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1. INTRoDUCT10~ 

Let k be a commutative ring, and A a commutative k-algebra. In Sec- 
tion 2 we define D(A) the ring of k-linear differential operators on A. If k is 
a field of characteristic zero and A is the coordinate ring of a nonsingular 
affine algebraic variety over k, then it is shown in [3, 51 that the global 
homological dimension of D(A) (gl. dim D(A)), equals the dimension of the 
variety. 

Here we prove that if k is an algebraically closed field of characteristic 
p > 0, and A is the coordinate ring of a nonsingular afline algebraic variety, 
X, over k then gl. dim D(A) = dim X. In [S] it is shown that the weak 
global dimension of D(A) (w-dim. D(A)), equals dim X. 

As D(A) is not noetherian there is no apriori reason for w-dim D(A) and 
gl. dim D(A) to be equal. It is a relatively straightforward matter to see that 
D(A) is a union of subalgebras each of which has global dimension equal 
to dim X, and so a theorem of Berstein [2] gives gl. dim D(A) d dim X+ 1. 
So the point is to show that in this particular situation Berstein’s result can 
be improved to show gl. dim D(A) < dim X. That the global dimension 
is bounded below by dim X is a consequence of the fact that 
w-dim D( A ) = dim X. 

2. DIFFERENTIAL OPERATORS 

Let k be a commutative ring, and A a commutative k-algebra. Then 
End, A may be made into an A Ok A-module by defining ((a@ 6)8)(c) = 
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a0(bc) for 0 E End,A and a, h, c E A. We write [a, 01 for (a 0 1 - 10 a)0, 
so [a, e](b) = dl(b) - tqub). 

DEFINITION 2.1. The space of k-linear differential operators of order 6n 
on A is defined inductively by Diff;’ A = 0, and for n >, 0 Diff;: A = 
{ 0 E End, A 1 [a, 01 E DiQ ~- ’ A for all a E A }. The ring cf k-linear d{fewn- 
tiul operators on A is D(A) = U;=” DiPi A. 

Remark 2.2. ( 1) Difc A is an A @ A-submodule of End, A. 

(2) If 8 E End,A, then 8 E Diff; A, if and only if, for all 
a,, u, ,..., a,, E A one has [uo[u, . . [a,, (31. . .]] = 0. 

(3) The reader is referred to [6, 7, S] for an introduction to differen- 
tial operators on commutative rings. 

DEFINITION 2.3. Denote by p: A Ok A + A the multiplication map 
p(u@h) = ah. This is a k-algebra map (also an A-module map for either 
the right or left A-module structure on A 0 A). Thus I= ker Jo is an ideal of 
A@, A. 

THEOREM 2.4 (Heynemann-Sweedler [7], Grothendieck [6]). Let 0 E 
End, A. Then 8EDiff;‘A, (fund only i’ r’+‘.H=O. 

From now on, char k = p > 0, and A = k[t, ,..., t,,] is a finitely generated 
commutative k-algebra. We also assume k is contained in A. 

DEFINITION 2.5. For r 30, define A, to be the subalgebra of A 
generated by k and all elements a”’ with u E A. Clearly A = A, 3 A, 3 .. , 
and for r > s, A, is a finitely generated A,-module. 

LEMMA 2.6. A,= k[tr’,..., tg’]. 

Proqfi By induction it suffices to prove the result for r = 1. Clearly 
kCt;,...> [RI = A,, so only the reverse inclusion must be established. Let 
a E A, and write a = CJ iJtJ, where jtiJ~ k and J= (j, ,..., j,,) is a multi-index 
and tJ = t;’ ... tl;’ (there is not necessarily a unique such expression for u). 
As char k=p, if U, UE A then (u+u)~=u~+v~, so by induction (on the 
number of nonzero ,IJ occurring in the expression for a), up = CJ iJP(tJ)p. 
But (t“)“= (tP)“.‘. (t;)‘“Ek[tp ,..., t,f]. Hence u”ek[tf ,..., t;]. 1 

This shows that we could actually define A, to be k[tf”,..., t;‘] and that 
such a definition is independent of the choice of generators for A. 

THEOREM 2.7. D(A) = u,‘= 0 End,, A. 

Proof’ [IS, Lemma 3.31. Let 0 E D(A) of order < pr. As 
(l@r,-r,@l)Elfor allj, (l@t,-t,@l)p’=l@t~‘-tf’@l~I~‘. Hence 
0 = ( I @ ty’ ~ t,f @ 1). 8 = -[t;‘, 01. Thus the action of fI on A commutes 
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with the action of A, on A given by multiplication, as A,=k[tf’,..., t;‘]. 
That is, 0~ End,, A. Hence D(A) c IJT;~ End,, A. 

Conversely, let 8 E End,, A. Then certainly 0 E End, A. We claim that 8 
is a differential operator of order bs = np’- 1. To see this note that I’+ ’ 
is generated (as an ideal) by all (lOr,-t,~l)i’...(l~t,,-t,~l)jn 
where .j, + . . + j,, = np’. This is because I is generated by 
l@t,-t,@l,.,., l@t,-t,,@l. As jl+ ... +jn=npr some ,j,>p’, 
and thus (l~ri-tj~l)P’=lOt~‘-t~‘~l divides (l@t,--t,@l)j’... 
( 1 0 t,, - t,, 0 1 )“I. But o= -[tP’,~]=(lOt,--,Ol)P’.e, hence 
(1~r,-t,o1)“~~~(1ot,,-t,,o1)“~6,=0 and I ‘+‘.(j=O as 
required. i 

Notation. Write D,.= End.,A, so D(A) = iJ,“=, D,. Also write 
D= D(A). 

Note that the action of A on itself by multiplication, enables us to con- 
sider A as a subalgebra of D. In fact A = D,, and D, c D, c . . . . Also 
notice that A, is contained in the centre of D,. For each r, A is a finitely 
generated A, module, generated by r;l. .. t(;’ with 0 6 ji < pr for i = l,..., II. 
Hence D, is a finitely generated A,-module. In particular D, is a finitely 
generated module over its centre, so satisfies a polynomial identity. 
However, D will not in general satisfy a polynomial identity (when A is a 
polynomial ring over k, D does not satisfy a polynomial identity). 

The following is used in Section 3. 

PROPOSITION 2.8. Let M be a D-module with a chain ef k-vector suh- 
spaces M,) s M, . . ’ such that 

(a) M= U,?sO M,, 

(b) each M, is a D,-module, andfor large r, length D,M, d 1. Then M 
is of finite length as a D-module, and length D M d 1. 

Proof: Suppose I= 1. We must show M is a simple D-module. Pick 
0 # m E M, m’ E M. For sufficiently large r, m, m’ E M, and M, is a simple 
D,.-module, so there exists ds D, with dm = m’. Hence M is simple. 

Suppose now 13 2, and the proposition is true for integers less than 1. If 
M is a simple D-module we are finished. So suppose M is not simple and 
pick a proper D-submodule, N # 0. Put N, = M, n N, notice that 
N = U ,‘= 0 N,, and that each N, is a D,-module. We show that for large r, 
length ,>,N, < I- 1. To see this pick m E MN. There exists s such that 
m E M, for all r 3 s. But m 4 N,. Hence if r 3 s, M, 2 N,, so for large r, 
length “, N, < I- 1. Applying the induction hypothesis length n N < I- 1. 

We have shown that any proper submodule of M is of finite length 
<I- I. Hence length ,)M<l. 1 



GLOBAL HOMOLOGICALDIMENSION OFRING 101 

3. GLOBAL DIMENSION 

Henceforth, k is an algebraically closed field with char k = p > 0, X is a 
nonsingular affine algebraic variety over k, and A = C!(X) is the coordinate 
ring of X. 

Our immediate goal is statements (3) and (4) of Proposition 3.2. We 
begin with the following Lemma, parts (i) and (ii) of which are to be found 
in [S]. 

LEMMA 3.1. Let R = O(X) he the coordinate ring of a nonsingular affine 
variety X over an algebraically closed field k of characteristic p > 0. Let 
q = p’. Define S to he the image of the map x -+ x4 on R. Then: 

(i ) S z R as rings, 

(ii) R is a finite1.y generated projective S-module, 

(iii) Hom,( R, S) is a ,finitely generated projective R-module of rank 1. 

Proof: The statements (i) and (ii) appear in [S] as Lemma 3.1 and 
Proposition 2.2. Because Hom,( R, S) is a finitely generated projective 
S-module, it is also a finitely generated projective R-module by [S, 
Proposition 2.21. It follows that the canonical S-algebra homomorphism 
R + End,( Hom,( R, S)) is an isomorphism. Hence by Cl]> 
Proposition 7.51, Hom,(R, S) is of rank 1 as an R-module. 1 

PROPOSITION 3.2. (1) D, is Morita equivalent to A,, the progenerator 
being the D, - A, himodule A. 

(2) For s 2 r, D, is a,finitely generated projective right D,-module and 
a generator in Mod-D,. 

(3) D is a ,flat right D,-module. 

(4) Lf M is a simple D,-module then D an, M is a simple D-module. 

(5) D is a projective right D,-module, ,for all r >, 0. 

(6) The above statements are true if “right” is replaced by “left.” 

Proof (1) appears in the proof of [S, Lemma 3.41. It is a consequence 
of the definition of D, and of Lemma 3.1 with R = A, S= A,. 

In order to prove (2) we recall the following consequence of the Morita 
Theorems: Let R be a commutative ring, P a progenerator in Mod-R, and 
set D = End, P. If M is a D-module, then M is a progenerator in Mod-D if 
and only if its is a progenerator in Mod-R. 

Let s Z r. By the previous paragraph, to show D, is a progenerator in 
Mod-D,, it is enough to show it is a progenerator in Mod-A,. However, 
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(again by the previous paragraph) D,Y is a progenerator in Mod-A.. By [S, 
Proposition 2.21 this ensures D,Y is a projective A.-module, and a generator 
(since over a commutative ring any faithful projective module is a 
generator). 

This establishes (2) and (3) is a consequence since D = l&,., D,, is a 
direct limit of flat D,-modules. 

Let M be a simple D,-module and let s 2 r. Consider A,G A,s A. 
Clearly any simple A-module is a simple A,-module (since k is algebraically 
closed). A simple A,-module is of the form A,/Z for I a maximal ideal. But 
A is integral over A,, so there is a maximal ideal .I of A such that 
I= Jn A,. Hence A./I -+ A/J is an isomorphism of A,-modules. Thus any 
simple A,-module is also a simple A-module (although not uniquely). Now, 
if N is a simple A-module then DrOa Nr (A@,, Hom,,(A, A,))@, NZ 
A On, N (where the final isomorphism uses the fact that HomAr(A, A,) is a 
rank 1 projective A-module, and faithful). By the Morita Theorems, 
D,@, N is a simple D,-module and every simple D,-module is of the form 
D,@, N for a suitable simple A-module N. 

Finally, with M as above, then A4g D, @A N for some simple 
A-module N. Hence D, Oo, M r D, Oo,( D, Oa N) r D, Oa N which is 
simple. Now we apply Proposition 2.8 to conclude that DOo, A4 is a 
simple D-module; for s 3 r write M,Y for the D,-submodule of D@o, A4 
generated by M, then M, is certainly of length < 1, being a homomorphic 
image of D,OD, M. This completes the proof of (4). 

To see that (3) can be improved to show D is projective as a right 
D,-module recall [ 1, Proposition 31. As D = b, a r D,,, it is enough to 
show that each D,, I/D, is a projective right D,-module for s > r. As D, is a 
projective right D,-module, it is enough to show that D,, ,/D, is a projec- 
tive right D,-module, or equivalently, that D,s+ l = D,s@ W for some right 
D,-module W. Observe that in the proof of (4) we have shown that if M is 
a simple D,-module then D,, + , On, M is a simple D,, ,-module, in par- 
ticular nonzero. In the language of [ 121 this says that D,s+, is a faithfully 
projective right D,-module. The conclusion of the Theorem in [12] gives 
the existence of the required W, proving (5). 

Finally to see that the above statements are true if “right” is replaced by 
“left” is routine. For example, if s 2 r, to show that D,$ is a projective left 
D,-module, it is sufficient (by Morita equivalence) to show that 
Hom,,(A, A,)@“, D, is projective as a (left) A,-module. But this is 
isomorphic to ArOA, Hom,,(A, A,) and this is projective as an A,-module 
since Hom,,(A, A,) is a projective A.Y-module. We leave the rest of the 
proof of (6) to the enthusiastic reader! 1 

LEMMA 3.4. Let J be a kji ideal of D,. There exists a left ideal J’ of I),, 
containing J such that 
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(i) pd,(D,/J’) <dim X 

(ii) Y/J is of finite length. 

Proof. D, is noetherian so define J’ to be the largest left ideal contain- 
ing J such that J’/J is of finite length. Then D,/J’ contains no artinian sub- 
modules. Hence by [4, Corollary S] pd,(D,/J’) d gl. dim D, - 1 = n - 1. 

Alternatively, one can use the fact that D, is Morita equivalent to A, and 
use the fact that the lemma is true for A, noting that the statements are 
Morita invariant. 1 

LEMMA 3.5. Let I he a left ideal qf D. Put I, = In D,. Then for each r 
there is a left ideal IL of D, containing I, such that, for all r, 

(i) Ii/I, is of finite length. 

(ii) pd,,( D,/I:) < dim X. 

(iii) I: , c I:. 

Proof. After Lemma 3.4 we need only show we can choose the I: such 
that (iii) is satisfied. Suppose I: , has been chosen. Note that 
I,+D,I:~,jIr~D,I:-,/I,nD,I:-,, which is a homomorphic image of 
DJ- ,/D,I,-, (since I,- I c I,). But D,I:- ,/D,I,- 1 z D,O,,m,(ILp ,/I,- 1) 
and hence I, + D, I: ,/II is of finite length as a D,-module. Now apply (3.4) 
to J= I,+ DI;m ,, and put I: = J’. Since J’/J is of finite length and JJI, is of 
finite length, /:/I, is of finite length. 1 

In the next proof we will make frequent use of the fact that if 
0 -+ X + Y + Z + 0 is a short exact sequence of modules over a ring R with 
pd,( Y) <n and pd,(Z) d n then pd,(X) <n. The truth of this can be seen 
from considering the long exact sequence for Ext; in particular, 
... +Ext”(Y, -)+Ext”(X, -)-+Ext”+‘(Z, -)+ . . . . 

THEOREM 3.6. If I is a left ideal of D, then pd,(I) <dim X. 

Proof. Suppose dim X = n. Put I, = In D,, and choose the I: as in the 
lemma above. Put T, = In DI:. First note that T,/DI, is a submodule of 
DI:/DI,r DO,, (Ii/I,) and hence of finite length. In particular, T, is 
finitely generated as a left ideal, since DI, is finitely generated. We also 
have for all r that, T,-, c T, and I= u,“=O DI,= UyzO T,. 

We will next show that pd,( T,/T,_ 1) < n for all r, and hence by 
[ 1, Proposition 31, pd,( I) < n. 

As T, and T,-, are finitely generated, there exists m with 
T, = D(T, n D,) and T,+, = D(T, ~, n D,). Hence T,/T,-, g 

DOD,,, (Trn DmlT, , C-J D,,,). 
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Because I/T, = I/In Dr: E I+ DI:/DI: 4 DIDI: there is a short exact 
sequence of D,-modules 0 + I/T, + DIDI: -+ Z ---f 0. As DIDI;= 
D On, (D,./I:) and D is flat as a right D,-module, applying the functor 
DO,], ~ to a projective resolution of D,/Z: (as a D,-module) gives a pro- 
jective resolution of DIDI: as a D-module. Hence pd,(DIDZ:) <n (as 
pd,,( D,/Z:) <n). As D is projective as a left D,-module, a D-projective 
resolution for DIDI: is also a D,,-projective resolution. Thus 
pd,,,JD/Z:) < n. But gl. dim D,, = n, and hence pd&Z) d n. Now we get 
~d,,,t(UTr) < n. 

Because T,nD,JT,~,nD,~(TT,nDD,)+T,~,lT,~,~IIT,~, there is 
a short sequence of D,-modules 

However, pd,,,,(Z) d n and pd,JZlT,_ ,) < n, so pd,_(T, n D,lT,+ I n D,) 
< n. Applying the exact functor D On, - gives pd,( T,/T,- , ) < n. 1 

THEOREM 3.7. gl. dim D(A) = dim X. 

Proqf: Recall [9, Theorem 9.121 that gl. dim D = sup{ pd,( D/Z) 1 I is a 
left ideal of D}. By (3.6), we get gl. dim D d dim X. 

For the reverse inequality, observe that Chase [S] has already shown 
that w-dim D(A) > dim X. 1 

Remark. The case of gl. dim D(k[t]) = 1 is proved in [lo] using a 
slightly different argument to the above-the proof in [lo] is somewhat 
cleaner than the above, and the comparison of the two proofs might be 
useful for the reader. 
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