim that 8
is a differential operator of order <s=np”— 1. To see this note that /**'
is generated (as an ideal) by all (1®¢, —¢,® 1) (1®¢t,—1,®1)"
where j,+ -+ +j,=np". This is because [ is generated by
1@ —t®1,.,1@1,—t, 1. As ji+ -+ ,=np some j=p"
and thus (1®7,—,® 1) " =1®17— 17 ®1 divides (1Q1,—1,® 1)
(I1®t,—t,®1).  But 0=—[1/,0]1=(1®1,—1,®1)”-0, hence
(I®H-6,@1) - (1®t,—t,®1)"-§=0 and rtt-9=0 as
required. |

Notation. Write D,=End, A, so D(A)=U_,D,. Also write
D = D(A).

Note that the action of 4 on itself by multiplication, enables us to con-
sider A as a subalgebra of D. In fact A=D,, and Dy D, < --. Also
notice that A, is contained in the centre of D,. For each r, 4 is a finitely
generated 4, module, generated by ¢{'---t/» with 0<j,< p’ for i=1,.., n
Hence D, is a finitely generated 4,-module. In particular D, is a finitely
generated module over its centre, so satisfies a polynomial identity.
However, D will not in general satisfy a polynomial identity (when A4 is a
polynomial ring over k, D does not satisfy a polynomial identity).

The following is used in Section 3.

PROPOSITION 2.8. Let M be a D-module with a chain of k-vector sub-
spaces My< M, ---such that

(a) M=U7M,,
(b) each M, is a D,-module, and for large r, length , M, <|. Then M
is of finite length as a D-module, and length ;M <.

Proof. Suppose /=1. We must show M is a simple D-module. Pick
0#£me M, m'e M. For sufficiently large r, m, m" e M, and M, is a simple
D -module, so there exists de D, with dm=m’". Hence M is simple.

Suppose now /> 2, and the proposition is true for integers less than /. If
M is a simple D-module we are finished. So suppose M is not simple and
pick a proper D-submodule, N#0. Put N,=M ~n N, notice that
N={J7_,N,, and that each N, is a D,-module. We show that for large r,
length ,, N, </—1. To see this pick me M\N. There exists s such that
meM, for all r=s. But m¢ N,. Hence if r=5, M, 2 N,, so for large r,
length , N, </—1. Applying the induction hypothesis length ,N</— 1.

We have shown that any proper submodule of M is of finite length
</—1. Hence length ,M </ |}
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3. GLOBAL DIMENSION

Henceforth, & is an algebraically closed field with chark=p>0, X is a
nonsingular affine algebraic variety over &, and 4 = ((X) 1s the coordinate
ring of X.

Our immediate goal is statements (3) and (4) of Proposition 3.2. We
begin with the following Lemma, parts (i) and (i1) of which are to be found
in [5].

LEMMA 3.1. Let R=0(X) be the coordinate ring of a nonsingular affine
variety X over an algebraically closed field k of characteristic p>0. Let
g=p’. Define S to be the image of the map x — x? on R. Then:

(1) S=R as rings,
(1) R is a finitely generated projective S-module,
(i) Homg(R, S) is a finitely generated projective R-module of rank 1.

Proof. The statements (i) and (ii) appear in [5] as Lemma 3.1 and
Proposition 2.2. Because Homg(R, S) is a finitely generated projective
S-module, it is also a finitely generated projective R-module by [5,
Proposition 2.2]. It follows that the canonical S-algebra homomorphism
R— Endg(Homg(R, S)) is an isomorphism. Hence by [11,
Proposition 7.5], Homg(R, S) is of rank 1 as an R-module. ||

ProposITION 3.2. (1) D, is Morita equivalent to A,, the progenerator
being the D, — A, bimodule A.

(2) For s=vr, D, is a finitely generated projective right D -module and
a generator in Mod-D,.

(3) D is a flat right D,-module.

(4)y If M is a simple D -module then D® , M is a simple D-module.

(5) D is a projective right D,-module, for all r = 0.
)

(6) The above statements are true if “right” is replaced by “left.”

Proof. (1) appears in the proof of [5, Lemma 3.4]. It is a consequence
of the definition of D, and of Lemma 3.1 with R=4, S=4,.

In order to prove (2) we recall the following consequence of the Morita
Theorems: Let R be a commutative ring, P a progenerator in Mod-R, and
set D=End,zP. If M is a D-module, then M is a progenerator in Mod-D if
and only if its is a progenerator in Mod-R.

Let s> r. By the previous paragraph, to show D, is a progenerator in
Mod-D,, it is enough to show it is a progenerator in Mod-4,. However,
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(again by the previous paragraph) D, is a progenerator in Mod-4,. By [5,
Proposition 2.2] this ensures D, is a projective A,-module, and a generator
(since over a commutative ring any faithful projective module is a
generator).

This establishes (2) and (3) is a consequence since D =Ilim,., D, is a
direct limit of flat D,-modules.

Let M be a simple D,-module and let s>r. Consider A, A4,< A.
Clearly any simple 4-module is a simple 4,-module (since k is algebraically
closed). A simple 4,-module is of the form A,/I for I a maximal ideal. But
A is integral over A,, so there is a maximal ideal J of A such that
I=J~ A,. Hence A,/I - A/J is an isomorphism of 4,-modules. Thus any
simple A,-module is also a simple 4-module (although not uniquely). Now,
if N is a simple 4-module then D, ® ,N=(4®, Hom,(4,4,))®,,N=
A® 4 N (where the final isomorphism uses the fact that Hom ,(4, 4,) is a
rank 1 projective A-module, and faithful). By the Morita Theorems,
D,® , N s a simple D,-module and every simple D,-module is of the form
D,® , N for a suitable simple 4-module N.

Finally, with M as above, then Mz~D ,®,N for some simple
A-module N. Hence D, ®, M=D ®,(D,®,N)=D,®,N which is
simple. Now we apply Proposition 2.8 to conclude that D®, M is a
simple D-module; for s>r write M, for the D -submodule of D®, M
generated by M, then M, is certainly of length < 1, being a homomorphic
image of D,®, M. This completes the proof of (4).

To see that (3) can be improved to show D is projective as a right
D.-module recall [1, Proposition 3]. As D=lim ., D,, it is enough to
show that each D, /D, is a projective right D -module for s=r. As D, is a
projective right D,-module, it is enough to show that D, ,/D, is a projec-
tive right D -module, or equivalently, that D, , =D ® W for some right
D -module W. Observe that in the proof of (4) we have shown that if M is
a simple D -module then D , ,®; M is a simple D, -module, in par-
ticular nonzero. In the language of {12] this says that D, is a faithfully
projective right D -module. The conclusion of the Theorem in [12] gives
the existence of the required W, proving (5).

Finally to see that the above statements are true if “right” is replaced by
“left” is routine. For example, if s >r, to show that D, is a projective left
D,-module, it is sufficient (by Morita equivalence) to show that
Hom (A4, 4,)®p, D, is projective as a (left) 4,-module. But this is
isomorphic to 4, ® , Hom (A4, 4,) and this is projective as an 4,-moduie
since Hom 4 (A, A,) is a projective A -module. We leave the rest of the
proof of (6) to the enthusiastic reader! |

LEMMA 3.4. Let J be a left ideal of D,. There exists a left ideal J' of D,,
containing J such that
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(i) pdp(D,/J')<dim X
(1) J'/J is of finite length.

Proof. D, is noetherian so define J' to be the largest left ideal contain-
ing J such that J'/J is of finite length. Then D,/J’ contains no artinian sub-
modules. Hence by [4, Corollary 5] pd,, (D,/J)<gl.dim D, —1=n—1.

Alternatively, one can use the fact that D, is Morita equivalent to 4, and
use the fact that the lemma is true for 4, noting that the statements are
Morita invariant. ||

LEMMA 3.5. Let I be a left ideal of D. Put I.=1nD,. Then for each r
there is a left ideal I, of D, containing I, such that, for all r,

(1) I/l is of finite length.
(it) pd,(D,/I)<dim X.
(i) I, ,<TI.

Proof. After Lemma 3.4 we need only show we can choose the I, such
that (i) is satisfied. Suppose [, ., has been chosen. Note that
I.+D,I_,/I,=D,I._,/I.nD,I._,, which is a homomorphic image of
Drl:—l/DrIrAI (Since Irflclr)' BUt DrI,rAl/DrIr—l ;Dr®D,,1(1L71/1r71)
and hence I, + D,I,_ /I, is of finite length as a D,-module. Now apply (3.4)
toJ=1,+ DI, _,, and put I, =J". Since J'/J is of finite length and J/I, is of
finite length, I)/I, is of finite length. |

In the next proof we will make frequent use of the fact that if
0— X > Y —> Z—0is a short exact sequence of modules over a ring R with
pd(YY<n and pdp(Z)<n then pdy(X)<n. The truth of this can be seen
from considering the long exact sequence for Ext; in particular,

- S Ext(Y, —) > Bxt"(X, =) > Ext"*(Z, =) > -+

THEOREM 3.6. If I is a left ideal of D, then pd,(I) <dim X.

Proof. Suppose dim X =n. Put I, =In D,, and choose the I, as in the
lemma above. Put T, =1~ DI,. First note that T,/DI, is a submodule of
DI /DI, 2 D®,, (I,/I,) and hence of finite length. In particular, T, is
finitely generated as a left ideal, since DI, is finitely generated. We also
have for all r that, T,_, =T, and I=J> , DI, =", T,.

We will next show that pd,(T,/T,_,)<n for all r, and hence by
[1, Proposition 3], pd,(I) <n.

As T, and T,_, are finitely generated, there exists m with
T, = D(T, n D,)yand T,_, = D(T,_, n D,). Hence T,/T,_,=
D®,, (T.nD,/T, ,nD,)
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Because I/T,=1/InDI,~1+ DI,/DI.c D/DI, there is a short exact
sequence of D, -modules 0-1/T,-»D/DI,-Z—-0. As D/DI =~
D®,, (D,/I}) and D is flat as a right D,-module, applying the functor
D®, — to a projective resolution of D, /I, (as a D -module) gives a pro-
jJective resolution of D/DI, as a D-module. Hence pd,(D/DI,)<n (as
pd, (D,/I)<n). As D is projective as a left D, -module, a D-projective
resolution for D/DI. is also a D,-projective resolution. Thus
pdp, (D/I) <n. But gl.dim D,,=n, and hence pd, (Z)<n Now we get
pdp I/T,) <n.

Because 7,nD,, /T, n D, =2(T,nD,)+T,_,/T,_ s I/T, | there is
a short sequence of D,,-modules

0-17,nD,/)T, nD,->IT. | ->Z-0.

However, pd,, (Z)<n and pd, (I/T,_,)<n, so pdp, (T,nD, /T, nD,)
<n. Applying the exact functor D®, - gives pd,(T,/T, )<n. |

THEOREM 3.7. gl. dim D(A4)=dim X.

Proof. Recall [9, Theorem 9.12] that gl. dim D =sup{ pd,(D/I)|] is a
left ideal of D}. By (3.6), we get gl. dim D <dim X.

For the reverse inequality, observe that Chase [5] has already shown
that w-dim D(4)>dim X. |

Remark. The case of gl.dim D(k[s])=1 is proved in [10] using a
slightly different argument to the above—the proof in [10] is somewhat
cleaner than the above, and the comparison of the two proofs might be
useful for the reader.
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