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A derived equivalence for a degree 6 del Pezzo surface
over an arbitrary field

by

M. BLUNK, S.J. SIERRA AND S. PAUL SMITH�

Abstract

Let S be a degree six del Pezzo surface over an arbitrary field F . Motivated by
the first author’s classification of all such S up to isomorphism [3] in terms of
a separable F -algebra B�Q�F , and by his K-theory isomorphismKn.S/Š

Kn.B �Q�F / for n� 0, we prove an equivalence of derived categories

Db.cohS/� Db.modA/

whereA is an explicitly given finite dimensional F -algebra whose semisimple
part is B �Q�F .
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1. Introduction

We will work over an arbitrary field F .
Throughout S denotes a degree six del Pezzo surface over F . Equivalently, S

is a smooth projective surface over F whose anti-canonical sheaf is ample and has
self-intersection number 6.

Throughout NF will denote a separable closure of F and we will write

NS D S NF D S �SpecF Spec NF :

In [3], the first author classified such S up to isomorphism by associating to
S a pair of separable F -algebras B and Q, both defined as endomorphism rings of
certain locally free sheaves on S . Furthermore, it was shown there that the algebraic
K-theory of S is isomorphic to that of the algebra B �Q�F .

Let cohS denote the category of coherent sheaves on S and let modA denote
the category of noetherian right A-modules. Let � denote equivalence of derived
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categories. Our main result (Theorem 4.5) establishes a derived equivalence

Db.cohS/� Db.modA/ (1-1)

whereA is a finite dimensional F -algebra whose semi-simple quotient is B�Q�F .
We prove this equivalence by constructing a tilting bundle T on S that has A as its
endomorphism ring. (The definition of a tilting bundle is given in section 4.) The
main novelty of our approach is that we do not make any assumptions on the base
field F . Since the field F is arbitrary, we cannot assume that S is obtained by
blowing up P2F (in fact S could be a minimal surface), nor can we use exceptional
collections.

Acknowledgments: All three authors acknowledge the support of the National
Science Foundation with gratitude. We would also like to thank the referee for their
comments. This research was partially done while the first author was visiting the
University of Washington, and he would like to thank the institution for its support
and excellent working conditions. Finally, the first author would like to thank
Aravind Asok, Baptise Calmès, and Daniel Krashen for suggesting this problem.

2. Basic facts about NS

In this section, we give basic facts about the degree 6 del Pezzo surface NS . Since all
the results here are well-known, we do not give references.

There are six .�1/-curves on NS , which we may take to lie in the following
configuration:

M2 M3

L1

M1

L3 L2

(2-1)
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The Picard group is

Pic NS Š
L3
iD1.ZLi ˚ZMi /

.Mi CLj DMj CLi j 1� i;j � 3/
:

Usually we only care about the class of a divisor in Pic NS . We will write

D1 �D2

if D1 and D2 are linearly equivalent divisors.
As remarked in the discussion after Prop. 2.1 in [3], the group of connected

components of the group Aut NS is S2 � S3, which can be identified with the
automorphism group of the hexagon of .�1/-curves on NS . In particular, there is
an element � 2 Aut. NS/ that cyclically permutes the six exceptional lines. It is easy
to see that .1C �/.1� �3/ acts trivially on Pic NS .

An anti-canonical divisor is

�K NS WD L1CL2CL3CM1CM2CM3:

This is ample. We define two particular divisors

H WD L1CM2CM3 � L2CM1CM3 � L3CM1CM2 (2-2)

and
H 0 WD L1CL2CM3 � L2CL3CM1 � L3CL1CM2 (2-3)

on NS . Note that �.H/�H 0 and �2.H/�H .
We define the degree of a divisor C on NS as degC D�C 	K. Each exceptional

line has degree 1.
There are two morphisms f;f 0 W NS ! P2NF

, each of which realizes NS as the
blowup of P2NF

at three non-collinear points. We choose these so that f contracts
the lines L1, L2, and L3 and f 0 contracts the lines M1, M2, and M3. These two
morphisms induce injective group homomorphisms f �;f 0� W PicP2! Pic NS . If ` is
a line on P2NF

, then f �`DH and f 0�`DH 0.
The action of Gal. NF=F / on the exceptional lines on NS induces actions of

Gal. NF=F / on

I WD
5M
iD0

O NS .� iH/

and

J WD
5M
iD0

O NS .� i .L1CM2//
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that are compatible with its action on NS . In particular, I and J are Gal. NF=F /-
invariant. It follows that the locally free sheaves I and J descend to locally free
sheaves I and J on S .

Define
T WD I˚J ˚O NS ; T WD I˚J ˚OS ;

and
B WD EndS I; Q WD EndSJ ; A WD EndS T :

In [3] it is shown that S is determined up to isomorphism by the pair of F -
algebras .B;Q/. (Actually, in [3], B is defined as

�
EndS I_

�op. Since sending a
homomorphism ˛ W I ! I to its transpose ˛_ W I_ ! I_ is an anti-isomorphism
from EndS I to EndS I_, our B is the same as that in [3], and similarly for Q.) As
discussed in [3], the algebras B and Q are Azumaya over their centers, which are
respectively étale quadratic and cubic extensions of F . Moreover, these étale centers
can be recovered from the action of Gal. NF=F / on the hexagon of .�1/-curves, as
the action induces a 1-cocycle of Gal. NF=F / with values in S2 �S3, inducing a pair
of étale extensions of F , quadratic and cubic.

We end this section with two results about the endomorphism algebra of T .

Lemma 2.1 Let A WD EndS T . Then

AD

0
@B HomS .J ;I/ HomS .OS ;I/
0 Q HomS .OS ;J /
0 0 F

1
A:

Proof: It suffices to show Hom NS .I;J / D Hom NS .I;O NS / D Hom NS .J ;O NS / D 0.
However, each of these three Hom-spaces is isomorphic to a direct sum of terms of
the form H 0. NS;O NS .D// for a divisor D with degD < 0. But if D has a section
then D �D0 for some effective D0 so degD D�D0:K � 0. These Hom spaces are
therefore zero.

The projective dimension of a left T -module is denoted by pdimTM . The global
homological dimension of T is defined and denoted by

gldimT WD supfpdimTM jM 2ModT g:

Proposition 2.2 gldimA� 2.

Proof: Let R and S be rings and X an R-S-bimodule. If S is a semisimple ring,
then

gldim
�
R X

0 S

�
DmaxfpdimRX C 1;gldimRg:
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(See [1, Prop. III.2.7].) Applying this result twice, first to

A0 WD

�
B Hom.J ;I/
0 Q

�
(2-4)

then to A with RD A0 and S D F , gives the desired result.

3. Cohomology vanishing lemmas

We will prove several results about vanishing of cohomology and Ext-groups for
sheaves on S . These results will be used in Section 4 to show that T is a tilting
bundle and therefore induces an equivalence of derived categories.

A key step in proving that T is tilting is showing that ExtiS .T ;T / D 0 for i >
0. This reduces, by flat base change, to proving that ExtiNS .T ;T / D 0. Given the
explicit description of T as a direct sum of invertible sheaves, it suffices to prove
that h1.D�D0/D h2.D�D0/D 0 for all D and D0 belonging to the list

H; H 0; L1CM2; L2CM3; L3CM1; 0: (3-1)

We will make repeated use of the relation Li CMj � Lj CMi .

Proposition 3.1 Let D and D0 be divisors on NS appearing in the list (3-1). Then

�3� deg.D�D0/� 3:

Furthermore,

1. if deg.D�D0/D 1, then D�D0 is linearly equivalent to an exceptional line.

2. if deg.D�D0/D 2, then D�D0 � Li CMj for some i ¤ j 2 f1;2;3g.

3. if deg.D�D0/D 3, then D�D0 is linearly equivalent to either H or H 0.

4. if deg.D �D0/ D 0, then D �D0 is linearly equivalent to either 0, Li �Lj ,
Li �Mi , or Mi �Li for some i;j 2 f1;2;3g.

5. if deg.D�D0/ < 0, thenD�D0 is linearly equivalent to either �Li , or �Mj ,
or �Li �Mj , or �H , or �H 0.
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Proof: Exceptional lines have degree 1 so degH D degH 0 D 3 and deg.Li C
Mj /D 2. It follows that the degree of D�D0 is between 3 and -3.

(1) If deg.D �D0/ D 1, then D is linearly equivalent to H or H 0 and D0 D
Li CMj for some i;j . It follows from (2-2) and (2-3) that D � D0 is linearly
equivalent to an exceptional line, and every exceptional line can occur as D�D0.

(2) and (3) are obvious.
(4) In this case D and D0 have the same degree.
If degD D degD0 D 2, then D D Li CMj and D0 D LkCM`. By considering

all possible i;j;k;`, we see thatD�D0 is linearly equivalent to a divisor of the form
Li �Lj .

If degD D degD0 D 3, then, for example, D �H and D0 �H 0, and D �D0 �
Li �Mi . Switching the roles of H and H 0, we see D �D0 �Mi �Li . Finally, we
may have D�D0 � 0.

(5) This is the mirror of the cases (1)-(3).

Corollary 3.2 Suppose D is the difference of two divisors appearing in the list (3-
1). If degD � �2, then there is an exceptional line E on NS such that D �E is also
a difference of two divisors appearing in the list (3-1) and D:E � �1.

Proof: This is established through case-by-case analysis using Proposition 3.1 to
look at all the possibilities for D.

A divisor D on NS is good if h1.D/D h2.D/D 0.

Lemma 3.3 The divisors �H and �H 0 on NS are good.

Proof: The existence of the morphisms f;f 0 W NS ! P2NF
allows us to use the Leray

spectral sequence. The arguments for �H and �H 0 are the same so we only prove
the result for �H .

Because NS is a blowup of P2NF
, f�O NS DOP2

NF

and Rjf�O NS D 0 if j � 1.
Since O NS .�H/Š f �OP2

NF

.�`/, the projection formula gives

Rjf�O NS .�H/DRjf�
�
O NS ˝f �OP2

NF

.�`/
�

ŠRjf�O NS ˝OP2
NF

.�`/

Š

(
OP2

NF

.�`/ if j D 0

0 if j ¤ 0:

The Leray spectral sequence

H i .P2NF ;R
jf�O NS .�H//)H iCj . NS;O NS .�H//

therefore degenerates to give

H i . NS;O NS .�H//ŠH i .P2NF ;OP2.�`//
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for all i . The result follows because H i .P2NF
;OP2.�`//D 0 for all i .

Lemma 3.4 Let C be any divisor on NS , and let E be one of the .�1/-curves. If
C �E is good and C:E � �1, then C is good.

Proof: The long exact sequence in cohomology associated to

0!O NS .C �E/!O NS .C /!OE .C /! 0

reads in part

H 1. NS;O NS .C �E// H 1. NS;O NS .C // H 1. NS;OE .C //

H 2. NS;O NS .C �E// H 2. NS;O NS .C // H 2. NS;OE .C //:

By hypothesis, the left-most term in each row is zero. The right-most term in each
row is also zero because H i . NS;OE .C // Š H i .P1NF

;OP1.C:E//. Hence C is good.

4. The tilting bundle T

In this section, we show that T is a tilting bundle and prove our main result.

Proposition 4.1 Let i � 1. Then ExtiS .T ;T /D 0.

Proof: By flat base change it suffices to prove this when F is separably closed so
we assume that F D NF . In that case ExtiS .T ;T / is isomorphic to a direct sum of
terms of the formH i .S;OS .D�D0// whereD andD0 are divisors in the list (3-1).

It therefore suffices to show thatD�D0 is good wheneverD andD0 are divisors
in the list (3-1).

We argue by induction on deg.D�D0/. By Proposition 3.1,�3� deg.D�D0/�
3. If deg.D �D0/ D �3, then D �D0 is good by Lemma 3.3. Now suppose that
�2 � deg.D �D0/ � 3. By Corollary 3.2, there is an exceptional line E such that
D � D0 � E is a difference of divisors in (3-1) and .D � D0/:E � �1. By the
induction hypothesis, D�D0�E is good, and it then follows from Lemma 3.4 that
D�D0 is good.

Since NS is a del Pezzo surface of degree � 6 it is a toric variety so we can, and
will, make use of Cox’s homogeneous coordinate ring for it [5].

Lemma 4.2 Every F 2 coh NS has a finite resolution in which all terms are direct
sums of invertible sheaves O NS .D/ for various divisors D on NS .



488 M. BLUNK, S.J. SIERRA & S. PAUL SMITH

Proof: Let A be Cox’s homogeneous coordinate ring for NS [5]. Then A is a
polynomial ring with a grading by Pic. NS/. Let M be a finitely generated graded
A-module. Then M has a finite projective resolution in the category of graded A-
modules. By [9, Lemma 2.2], every finitely generated projective graded A-module
is a direct sum of twists of A. The exact functor Gr.A;Pic. NS//! Qcoh NS , M  eM ,
described in [5, Thm. 3.11] sends the resolution of M to an exact sequence in
Qcoh NS in which the right-most term is eM and all other terms are direct sums of
various O NS .D/, D 2 Div. NS/. Given F 2 coh NS , there is a finitely generated graded
A-module M such that F Š eM .

For the rest of this paper, we will work in the derived category. If D is a
triangulated category, we denote the shift of an object M by MŒ1�. Recall that a
subcategory of D is thick (épaisse) if it is closed under isomorphisms, shifts, taking
cones of morphisms, and taking direct summands of objects.

Let D be a triangulated category and E a set of objects in D. Then


 Dc denotes the full subcategory of D consisting of the compact objects, i.e.,
those objects C such that HomD.C;�/ commutes with direct sums;


 hEi denotes the smallest thick full triangulated subcategory of D containing
E ;


 E? denotes the full subcategory of D consisting of objects M such that
HomD.EŒi �;M/D 0 for all E 2 E and all i 2 Z.

We say that


 E generates D if E? D 0 and that


 D is compactly generated if .Dc/? D 0.

Clearly, if D is compactly generated and hEi D Dc , then E generates D.

Theorem 4.3 (Ravenel and Neeman [8]. Also see Thm. 2.1.2 in [4]) Let D be a
compactly generated triangulated category. Then a set of objects E � Dc generates
D if and only if hEi D Dc .

The unbounded derived categories D.QcohS/ and D.Qcoh NS/ are compactly
generated. Moreover, D.QcohS/c D Db.cohS/ and D.Qcoh NS/c D Db.coh NS/.

Tilting bundles. Let X be a projective scheme over a field k. A locally free
sheaf T 2 cohX is a tilting bundle if it generates D.QcohX/ and ExtiX .T ;T / D 0

for all i > 0.

Theorem 4.4 T generates D.Qcoh NS/ and hT i D Db.coh NS/.
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Proof: By Theorem 4.3, it suffices to show that hT i D Db.coh NS/. Since hcoh NSi D
Db.coh NS/ it suffices to show that every coherent O NS -module belongs to hT i.

If D is an effective divisor on NS we write ID for the ideal vanishing on D as
a scheme. Thus ID Š O NS .�D/. Whenever we write an arrow O NS .�D/! O NS it
will be with the tacit understanding that this is the composition of an isomorphism
O NS .�D/! ID followed by the inclusion ID!O NS .

SinceM3 	 .L1CM2CM3/D 0, OM3
ŠOM3

.L1CM2CM3/. It follows from
the exact sequences

0!O NS .L1CM2/!O NS .L1CM2CM3/!OM3
.L1CM2CM3/! 0

and
0!O NS .�M3/!O NS !OM3

! 0

that OM3
and O NS .�M3/ belong to hT i. Hence OE and O NS .�E/ belong to hT i for

all exceptional lines E.
Since Li :Lk D 0 if i ¤ k, there is an exact sequence

0!O NS .�Li �Lk/!O NS .�Li /˚O NS .�Lk/!O NS ! 0:

Twisting by Li CMj CLk , we obtain

0!O NS .Mj /!O NS .Mj CLk/˚O NS .Li CMj /!O NS .Li CMj CLk/! 0:

Therefore, O NS .Mj / 2 hT i. From the exact sequence

0!O NS !O NS .Mj /!OMj
.Mj /! 0;

we deduce that OMj
.Mj / 2 hT i.

It follows that OE .E/ 2 hT i for every exceptional curve E. But OE is also
in hT i so, because Db.cohP1NF

/ is generated by OP1
NF

and OP1
NF

.�1/, it follows that

Db.cohE/� hT i. Hence OE .D/ 2 hT i for all divisors D on NS .
Suppose O NS .D/ 2 hT i. Then O NS .D � E/ 2 hT i because there is an exact

sequence
0!O NS .D�E/!O NS .D/!OE .D/! 0:

Likewise, O NS .DCE/ 2 hT i because there is an exact sequence

0!O NS .D/!O NS .DCE/!OE .DCE/! 0:

It follows that hT i contains O NS .D/ for all D 2 Div NS and therefore, by Lemma 4.2,
contains F for every F 2 coh NS .
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When F is not separably closed T need not split as a direct sum of line
bundles so the arguments in Theorem 4.4 can not be used to prove directly that
hT i D Db.cohS/. Instead we will show that T generates D.QcohS/ and then apply
Theorem 4.3.

Theorem 4.5 Let F be an arbitrary field. Then

RHomS .T ;�/ W Db.cohS/! Db.modA/

is an equivalence of categories.

Proof: We will show that T generates D.QcohS/. It will then follow from
Theorem 4.3 that

hT i D D.QcohS/c D Db.cohS/:

By Proposition 4.1, ExtiS .T ;T / D 0 for i > 0. By Proposition 2.2, A D EndS .T /
has finite global dimension. Thus we have shown that T is a tilting bundle and our
theorem will then follow directly from [2, Thm. 3.1.2] (or [6, Thm. 7.6]).

Let M 2 D.QcohS/ and suppose RHomS .T ;M/ D 0. We must show that
MD 0.

Since T is locally free, HomS .T ;�/ and T _˝S� are exact functors on QcohS .
Likewise, Hom NS .T ;�/ and T _ ˝ NS � are exact functors on Qcoh NS . Thus, for
example, RHomS .T ;M/ can be computed on D.QcohS/ by applying HomS .T ;�/
to each individual term in M.

Consider the cartesian square

NS
v

q

S

p

Spec. NF /
u

Spec.F /:

Since u (and therefore v) is flat, the natural transformation

u�Rp�!Rq�v
�

is an isomorphism of functors from D.QcohS/ to D. NF / [7, (3.18)]. We now have

0 D u�RHomS .T ;M/Š u�Rp�RHomS .T ;M/ by [7, p.85]

Š Rq�v
�RHomS .T ;M/ by [7, (3.18)]

Š Rq�v
�.T _˝LS M/

Š Rq�.T
_
˝LNS Lv

�M/

Š Rq�RHom NS .T ;Lv�M/

Š RHom NS .T ;Lv�M/:
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But T generates D.Qcoh NS/ so v�M D 0. Since v� is faithful, M D 0, and we are
done.

Corollary 4.6 (cf. [3], Corollary 5.2) The functor HomS .T ;�/ W coh.S/! modA
induces an isomorphism

HomS .T ;�/ WK�.S/!K�.F �B �Q/:

Proof: It follows from Theorem 1:98 of [10] that the equivalence of derived
categories found in Theorem 4.5 induces an isomorphism in K-theory

HomS .T ;�/ WK�.cohS/!K�.modA/:

Moreover, A has a nilpotent ideal I so that A=I is isomorphic to its semi-simple
quotient F �B�Q. Thus, it follows that the K-theory of A is isomorphic to that of
F �B �Q, and we recover the isomorphism found in [3].
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