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Abstract

We prove a version of B$ezout’s theorem for non-commutative analogues of the projective
spaces Pn. c© 2001 Elsevier Science B.V. All rights reserved.
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0. Introduction

Throughout we work over an algebraically closed 9eld k. We establish a version of
B$ezout’s Theorem for non-commutative projective spaces, quantum Pn’s for short. Let
Y be a quantum Pn, and K0(Y ) the Grothendieck group of the category of noetherian
Y -modules. Then the alternating sum of the dimension of the Ext-groups gives a bilinear
form

· : K0(Y ) × K0(Y ) → Z
for which

M ·N = degN · degM

whenever M and N are noetherian Y -modules such that dimN + dimM = n. The
dimension and degree are de9ned in terms of intersection with “virtual linear subspaces”
of Y (De9nition 8.4).
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A quantum Pn is, roughly speaking, an abelian category which enjoys many of the
good properties of QcohPn, the category of quasi-coherent sheaves of OPn -modules,
where OPn is the sheaf of regular functions on the usual commutative Pn. See De9ni-
tions 8.1 and 7.1.

There are several problems that must be faced in developing an intersection theory for
non-commutative spaces. There can be rather few points on a non-commutative space,
so intersection should not be de9ned in terms of counting points. Serre’s result that the
form

∑n
i=0 (−1)idimk H 0(Y;TorYi (M;N )) agrees with the intersection multiplicity for a

wide range of schemes Y suggests that one should de9ne intersection in homological
terms. However, the non-commutativity means that right modules are not usually left
modules, so Tor-groups cannot be used. Therefore, when the sum

(M;N):=
n∑

i=0

(−1)idimk ExtiY (M;N)

makes sense for all Y -modules, we de9ne the intersection multiplicity as

M ·N:=(−1)dim N(M;N):

To check that this gives a good theory for the non-commutative analogues of Pn,
we 9rst determine K0(Y ) when Y is a non-commutative projective scheme having a
homogeneous coordinate ring of 9nite global dimension (Theorem 2.3). We de9ne
the support 9ltration on K0(Y ) in Section 4. Section 6 shows that K0(Y ) has certain
good properties (which always hold in the commutative case) if Y has a homogeneous
coordinate ring which is Auslander–Gorenstein. In Section 5 we de9ne the Euler form
on K0(Y ) using the alternating sum of dimensions of Ext groups. In Section 8 we show
that if Y is a quantum Pn, as de9ned in De9nition 8.1, then K0(Y ) is isomorphic to
K0(Pn), and this isomorphism is compatible with the Euler forms. We do not know
whether this isomorphism is compatible with the two support 9ltrations, though it is
for a quantum P2. We use the Euler form to de9ne dimension and degree, and then
prove B$ezout’s Theorem.

In Section 9 we look more closely at a quantum P2. We de9ne a Picard group for
a non-commutative surface Y as a suitable subquotient of K0(Y ), and show that it is
isomorphic to Z for a quantum P2. 3

1. Basic de�nitions

Throughout this paper, k denotes an algebraically closed 9eld, and A is a right
noetherian, connected graded k-algebra such that A1 �= 0.

3 After writing an earlier version of this paper we learned from Peter Jorgensen that he has developed an
intersection theory for non-commutative surfaces using the Euler form on the Grothendieck group. Although
his point of view is similar to ours, the results obtained are diKerent. We say more about the comparison
between his results and ours in Section 11. The 9nal version of this paper bene9tted from conversations
with him, and we thank him for sharing his ideas with us.
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We write GrModA for the category of graded right A-modules, and grmodA for
the full subcategory of noetherian modules. The degree shift functors M �→ M (n) on
GrModA are de9ned by M (n)=M as an A-module, with the grading M (n)i=Mn+i. If M
and N are graded modules, we write Ext jA(M;N ) for the direct sum of all ExtjA(M;N )i.

The full subcategory of grmodA (resp., GrModA) consisting of (direct limits of)
9nite-dimensional modules is denoted fdimA (resp., FdimA). These are localizing sub-
categories. We write TailsA:=GrModA=FdimA for the quotient category, and write
� : GrModA → TailsA for the quotient functor. TailsA is a Grothendieck category,
and following [12,15], we call it the projective quasi-scheme associated to A.

For the rest of the paper we will write

Y = ModY = TailsA:

The objects in ModY are called Y -modules. The confusing notation Y = ModY is a
device to make us think that a quasi-scheme is its category of quasi-coherent modules.
We use Y when we wish to think of it as a geometric object, and use ModY when we
want to remind ourselves that we have a category. Since A is right noetherian, GrModA,
and hence ModY , is locally noetherian. We write modY for the full subcategory of
ModY consisting of the noetherian Y -modules.

We use roman letters L;M; N; : : : ; for graded A-modules, and script letters L;M;N; : : : ;
for the corresponding Y -modules, �L; �M; �N; : : : : We de9ne

OY :=�A;

and call it the structure module of Y . The cohomology groups of a Y -module M are,
by de9nition,

Hq(Y;M):=ExtqY (OY ;M):

The basic properties of Hq(Y;−) can be found in [7].
The Grothendieck group of modY is denoted K0(Y ). If M ∈ modY , we

denote its image in K0(Y ) by [M]. The degree shift functor on A-modules induces
an auto-equivalence of modY , and hence an automorphism of K0(Y ). We make K0(Y )
a Z[s; s−1]-module with s acting as the shift functor (−1).

Warning. K0(Y ) does not have a natural ring structure because we cannot tensor to-
gether two right A-modules. There are two caveats to this. First, one can have TailsA ∼=
TailsA′ with A′ commutative, but A not commutative; in other words, a commutative
scheme can have a non-commutative homogeneous coordinate ring. For example, k[x; y]
with the relation yx = qxy, where 0 �= q ∈ k, is a homogeneous coordinate ring of P1.
Second, it may happen that K0(Y ) is isomorphic as a Z[s; s−1]-module to a quotient
of Z[s; s−1], so it inherits a ring structure compatible with the module structure. This
second caveat applies when Y is a quantum Pn below.
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2. Hilbert series and K0(Y )

In this section A is also assumed to have 9nite global homological dimension.
We show that if Y = TailsA, then K0(Y ) may be described in terms of the Hilbert

series of A.

De�nition 2.1. The Hilbert series of M ∈ grmodA is the Laurent power series

HM (t):=
∞∑

i=−∞
(dimk Mi)ti:

Since A is right noetherian, and dim Ai ¡∞ for all i, this makes sense.

Thus HA(−n)(t) = tnHA(t).
Since A is connected, 9nitely generated graded projective A-modules are free. Thus,

each M ∈ grmodA has a minimal projective resolution in which each term is a 9nite
direct sum of shifts of A.

De�nition 2.2. If the minimal projective resolution of M ∈ grmodA is of the form

· · · →
rd⊕

j=1

A(−‘dj) → · · · →
r0⊕

j=1

A(−‘0j) → M → 0; (2.1)

the characteristic polynomial of M is

qM (t):=
∞∑
i=0

(−1)i
ri∑

j=0

t‘ij : (2.2)

By the hypotheses on A, the resolution in (2.1) is 9nite, so qM (t) ∈ Z[t; t−1], and

qM (t) = HM (t):HA(t)−1:

Furthermore, if dimk A = ∞, then HA(t) has a pole at t = 1, so 1 − t divides qk(t).

Theorem 2.3. Let A be a connected graded noetherian k-algebra of 9nite global di-
mension. Set Y = TailsA and let q=HA(T )−1 denote the inverse of the Hilbert series
for A. Then

K0(Y ) ∼= Z[T; T−1]=(q) ∼= Z[T ]=(q)

and for each M ∈ grmodA; the isomorphism sends [�M ] to the characteristic poly-
nomial qM (T ). In particular; [OY (n)] is sent to T−n.

Proof. The localization sequence for K-theory gives an exact sequence

K0(fdimA) �→K0(grmodA) → K0(modY ) → 0: (2.3)

Recall that Z[s; s−1] acts naturally on K0(grmodA) by s:[M ] = [M (−1)]. Thus (2.3) is
a sequence of Z[s; s−1]-modules.
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Since A is right noetherian of 9nite global dimension, every M ∈ grmodA has a
9nite resolution with each term a 9nite direct sum of shifts of A. Therefore,

K0(grmodA) ∼= Z[T; T−1]

with [A(n)] ↔ T−n. This is a Z[s; s−1]-module isomorphism if s acts on the right-hand
side as multiplication by T .

If M ∈ grmodA has a minimal resolution of the form (2.1), then under the isomor-
phism,

[M ] ↔
∞∑
i=0

(−1)i
ri∑

j=0

T‘ij = qM (T ):

Each M ∈ fdimA has a 9nite 9ltration by graded submodules such that the slices are
annihilated by m = A≥1. Therefore, by D$evissage,

K0(fdimA) ∼= K0(grmodA=m) = K0(grmod k) ∼= Z[T; T−1]:

Under the last isomorphism, [k] ↔ 1. Again, these are Z[s; s−1]-module isomorphisms
if s acts as multiplication by T . Hence the image of � is generated by [k] as a
Z[s; s−1]-module. Therefore,

K0(modY ) ∼= K0(grmodA)=Im �
∼= Z[T; T−1]=([k])

= Z[T; T−1]=(qk(T )):

Since qk(0)=1, T is a unit in Z[T ]=(qk(T )), so there is a ring isomorphism Z[T ]=(q) ∼=
Z[T; T−1]=(q).

If A = k[x0; : : : ; xn] is the commutative polynomial ring with its standard grading
then HA(T ) = (1 − T )−n−1. Since TailsA ∼= QcohPn, the theorem gives K0(Pn) ∼=
Z[T ]=(1 − T )n+1. The same result holds for the quantum Pn’s that are de9ned in
De9nition 8.1.

3. The rank function K0(Y ) → Z

In this section A and Y are as in Section 1, with the further requirement that A is
a domain. By Goldie’s Theorem, A has a division ring of fractions.

De�nition 3.1. De9ne

FractGr A:={ab−1 | a; b ∈ A are homogeneous; and b is regular}:
The function 9eld, k(Y ), of Y is the degree zero component of FractGr A. It is a division
algebra. The generic point of Y is �:=Mod k(Y ).

By the graded version of Goldie’s Theorem [11, Chapter C, Corollary I:1:7 and
Chapter A, Theorem I:5:8], FractGr A ∼= k(Y )[z; z−1; !], a skew Laurent extension. Since
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A is a domain, and A1 �= 0, z has degree one. Therefore FractGr A is strongly graded
[11, Section I:3].

Since A1 �= 0 and A is a domain, Y �= ∅.

Proposition 3.2. (1) There is a homomorphism K0(Y ) → K0(�) de9ned by

[�M ] �→ [(M
⊗

AFractGr A)0]:

(2) There is a homomorphism

rank : K0(Y ) → Z

which sends each [OY (n)] to 1.
(3) The kernel of the rank function equals (s − 1):K0(Y ).

Proof. (1) The functor −⊗AFractGr A kills all 9nite-dimensional modules. Composing
it with the exact functor which takes the degree zero part, one obtains an exact functor
" : GrModA → Mod k(Y ). Since " kills 9nite-dimensional modules it induces an
exact functor ModY → Mod �, and hence a homomorphism as claimed.

We also note that "(A(n))=(A(n)⊗AFractGr A)0=(FractGr A)n, and this is isomorphic
to (FractGr A)0 = k(Y ) because FractGr A is strongly graded.

(2) Since k(Y ) is a division algebra, dimk(Y ) : mod � → Z induces an isomorphism
K0(�) ∼→Z sending k(Y ) to 1. Composing this with the homomorphism K0(Y ) → K0(�)
obtained in (1), one gets the rank function sending each [OY (n)] to 1. Explicitly, if
M = �(M) ∈ modY , then

rank[M] = dimk(Y )(M
⊗

A(FractGr A))0: (3.1)

(3) If s is any auto-equivalence of modY , then s induces an auto-equivalence on
Mod �. Because k(Y ) is a division algebra, it must be sent to itself by this auto-
equivalence. Therefore [M] − [sM] ∈ ker(rank) for all M ∈ modY . Hence (1 − s)
K0(Y ) is in the kernel of rank. Since the rank function is surjective, and since
K0(Y )=(1 − s)K0(Y ) ∼= Z; ker(rank) = (1 − s)K0(Y ).

4. The support �ltration on K0(Y )

We continue to assume that A and Y are as in Section 1.
We want a substitute for the usual 9ltration on K0(Y ) given by codimension of

support.

De�nition 4.1. The cohomological dimension of Y is

cd Y = max{d |Hd(Y;−) �= 0}:
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De�nition 4.2. If 0 �= M ∈ modY , we de9ne the dimension of the support of M to
be

ds(M):=max{ j |Hj(Y;M(i)) �= 0 for some i}:
We de9ne ds(0) = −1. (We do not de9ne support.)

Lemma 4.3. Suppose that d = cd Y is 9nite. If 0 ≤ p ≤ d + 1; then

FpK0(Y ):={[M] − [N] | ds(M) ≤ d− p and ds(N) ≤ d− p}
is a Z[s; s−1]-submodule of K0(Y ).

Proof. Since the shift functor is an auto-equivalence of modY; FpK0(Y ) is stable
under the action of s and s−1, so we only need show it is a group. Certainly, 0 ∈
FpK0(Y ). If [M]−[N] ∈ FpK0(Y ), so is its negative. If [M1]−[N1] and [M2]−[N2]
are in FpK0(Y ), so is their sum [M1 ⊕M2] − [N1 ⊕N2] because ds(L1 ⊕L2) =
max{ds(L1); ds(L2)}.

Therefore there is a 9ltration

K0(Y ) = F0K0(Y )⊃F1K0(Y )⊃ · · ·⊃Fd+1K0(Y ) = 0

of K0(Y ), where d = cd Y , by Z[s; s−1]-submodules. Although we have not de9ned
the word “support”, we should think of FpK0(Y ) as consisting of the modules having
support of codimension ≥ p.

5. The Euler form on K0(Y )

In this section A and Y are as in Section 1.

De�nition 5.1 (Artin and Zhang [7]). Let A be a noetherian, connected k-algebra. We
say that A satis9es condition % if dimk Ext jA(k;M)¡∞ for all j, and all M ∈ grmodA.

The condition % is rather mild. Every graded quotient of the polynomial ring satis9es
it, and so do most non-commutative algebras of importance. The condition is essential
to get a theory for non-commutative schemes which resembles the commutative theory.
See [7] for more information.

Proposition 5.2 (Artin and Zhang [7, Proposition 3:5(2)]). Let A be a right noeth-
erian; connected; k-algebra satisfying the condition %. Set Y = TailsA. Then
ExtqY (M;N) is 9nite-dimensional for all q and all M;N ∈ modY .

De�nition 5.3. Suppose for every M ∈ modY that ExtqY (M;−) = 0 for q�0. The
Euler form is the bilinear form (−;−) : K0(Y ) × K0(Y ) → Z, de9ned by

(M;N) =
∞∑
i=0

(−1)idimk ExtiY (M;N): (5.1)
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The long exact sequence for Ext shows that this depends only on the classes of M

and N in K0(Y ).

The Euler form is invariant under the automorphism of K0(Y ) induced by the shift
functor M �→ M(1); that is, (M(1);N(1)) = (M;N). Hence, if K0(Y ) is given the
obvious ring structure via Theorem 2.3, (fT i; gT i) = (f; g) for all f; g ∈ Z[T; T−1]
and i ∈ Z. It follows that

(f(T ); g(T )) = (1; f(T−1)g(T )): (5.2)

The Euler form has proved useful in the representation theory of 9nite-dimensional
algebras (see [8, Section VIII.3]).

For curves C and D on a smooth commutative projective surface over an alge-
braically closed 9eld, it is easy to show that the intersection number C · D equals
−(OC;OD).

6. Auslander–Gorenstein algebras

Any reasonable de9nition of dimension of support should have the property that
ds(M) = max{ds(L); ds(N)} whenever 0 → L → M → N → 0 is exact in modY .
This is necessary for the support 9ltration to behave as in the commutative case. In
order for this property to hold we need additional hypotheses on A. Fortunately, these
hypotheses are satis9ed for the quantum Pn’s discussed in Section 8 below.

De�nition 6.1. A connected graded k-algebra A is Auslander–Gorenstein if
• it is right and left noetherian, and
• it has 9nite self-injective dimension on both sides, say d, and
• it satis9es the Gorenstein condition, namely

ExtiA(k; A) ∼=
{

k(e) if i = d; and
0 otherwise;

for some integer e, and
• for every noetherian right A-module M , ExtiA(N; A) = 0 for all i¡ j whenever N is

a left submodule of ExtjA(M;A).
If A is Auslander–Gorenstein, we de9ne the grade of a non-zero module M in grmodA
to be

j(M):=min{j |Ext jA(M;A) �= 0}:

It is well known that if 0 �= M ∈ grmodA, then j(M) = injdim A if and only if
dimk M ¡∞.

If A is Auslander–Gorenstein there are three consequences for TailsA which are
relevant to us. The 9rst is that grade behaves well on short exact sequences: if 0 →
L → M → N → 0 is exact in grmodA, then j(M) = min{j(L); j(N )}. The second, as
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expressed by the next result, due to Yekutieli and Zhang, is that TailsA satis9es Serre
duality (6.1). The third is that it implies the condition %.

Theorem 6.2 (Yekutieli and Zhang [16]). Let A be Auslander–Gorenstein of injective
dimension d + 1. De9ne !◦:=OY (−e); where e ∈ Z is determined by Extd+1(k; A) ∼=
k(e). Then

Hq(Y;M)∗ ∼= Extd−q
Y (M; !

◦
) (6.1)

for every M ∈ modY .

We call !◦ a dualizing module for Y .

Theorem 6.3. Let A be a connected; Auslander–Gorenstein ring of injective dimension
d + 1. Let Y = TailsA. Then
1. if M ∈ grmodA; and �M �= 0; then j(M) = d− ds(�M);
2. if 0 → L → M → N → 0 is exact in modY; then

ds(M) = max{ds(L); ds(N)}; (6.2)

3. {M ∈ modY | ds(M) ≤ p} is closed under submodules; quotients; and extensions.

Proof. (1) Suppose M is not 9nite dimensional. Then j(M) = j(M≥n) for all n. Write
M = �M . We have

ExtqY (M(t); !
◦
) ∼= lim→ ExtqA(M (t)≥n; A(−e))

and because % holds this directed system is eventually constant [16]. So for large n,

j(M) = j(M≥n) = min{q |ExtqA(M≥n; A) �= 0}
= min{q |ExtqA(M (t)≥n; A) �= 0 for some t}
= min{q |ExtqY (M(t); !

◦
) �= 0 for some t}

= min{q |Hd−q(Y;M(t)) �= 0 for some t}
= d− ds(M):

(2) Because grade behaves well on exact sequences, if 0 → L → M → N → 0 is
exact in modY , then ds(M) = max{ds(L); ds(N)}. Part (3) now follows.

Levasseur [10, Theorem 4:8] has shown that if A is Auslander–Gorenstein and has
9nite global dimension then A is a domain. Thus the hypotheses in the next lemma
are satis9ed by the quantum Pn’s in Section 8.

Lemma 6.4. Let A be a connected; Auslander–Gorenstein domain of injective dimen-
sion d + 1. Let Y = TailsA. Let M ∈ modY . The following are equivalent:
1. rank M = 0;
2. ds(M) ≤ d− 1;
3. [M] ∈ F1K0(Y ).
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Proof. Write M= �M with M ∈ grmodA. Let !◦ =OY (−e) be the dualizing module
for Y .

(1) ⇒ (2): We will show that Hd(Y;M(t))=0 for all t ∈ Z; actually, we will show
that HomY (M(t); !◦) = 0, and then invoke Serre duality for Y . Since rank M = 0,
M⊗A(FractGr A) = 0. Hence each homogeneous m ∈ M is annihilated by some regular
homogenous element a ∈ A. However,

HomY (M(t); !
◦
) = lim→ HomA(M (t)≥n; A(−e))

and each term in this direct limit is zero by the previous sentence. Hence, by Serre
duality, Hd(Y;M(t)) = 0.

(2) ⇒ (3): By de9nition of F1K0(Y ).
(3) ⇒ (1): Write [M]=[M′]−[N′] with ds(M′) ≤ d−1 and ds(N′) ≤ d−1. Write

M′ =�M ′ with M ′ ∈ grmodA. By Theorem 6.3, j(M ′)¿ 0. But it is well known that
this is equivalent to M ′⊗AFractGrA=0. Thus rank M′=0. Similarly, rank N′=0. Since
[M ⊕N′] = [M′], and rank is an additive function on exact sequences, rank M = 0.

Proposition 6.5. Let A be a connected; Auslander–Gorenstein domain of injective
dimension d + 1. Let Y = TailsA. Then F1K0(Y ) = ker(rank).

Proof. One inclusion is immediate: an element of F1K0(Y ) must be of the form [M]−
[N] with ds(M) ≤ d− 1 and ds(N) ≤ d− 1; by Lemma 6.4, rank M = rank N= 0,
whence rank([M] − [N]) = 0.

To prove the reverse inclusion, we will show that if [M] − [N] ∈ ker(rank), then
[M] − [N] ∈ F1K0(Y ). (We are using the fact that every element in K0(Y ) is of the
form [M] − [N] for some M;N ∈ modY .) Since rank M = rank N, M�

∼= N�, so
there is a morphism M → M� → N�. Also N �→ N�. If L denotes the sum of the
images of M and N in N�, then L ∈ modY . Since the morphisms M → L and
N → L localize to isomorphisms, the kernel and cokernel of each morphism has rank
zero. By Lemma 6.4, the classes of these kernels and cokernels belong to F1K0(Y ),
hence so do their diKerences. Thus [L]− [M] and [L]− [N] are in F1K0(Y ); taking
their diKerence, we get [M] − [N] ∈ F1K0(Y ), as required.

7. Regular algebras

De�nition 7.1. Let A be a connected graded k-algebra. We call A an n-dimensional
regular algebra if
• A is right and left noetherian;
• gldim A = n;
• A satis9es the Gorenstein condition, meaning there is an integer e such that

ExtdA(k; A) ∼=
{

k(e) if d = n;
0 otherwise:
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Whenever A is a regular algebra the letter e will refer to the number appearing in the
last part of this de9nition. Thus, the left-most non-zero term in the minimal projective
resolution for Ak is A(−e). Therefore e = deg HA(T )−1. For a polynomial ring on n
indeterminates with the standard grading, e = n.

Theorem 7.2. Let A be an (n + 1)-dimensional regular algebra; and set Y = TailsA.
Let q(t) = HA(t)−1. Then
1. cd Y = n;
2. Y satis9es Serre duality; with dualizing module !◦ = A(−e) [16];
3. K0(Y ) has basis A;A(−1); : : : ;A(−e).

4. (A;A(d)) =




dimAd if 0 ≤ d;
(−1)n dim A−d−e if d ≤ −e;
0 otherwise:

Proof. Conditions (1) and (2) were discussed in the previous section.
(3) This is because deg q = e by the remarks before the theorem.
(4) By [7, Theorem 8:1],

Hq(Y;A(d)) ∼=



Ad if q = 0 and d ≥ 0;
(A−d−e)∗ if q = n and d ≤ −e;
0 otherwise:

(7.1)

The result follows.

We now determine the radical of the restriction of the Euler form to F1K0(Y ).

Lemma 7.3 (Stanley [13, Theorem 1:1, p. 1]). Let p; q ∈ k[t] with q(0) = 1. Suppose
that

p(t)
q(t)

=
∞∑
i=0

aiti

in k[[t]]. Let /0; /1; : : : ; /d ∈ k. Then

d∑
i=0

/iai+n = 0

for all n if and only if /0 + /1t + · · · + /dtd is in the ideal (q).

Proposition 7.4. Let A be an (n+1)-dimensional regular algebra; and set Y =TailsA.
Let q(t) = HA(t)−1. Then the left and right radicals of the restriction of (−;−) to
F1K0(Y ) are equal. The radical consists of all scalar multiples of (1 − T )−1q(T ). In
particular; the radical is one dimensional.

Proof. Recall that K0(Y ) ∼= Z[T; T−1]=(q), and that F1K0(Y ) is the image of the ideal
(1 − T ). Write ai = dim Ai. The Euler form on K0(Y ) may be lifted to a form on
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Z[T; T−1] de9ned by

(T i; T j):=




aj−i if j − i ≥ 0;
(−1)nai−j−e if i − j − e ≥ 0;
0 otherwise:

If J is an ideal in Z[T; T−1] we write

J⊥:={g ∈ Z[T; T−1] | (f; g) = 0 for all f ∈ J}
and

⊥J :={g ∈ Z[T; T−1] | (g; f) = 0 for all f ∈ J}:
We already know that (q) is in both the right and left radicals of (−;−).

By de9nition, the right radical of (−;−) restricted to F1K0(Y ) is (1−T )⊥. Modulo
(q), (1− T ) is spanned by elements of the form (1− T )−1T−j with j ≥ 0. Therefore,
modulo (q), (1 − T )⊥ consists of all elements g =

∑
i 1iT i ∈ Z[T ] such that, for all

j ≥ 0,

0 = ((1 − T−1)T−j; g) = (1; (T j − T j+1)g)

=
∑

i

(1iaj+i − 1iaj+i+1) =
∑

i

(1i − 1i−1)ai+j:

By Lemma 7.3, this can only happen if∑
i

(1i − 1i−1)T i;

which equals (1 − T )g, is in the ideal (q).
A similar argument gives the left radical. Modulo (q), it consists of those g =∑
i 2iT−i such that, for all j,

0 = (g; (1 − T )T j) =
∑

i

(2iai+j − 2iai+j+1) =
∑

i

(2i − 2i−1)ai+j:

This can only happen if the element∑
i

(1i − 1i−1)T i;

which equals (1 − T )g(T−1), is in the ideal (q). Because A satis9es the Gorenstein
condition its Hilbert series satis9es the functional equation HA(t−1) = (−1)nteHA(t).
Therefore q(T ) and q(T−1) generate the same ideal of Z[T; T−1]. It follows that, if
r(T ) = (1 − T )−1q(T ), then r(T ) and r(T−1) generate the same ideal. We have just
shown that g is in the left radical if and only if g(T−1) is in the ideal generated by
r(T ); this is equivalent to the condition that g(T ) is in the ideal generated by r(T−1).
Since this is the same as the ideal generated by r(T ), we are done.

8. Quantum Pn’s

In this section A denotes an (n + 1)-dimensional quantum polynomial ring, and Y
denotes a quantum Pn.
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De�nition 8.1. An (n+1)-dimensional regular k-algebra A is a quantum polynomial ring
if it is Auslander–Gorenstein, and a domain, and is generated by A1 as a k-algebra,
and has Hilbert series HA(t) = (1 − t)−n−1.

A quasi-scheme Y is called a quantum Pn if ModY is equivalent to TailsA for some
(n + 1)-dimensional quantum polynomial ring A.

The commutative projective space Pn, more precisely, Qcoh OPn , is a quantum Pn.
In order to avoid confusion we will write O for OPn , and reserve the letter A for the
image of A in ModY = TailsA.

Lemma 8.2. Suppose that Y is a quantum Pn. Then
1. K0(Y ) ∼= Z[T ]=(T − 1)n+1 with basis A;A(−1); : : : ;A(−n).
2. There is a Z[T; T−1]-module isomorphism K0(Y ) → K0(Pn) sending A(d) to

O(d) for all d.
3. This isomorphism is compatible with the Euler forms on K0(Y ) and K0(Pn).
4. The isomorphism in (2) commutes with the rank functions.

Proof. (1) This follows from Theorem 2.3.
(2) Since K0(Pn) has a basis O;O(−1); : : : ;O(−n), there is an obvious isomorphism

sending A(d) to O(d) for −n ≤ d ≤ 0.
(3) By (7.1), the cohomology groups on Y behave as do those on Pn. Since A has

the same Hilbert series as the polynomial ring, dimk Hq(Y;A(d)) = dimk Hq(Pn;O(d))
for all q and d. Therefore (A(i);A(j)) = (O(i);O(j)) for all i and j.

(4) This is clear because rank A(i) = rank O(i) = 1 for all i.

It follows from Propositions 3.2 and 6.5 that for a quantum Pn, F1K0(Y ) = (1−T ).
We do not know if FdK0(Y ) = (1 − T )d for all d.

De�nition 8.3. Let Y be a quantum Pn. The element H :=[OY ] − [OY (−1)] in K0(Y )
will be called a virtual hyperplane. We call the elements

Hd:=
d∑

i=0

(−1)i
(

d
i

)
[OY (−i)]

virtual linear subspaces of Y of codimension d.

The elements 1; H; : : : ; Hn are a basis for K0(Y ). It is not known whether every Hd

arises as the class of a Y -module. This is an important question.

De�nition 8.4. If M and N are noetherian Y -modules, we de9ne

M ·N = (−1)dim N(M;N);

where dimM, the dimension of M, is the largest integer d such that (M; Hd) �= 0.
We extend this pairing to a bilinear form on K0(Y ) in the obvious way. Thus dimM

is the largest integer d for which M · Hd �= 0.
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The degree of M is

degM:=M · H dim M:

For Pn these agree with the usual de9nitions.
The next lemma shows that Hp has dimension n−p and degree one, thus justifying

our thinking of Hp as a linear subspace of codimension p. This is compatible with
the de9nitions of linear modules in [5].

Lemma 8.5. Let Y be a quantum Pn. Then

((1 − T )p; (1 − T )q) =
{

0 if p + q¿n;
(−1)p if p + q = n:

Proof. Making use of (5.2) we have

((1 − T )p; (1 − T )q) = (1; (−1)pT−p(1 − T )p+q): (8.1)

If p + q¿n, then (1− T )p+q = 0 in K0(Y ), so ((1− T )p; (1− T )q) = 0. Now suppose
that p + q = n. By (8.1), it suQces to show that (Tp; (1 − T )n) = 1 for all p ≤ n.
By Proposition 7.4, (1 − T )n is in the radical of the restriction of the form (−;−) to
F1K0(Y ), which is the ideal generated by 1 − T . Therefore,

(Tp; (1 − T )n) = (Tn; (1 − T )n)

=
n∑

i=0

(−1)i
(n

i

)
(Tn; T i)

=
n∑

i=0

(−1)i
(n

i

)
(1; T i−n):

By Theorem 7.2, (1; T i−n) is non-zero only when i=n, and then (1; 1)=1. This proves
the lemma.

It follows from the lemma that dim Hp = n − p, and that deg Hp = 1. If [M] is
expressed as a linear combination of the basis elements Hi, then

[M] = (degM)Hn−dim M +
∑

i¿n−dim M

ciH i (8.2)

for some integers ci.

Theorem 8.6 (B$ezout’s Theorem). Let Y be a quantum Pn. If M and N are noethe-
rian Y-modules; then

M ·N =
{

0 if dimM + dimN¡n;
degM:degN if dimM + dimN = n:

Proof. If we write M and N in the form (8.2), then the result follows immediately
from Lemma 8.5.
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9. Surfaces and quantum P2s

Non-commutative analogues of P2 are well understood, and provide a testing ground
for the problem of developing an intersection theory for curves on non-commutative
surfaces.

Naively an intersection theory on a non-commutative surface Y should consist of a
set that represents “curves modulo points”, together with a Z-valued pairing on that
set. The subquotient F1K0(Y )=F2K0(Y ) is a natural candidate for this set if we think
of F2K0(Y ) as classifying the “points” in Y and F1K0(Y ) as classifying the “curves”
modulo some appropriate relations.

The Picard group of a smooth projective surface Y over an algebraically closed 9eld
is isomorphic to F1K0(Y )=F2K0(Y ), and the intersection pairing is induced by the neg-
ative of the Euler form. The Euler form on K0(Y ) passes to this subquotient because
F2K0(Y ) is contained in the radical of the restriction of the Euler form to F1K0(Y ).
However, there are several non-commutative surfaces for which F2K0(Y ) is not in the
radical of the restriction of the Euler form to F1K0(Y ). Example 9.2 below gives one
such. Another is provided by a smooth quadric Q in the quantum P3 that has ho-
mogeneous coordinate ring the homogenization of the enveloping algebra U (sl2). The
surface Q has a homogeneous coordinate ring that is the homogenization of U (sl2)=I
where I may be any minimal primitive ideal that annihilates a 9nite-dimensional simple
module.

We write Erad for the radical of the restriction of the Euler form (−;−) to F1K0(Y ).

De�nition 9.1. The Picard group of a non-commutative projective surface Y is

PicY :=F1K0(Y )=Erad ∩ F2K0(Y ):

The intersection pairing

· : PicY × PicY → Z;

is de9ned by

C · D = −(C;D): (9.1)

Example 9.2. The Euler form is not symmetric on the Picard group of the non-
commutative surfaces in [14]. These surfaces have the form Y = TailsA where A is a
three-dimensional regular algebra with Hilbert series HA(t)=(1− t)−2(1− tn)−1. Every
integer n ≥ 1 can occur, but here we are interested in those with n ≥ 3. The minimal
resolution of k looks like

0 → A(−n− 2) → A(−n− 1) ⊕ A(−n− 1) ⊕ A(−2)

→ A(−1) ⊕ A(−1) ⊕ A(−n) → A → k → 0;

so e = n + 2. By Theorem 2.3 and Propositions 3.2 and 7.4,

K0(Y ) ∼= Z[T ]=(1 − T )2(1 − Tn)
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and

Pic(Y ) ∼= (1 − T )=(1 − T )(1 − Tn) ∼= Zn:

Stephenson has shown that there are two diKerent kinds of points on Y . These arise
from two diKerent kinds of graded A-modules that are critical of Gelfand–Kirillov
dimension one; the standard ones have Hilbert series (1− t)−1, and others have Hilbert
series ti(1− tn)−1. By the proof of Theorem 2.3, the class in K0(Y ) of a module �(M)
is qM (T ) = HM (T )HA(T )−1. Therefore the standard points have class (1− T )(1− Tn),
which is in the radical, and the others have class T i(1 − T )2, which is not in the
radical. Therefore the standard points become zero in the Picard group, but the others
do not.

Since HA(t−1)=(1− t−1)−2(1− t−n)−1 =−tn+2HA(t); (1; T i)=0 if 0¡i¡n+2. To
see that the form is not symmetric, suppose that n ≥ 3. Then HA(t) = 1 + 2t + 3t2 + · · ·
. Hence

(1 − T; (1 − T )2) = 1 but ((1 − T )2; 1 − T ) = 0:

Notice that ((1 − T )2; (1 − T )2) = 1. The non-standard points behave in Pic(Y ) as if
they are curves.

The situation is better for a quantum P2.

De�nition 9.3. Let Y = TailsA be a quantum P2. A point on Y is an isomorphism
class of a simple module in TailsA. An irreducible curve on Y is an isomorphism class
in TailsA of a module M that is critical of Krull dimension one.

Krull dimension was used in the last de9nition, but the support 9ltration on K0(Y )
was de9ned in terms of a homological dimension (De9nition 4.2). By the results in
[5] these are compatible. Their result is this.

Let Y =TailsA be a quantum P2, where A is a three-dimensional quantum polynomial
ring. If 0 �= M ∈ grmodA, then j(M) + GKdim M = 3, and Kdim M = GKdim M .
Furthermore Kdim �M =Kdim M−1. Therefore if M ∈ tailsA, then ds(M)=KdimM.
Hence F2K0(Y ) is generated by points and F1K0(Y ) is generated by curves and points.
It would be good to know if there is a similar result for all quantum Pn’s.

Thus every simple module over a quantum P2 has dimension zero. By [5] the points
of degree one in a quantum P2 lie on a commutative curve. By [6], some quantum
P2’s have points of higher degree, and we call these fat points.

Proposition 9.4. Let Y be a quantum P2. Then
1. F2K0(Y ) = (1 − T )2;
2. the degree function de9nes an isomorphism PicY ∼= Z sending 1 − T �→ 1;
3. if C;D ∈ PicY have degrees m and n; then C · D = mn.

Proof. (1) By the previous discussion, a typical element of F2K0(Y ) is of the form
[M] − [N] with KdimM = KdimN = 0. Since M and N have 9nite length, both
[M] and [N] are sums of classes of points.
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Let p be a point of degree d. By [5,6], p = �(M) where M is a graded A-module
having a presentation of the form

0 → L′(−d) → L → M → 0;

where L and L′ are line modules for A. Since HL(t) = (1 − t)−2, it follows that in
K0(Y ); [p] = (1 − T ) − Td(1 − T ) = d(1 − T )2. It follows from this that F2K0(Y ) is
contained in (1 − T )2, and it follows from the existence of points of degree one that
(1 − T )2 is in F2K0(Y ). Hence F2K0(Y ) = (1 − T )2.

(2) By Propositions 3.2 and 6.5, F1K0(Y )=(1−T ). By Proposition 7.4, the radical of
(−;−) on F1K0(Y ) is (1−T )2. But this equals F2K0(Y ), so PicY ∼= (1−T )=(1−T )2.
It is clear that the degree function sends (1 − T ) onto Z with kernel (1 − T )2.

(3) This follows from Bezout’s Theorem.

The reason that Ext-groups give the intersection numbers of curves on surfaces is as
follows. Let C and D be curves on a smooth commutative irreducible projective surface
Y over an algebraically closed 9eld k, and suppose they have no common component.
Then OC ⊗ OD is the structure sheaf of the scheme theoretic intersection C ∩D. Thus
the total intersection multiplicity of C and D is dimkH 0(Y;OC ⊗OD). However, OC ⊗
OD

∼= OC ⊗OD(C) ∼= Ext1(OC;OD). It therefore follows from the Grothendieck spectral
sequence Hp(Y;ExtqY (M;N)) ⇒ Extp+q

Y (M;N) that H 0(Y;OC⊗OD) ∼= Ext1Y (OC;OD).

De�nition 9.5. We say that two curves M and N have no common component if
HomY (M;N) = 0.

Theorem 9.6. Let Y be a quantum P2. Suppose that m and n are positive integers.
Let

0 → OY (−m) → OY → M → 0 (9.2)

and

0 → OY (−n) → OY → N → 0 (9.3)

be exact sequences de9ning “curves” M and N. If M and N have no common
component; then

dimk Ext1Y (M;N) = mn:

Proof. Apply HomY (−;OY ) to (9.2). By (7.1), Ext2Y (OY ;OY ) = 0, so by the long
exact sequence for Ext, Ext2Y (M;OY ) = 0. Applying HomY (M;−) to (9.3), the long
exact sequence for Ext ends with · · · → Ext2Y (M;OY ) → Ext2Y (M;N) → 0, so
Ext2Y (M;N) = 0. By hypothesis, HomY (M;N) = 0, so

dimk Ext1Y (M;N) = −([M]; [N]):

By Theorem 8.6, this equals mn.

It is still not clear what is the right notion of a curve in a non-commutative scheme.
Although Y -modules having a presentation of the form (9.2) are reasonable analogues
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of structure sheaves of curves, there are other modules that might also warrant such
an interpretation [1–3].

10. Non-commutative versions of P1 × P1

Among the three-dimensional regular algebras classi9ed in [4] are several fam-
ilies of connected graded k-algebras A for which TailsA should be considered a
non-commutative version of P1 × P1. In this section we consider K0(Y ) for these
quasi-schemes.

The algebras just mentioned have the following properties:
• A is generated by A1 as a k-algebra;
• A is right and left noetherian;
• A is a domain;
• gldim A = 3;

• ExtdA(k; A) ∼=
{

k(4) if d = 3;
0 otherwise:

• the minimal resolution of the trivial module is 0 → A(−4) → A(−3)2 → A(−1)2 →
A → k → 0;

• HA(t)=(1−t)−2(1−t2)−1, which is the same as the Hilbert series of a commutative
polynomial ring having two generators in degree one and one generator in degree
two;

• the Hilbert series of the 2-Veronese subalgebra A(2) = k ⊕A2 ⊕A4 ⊕· · · is the same
as the Hilbert series of the commutative ring k[x0; x1; x2; x3]=(x0x1 − x2x3).

The categories TailsA and TailsA(2) are equivalent [7], so the last property justi9es our
thinking of TailsA as a quadric surface in a quantum P3. Since A has global dimension
three, Ext3 vanishes on TailsA, so we should think of TailsA as analogous to a smooth
quadric. This is why we think of TailsA as a non-commutative analogue of P1 × P1.

The simplest example of such an A is the generic CliKord algebra A = k[x; y] with
de9ning relations

x2y = yx2; xy2 = y2x:

The second Veronese of this is the commutative ring k[x2; xy; yx; y2] with single de9n-
ing relation

x2:y2 = xy:yx:

This is the homogeneous coordinate ring of P1 × P1 embedded in P3 as a quadric
hypersurface. Thus TailsA ∼= TailsA(2) ∼= Qcoh(P1 × P1). Thus P1 × P1 can be given
a non-commutative homogeneous coordinate ring, and this non-commutative homoge-
neous coordinate ring is better than any of the commutative homogeneous coordinate
rings because it has 9nite global dimension.

Because A has 9nite global dimension, it follows from Theorem 2.3 that

K0(Y ) ∼= Z[T; T−1]=(T 4 − 2T 3 + 2T − 1):
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The isomorphism is as Z[T; T−1]-modules. When A is the generic CliKord algebra we
get

K0(P1 × P1) ∼= Z[T; T−1]=(T 4 − 2T 3 + 2T − 1):

This is not the way one usually presents K0(P1 × P1); rather, one has

K0(P1 × P1) ∼= K0(P1) ⊗ K0(P1) ∼= Z[x; y]=((x − 1)2; (y − 1)2):

Theorem 2.3 does not apply to the commutative ring k[x0; x1; x2; x3]=(x0x1 − x2x3) be-
cause it has in9nite global dimension. Thus, by giving P1 × P1 a non-commutative
coordinate ring, we can compute its K0 from the Hilbert series as we have just
done.

We continue to write Y = TailsA for one of these quantum P1 ×P1’s. It is easy to
show that F1K0(Y ) = (1 − T ). Point modules over A have a projective resolution of
the form

0 → A(−3) → A(−1) ⊕ A(−2) → A → M → 0;

so F2K0(Y ) contains T 3 −T 2 −T + 1 = (1−T )2(1 +T ). A little additional work gives
equality, so that

PicY = F1K0(Y )=F2K0(Y ) ∼= (1 − T )=(1 − T )2(1 + T ) ∼= Z× Z:
Because A is Auslander–Gorenstein, Y satis9es Serre duality, with !◦ ∼= OY (−4). The
cohomology groups are

Hq(Y;OY (d)) ∼=




Ad if q = 0;

0 if q = 1;

(A−d−4)∗ if q = 2:

(10.1)

From this, we can compute the intersection pairing on PicY .
The next result may be proved by the methods used in Section 9.

Proposition 10.1. Let Y be a quantum P1 × P1. Then PicY ∼= Z × Z. With respect
to the ordered basis {1 − T; T − T 2} for PicY; the intersection pairing is given by

(a; b) · (c; d) = ad + bc:

11. Comparison with Jorgensen’s intersection theory

In [9], Jorgensen develops an intersection theory for non-commutative quasi-schemes.
In particular, his theory applies to surfaces. He begins with a quasi-scheme Y , and de-
9nes an ascending 9ltration on K0(Y ) using Krull dimension. Our descending 9ltration
using co-dimension of support, which is de9ned homologically, will often coincide
with his 9ltration. For all known non-commutative projective surfaces the two 9ltra-
tions agree. The Euler form plays a signi9cant role in [9], and is used there to de9ne
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an intersection number. Whereas we consider intersecting two arbitrary curves on the
surface to obtain an intersection number, Jorgensen requires that one of the curves be
an e@ective divisor. Not every curve on a non-commutative surface is an eKective divi-
sor. The reader can 9nd the de9nition of an eKective divisor in [9], but without giving
that de9nition we can illustrate their special nature by remarking that in the aQne case
Y =ModR, eKective divisors correspond to two-sided ideals I in R which are invertible
as R–R-bimodule, whereas curves correspond to certain one-sided R-modules. Thus ef-
fective divisors are in some sense two-sided curves. In particular, a non-commutative
surface will often have few eKective divisors, though it will have many curves. Indeed
it is an unexplained surprise that all known examples of non-commutative projective
surfaces have at least one eKective divisor, and that divisor is isomorphic to a com-
mutative curve.

Associated to an eKective divisor D is a Y -module OD which plays the role of the
structure sheaf of the hypersurface corresponding to D. Also associated to D is a map
c(D) :K0(Y ) → K0(Y ). The map c(D) is the “9rst Chern class” of D, and its eKect
on the class [OC] of a curve should be thought of as intersecting the curve with the
hypersurface corresponding to D. Jorgensen de9nes

〈D; [OC]〉:=([OY ]; c(D)([OC])):

It is an easy exercise using the de9nitions of OD and c(D) to see that

〈D; [OC]〉 = −([OD]; [OC]) = C · D:

Thus the intersection form de9ned in [9] agrees with that de9ned in this paper.
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