AUSLANDER-GORENSTEIN RINGS
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ABSTRACT. We study basic properties of Auslander-Gorenstein rings related to duality, localization
and purity of minimal injective resolutions.
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0. Introduction and definitions

An Auslander-Gorenstein ring can be viewed as a noncommutative analogue of a commuta-
tive local Gorenstein ring and as a generalization of a quasi-Frobenius ring. Familiar examples
include Weyl algebras, universal enveloping algebras of finite dimensional Lie algebras, three-
dimensional Artin-Schelter regular algebras and the Sklyanin algebras. Several recent results in
noncommutative ring theory suggest that the Auslander-Gorenstein property is a fundamental
homological property that relates to other properties such as being domain, localizable, etc. This

paper studies several topics about Auslander-Gorenstein rings.

Definition 0.1. Let A be a ring. The grade of an A-module M is
§(M) :=min{ i | Ext’, (M, A) # 0}

or oo if no such ¢ exists. We say that A

e satisfies the Auslander condition if for every noetherian A-module M and for all ¢ > 0,
we have j(N) > i for all submodules N C Ext‘(M, A);

e is Auslander-Gorenstein (AG) if A is two-sided noetherian, satisfies the Auslander con-
dition, and has finite left and right injective dimension;

e is Auslander regular if it is Auslander-Gorenstein, and has finite global dimension;

e is grade-symmetric if j(M4) = j(4 M) for every (A, A)-bimodule M finitely generated on
both sides.
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The injective dimension of a module M is written injdim M. By [Za, Lemma A], injdim A 4
is equal to injdim 4 A if both are finite. If A is commutative, noetherian, and has finite injective
dimension, then A is AG. A ring is quasi-Frobenius (QF) if it is left and right artinian, and
left and right self-injective. It is easy to see that every QF ring is AG.

The plan of the paper is as follows. We start, in section 1, with duality aspects between left
and right modules. Let M —A denote the category of finitely generated right A-modules. If
A is QF, then Hom(—, A) gives a duality between M —A and M —A°P [Fa, 24.4]. We prove
that if A is an AG ring of injective dimension d, then M —A and M —A°? are in (d 4 1)-step
duality [Theorem 1.2]. Using this we recover a result of Roos [Bj2] that the left and right Krull
dimensions of an AG ring are bounded above by its injective dimension [Corollary 1.3].

In sections 2-4, we study different aspects of injective resolutions of the ring. Section 2 contains
the preliminaries, where we also prove that if A is a noetherian ring of finite injective dimension,
then every indecomposable injective module does appear in a minimal injective resolution of A
[Theorem 2.3]. This indicates that, in some sense, a minimal injective resolution of A contains
a lot of information about A-modules. Section 3 gives detailed information about the last term
of a minimal injective resolution. Our objective in section 4 is to study the injective resolutions
with respect to purity, which we now explain.

Let 0 denote a dimension function on A-modules, in the sense of [MR, 6.8.4]. We say 0 is
exact if for all A-modules M, 0(M) = max{d(N),0(M/N)} whenever N is a submodule of
M. The standard example is Krull dimension (Kdim) due to Rentschler-Gabriel. For an algebra
over a field, we also have the notion of Gelfand-Kirillov dimension (GKdim). Krull dimension is

always, and GK-dimension is often, exact.

Definition 0.2. Given a dimension function ¢, exact or not, we say that a module M is

e s-pure with respect to 9 if (N) = s for all non-zero noetherian submodules N C M,

e essentially s-pure with respect to 0 if it contains an essential submodule which is s-pure
with respect to 0;

e s-critical with respect to 0 if it is s-pure and d(M/N) < s for all non-zero submodules
NCM.

The word ‘pure’ is a substitute for the word ‘homogeneous’ used in [MR], and we prefer the
former because this has been frequently used in recent literature. If 0 is exact, then a non-zero

submodule of an s-critical module is s-critical, and critical modules are uniform.

Definition 0.3. Suppose that injdim A4 = d < 0o, and let
0— Ay —I°—...——T1¢ 0. (0-1)

be a minimal injective resolution. We say this resolution is

e pure with respect to @ if each I' is (9(A) — i)-pure with respect to 9.

e essentially pure with respect to 9 if each I’ is essentially (9(A) — 7)-pure with respect to
d.

Let A be a noetherian ring of finite injective dimension d. We define §(M) = d — j(M),
for a (left or right) noetherian A-module M; we say ¢ is exact if §(M) = sup{d(N),6(M/N)},
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or equivalently, j(M) = inf{j(M),j(M/N)} for all submodules N of a noetherian module M.
Note that, in general, ¢ is not a dimension function. It is a simple fact that for any ring A
and A-module M, j(M) > inf{j(N),j(M/N)} where N is a submodule of M; therefore, for a
ring A of finite injective dimension, the inequality §(M) < sup{é(N),d(M/N)} always holds for
A-modules M and submodules N C M. It follows that whenever ¢ is a dimension function, it
is exact. If A is AG then, by [Le, 4.5] and [Bj, 1.8], § is a dimension function, and therefore
exact; we call it the canonical dimension function. One consequence of this is that if M is an
A/P-module where P € Spec A, then j(M) > j(A/P) if and only if M is a torsion A/P-module,
and j(M) = j(A/P) otherwise. Levasseur [Le, 4.5] also shows that ¢ is finitely partitive,
meaning that if M is noetherian then any chain of submodules M = My D M; D - - -, for which
§(M;/M;y1) = 6(M) for all ¢, is necessarily finite.

Whether 4 is a dimension function or not, we still define that a module M is

e s-pure if §(IN) = s for all non-zero noetherian submodules N C M;

e essentially s-pure if it contains an essential submodule which is s-pure;

e s-critical if it is s-pure and §(M/N) < s for all non-zero submodules N C M.

Whenever we use the terms s-pure or s-critical without reference to any particular dimension
function, we mean pure or critical with respect to 4, irrespective of whether § is a dimension
function or not. For example, it is easy to see that A is always d-pure both as a left and a right
A-module.

Let A be a commutative local noetherian Gorenstein ring. It is well-known that if 0 — A — I*

is a minimal injective resolution of the A-module A, then

I' = . E(A/p),

pESpec A, height p=1i

where F/(—) denotes an injective hull. As a consequence, every non-zero finitely generated sub-
module of I’ has Krull dimension equal to Kdim A — i. Thus, in our language, A has a pure
minimal injective resolution with respect to Krull dimension. In the noncommutative case, Artin
and Stafford have given examples of AG rings which do not have pure or even essentially pure
minimal injective resolutions (Examples 5.2 and 5.3). So it is natural to ask under what hypothe-
ses AG rings have pure or essentially pure injective resolutions. We prove that if A is an AG,
grade-symmetric ring satisfying a polynomial identity, then A has a pure resolution [Theorem
4.2]. In [ASZ], we have also proved that many AG rings with small injective dimension have
pure or essentially pure injective resolution. Conversely, under a reasonable hypothesis, essential
purity can occur only for AG rings [Theorem 4.4]; and if A has an essentially pure minimal
injective resolution with respect to an exact dimension function @, then in fact 0 is equal to §
up to some additive constant [Proposition 4.3]. It is in this sense that § behaves like a canonical
dimension function.

In section 6, we describe certain conditions for the existence of quotient rings of AG rings. We
prove that a grade-symmetric AG ring has a QF quotient ring [Remark to Theorem 6.1], and as
a corollary, a grade-symmetric Auslander regular algebra is semiprime [Corollary 6.3]. This last
result is a noncommuatative analog of the fact if A is a noetherian commutative ring of finite

global dimension, then A has no nilpotent elements. We give an easy example to show that an
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Auslander regular ring need not be grade-symmetric, and, for such a ring, the quotient ring (if
it exists) need not be QF or semiprime [Example 5.4.2].

Another property often appearing together with the AG property is the Cohen-Macaulay
property.

Definition 0.4. We say that A is Cohen-Macaulay with respect to a dimension function
0 (or, 0-CM, in short) if
(M) +0(M) = 0(A) < oo

for every non-zero noetherian A-module M. When we say A is Cohen-Macaulay (CM) without
reference to any particular dimension function, we mean A is Cohen-Macaulay with respect to
GKdim (assuming tacitly that A is an algebra over a field). For an algebra A over a field k, we
say that A is Cohen-Macaulay at zero (CMg) provided that, for a noetherian A-module M,
J(M) =injdim A if and only if M is finite k-dimensional.

It is a tautology that an AG ring is CM with respect to the canonical dimension function §. If
a ring is CM with respect to a dimension function @, then 0 has to be exact. If A is a noetherian
ring with finite injective dimension d, then A is CM with respect to some dimension function 0
if and only if § is a dimension function: indeed, then 0(M) = §(M) + (0(A) — d).

In section 7, we examine the relation between the groups Ext’ (M, N) and Ext’ (N, M) under

some hypotheses such as CMy and commutative Gorenstein [Propositions 7.1 and 7.7].

Conventions and Notations. Throughout the paper A will be a left and right noe-
therian ring. Unless otherwise specified, we work with right modules. We will usually omit
the subscript A from Exty (M, N). We will often write E?M for Ext?(M, A), and EPM for
Ext? (Ext?(M, A), A).

We will often use Ischebeck’s spectral sequence: if A is noetherian with injdim A = d, and M

a noetherian right A-module, there is a convergent spectral sequence

0 ifp#gq,

0-2
M ifp=yq. (0-2)

By = Extly (Ext}y (M, A), A) = B (M) := {

Thus, on the F,-page only the diagonal terms are non-zero. To simplify notation later, we have
used a non-standard indexing of ET?; with our indexing, the boundary maps on the Fs-page are
EP? — EPT®UT! This spectral sequence is functorial in M. Consequently, there is a canonical
filtration of M by submodules,

M=F'M>F'M>---FiM>F*'M=0

where FEM/FHIM = B If Ais AG, then by [Bjl, 1.3], F'M is the largest submodule X ¢ M

such that j(X) > i. For each 7 there is an exact sequence of A-modules:
0 — F'M/F* M — BExt®(Ext' (M, A), A) — Q42 (M) — 0 (0-3)

where §(Qi+2(M)) < d — (i + 2) or, equivalently, j(Qiy2(M)) > i+ 2.

1. Duality between left and right modules
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The basic idea of this section appeared implicitly in [Le] and [Bj2]. Let M —A denote the
category of finitely generated right A-modules. If A is AG of injective dimension d, then § is
exact, and we define M; to be the full subcategory consisting of modules with §(M) < i. There
are inclusions

0=M_CMygC---CMyg1CMg=M:=M-A.

Similarly M° and M?; denote the analogous categories of left A-modules.

An abelian category C is artinian (respectively noetherian) if every object in C is artinian
(respectively noetherian) [Po, p. 370]. Since A is noetherian, M and its subcategories M; are
noetherian.

A full subcategory D of an abelian category C is dense if, for every short exact sequence
0 —L—M—N—0

in C, M is in D if and only if both L and N are in D (see [Po, p. 165]). The exactness of
& implies that M; is a dense subcategory of M. Hence we may form the quotient category
M= M; / M;_y, and similarly the quotient category M°" := M°; ) M°;_; fori=0,1,...,d.
The basic properties of quotient categories may be found in [Po, Ch. 4].

Lemma 1.1. Each M' defined above is a noetherian category.

Proof. Let M;_, denote the category of those right A-modules all of whose finitely generated
submodules belong to M;_; and M the category of all right A-modules. Since M;_; is dense
in M, so is M;_; dense in M, whence the quotient category M / M;_; may also be formed.
If M is any A-module then the sum of all its finitely generated submodules having é-dimension
< i—11isin M;_y. In particular, if M € M, there is a largest submodule of M belonging to
M;_1. Hence the quotient functor M — M / M;_; has a right adjoint [Po, 4.5.2]. Therefore, if
M is a noetherian object it is also noetherian as an object in the quotient category M / M;_;
[Po, 5.8.3]. In particular, each M € M; C M is noetherian as an object in M C M/ M;_;. 0O

We say that two categories C and D are in duality if there are contravariant functors F :
C — D and G:D — C such that FG =2 Idp and GF = Id.. The functors F' and G are called
dualities. It is easy to see that C is noetherian if and only if the dual category D is artinian.

Two categories C and D are in n-step duality if there are dense subcategories
ocCyc---cC,=¢C and Oocpyc---CcD,=D

such that the quotient categories Cho= Ci/Ci—y and D= D;/D;_y are in duality for all

t=1,---,n. The following result shows that AG rings have a duality analogous to QF rings.

Theorem 1.2. Let A be an AG ring of injective dimension d. Then M' and M°" are in duality
foralli=0,1---,d. As a consequence, M —A and M —A°P are in (d+ 1)-step duality.

Proof. By the Auslander condition, Extd_i(—,A) is a contravariant functor from M; to M°;
so induces a contravariant functor from M; to the quotient category Mot Tf 5(M) < i, the
Auslander condition implies that Ext'(M, A) is in M°;_; whenever [ > d — i, whence Ext!(—, A)



6 K. AJITABH, S. P. SMITH AND J. J. ZHANG

is zero as a functor from M; to M°" whenever I # d — 1. By the long exact sequence for
Ext™(—, A), EX‘cd_i(—7 A) is an exact functor from M; to M°" sending objects of M;_; to 0, so
it induces a functor from M* to M°" [Po, 4.3.11]. Tt follows from (0-3) that for each M € M;,

there is a short exact sequence, natural in M, of the form
0 — M/FI=HIM & BExt®™ (Ext®™ (M, A), A) = Qa_iy2(M) = 0, (1-1)

where FA~+10f is the largest submodule of M with é-dimension < ¢ — 1 and Qg—;42(M) is
a module with d-dimension < 7 — 2. Hence (1-1) yields a natural transformation from the
identity functor to the functor Ext?~(Ext?~(—, A), A) for all modules in M; and this natural
transformation becomes a natural isomorphism at the level of the quotient categories M?* and
M©°%. Hence the induced functors of Ext®*(—, A4) and Ext®~%(—, 4A) give a duality between

M and MO, 0

Since M* and M°" are noetherian by Lemma 1.1, they are also artinian by duality. Hence,
by induction, Kdim M < i for all M € M; and we reprove a result of Roos [Bj2].

Corollary 1.3. Let A be an AG ring of injective dimension d. If M is a finitely generated
A-module, then Kdim M < §(M) = d — j(M). Hence the left and right Krull dimensions of A

are bounded above by its injective dimension. In particular, if (M) = d then M is artinian. O

Over a finitely generated commutative k-algebra, Kdim M = GKdim M, and in most reason-
able noncommutative rings Kdim M < GKdim M. In the presence of the CM property Corollary
1.3 gives such an inequality. If A is AG, then

injdim A = max{j(M) | 0# M € M}.

Hence the CM property ensures that GKdim A—injdim A is a non-negative integer. The following

corollary is an immediate consequence of Corollary 1.3 and the equalities
§(M) = injdim A — j(M) = GKdim M — (GKdim A — injdim A).

Corollary 1.4. Let A be an AG and CM ring.

1. For every non-zero noetherian A-module M,
Kdim M < GKdim M — (GKdim A — injdim A),
where GKdim A — injdim A > 0.
2. GK-dimension is left and right finitely partitive. O

The inequalities in Corollary 1.3 and Corollary 1.4.1 may be strict: if A is the enveloping
algebra of the Lie algebra s[(2, C), then Kdim A = 2 whereas injdim A = GKdim A = 3.

Remark: If M is a finitely generated right (respectively left) A-module with j(M) = j, define
MY to be the left (respectively right) A-module Extj(M, A). By the proof of Theorem 1.2,
J(M) = j(MY) or equivalently §(M) = §(MY). If §(M) = 0, then by Corollary 1.3, M and M"
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are artinian. Since My and M°y are in duality, M is simple if and only if MV is simple. We
also have (MY)Y 2 M for all M with 6(M) = 0.

2 Injective resolutions

Write €, for the image of the boundary map I°~1 — I* in (0-1). Thus Qo = A, and there are
exact sequences

0—Q 7 —I*1—5Q,—0 (2-1)

for all s = 1,---,d, with each I® an essential extension of €2,. By the definition of minimal

injective resolution, the injective dimension of A is d if and only if Q; = I

Lemma 2.1. For any A-module N, and any ¢ > 0,
1. ExtFY(N, A) = Ext' (N, Q,), and
2. if Hom(N, I'=") = 0, then Ext'(N, A) = Hom(N, ;).

Proof. The long exact sequence for Ext™(N, —) applied to (2-1) gives isomorphisms
Ext'(N,Q,) 2 Ext™ (N, Q,_1)

for 1 < s <d, and i > 1. Furthermore, if Hom(N, I*~!) = 0, then
Hom(N, Q,) = Ext' (N, Q,_).

The result follows by induction. O

There is an obvious generalization of this, applying to Exti(N, M), which involves Q;(M), the
cosyzygies of M.

Lemma 2.2. Let M be a noetherian module. Then there exist fy,---, f, € Hom(M, ;) such
that for every N C ﬂj ker(f;), the natural map Exti(M, A) — Exti(N7 A) is zero, or equivalently,
the natural map Ext'(M/N, A) — Ext' (M, A) is surjective.

Proof. We prove that the natural map from Exti(M/N, A) to Exti(]M7 A) is surjective. From the

injective resolution of A, we see that
Ext‘(M, A) = Hom(M, Q;)/im(Hom(M, I'"1)).

Suppose that Exti(M, A) is generated as a left A-module by maps fi,---, f, € Hom(M,Q,).
Because N C ker f;, there are corresponding maps ¢i,---,¢, € Hom(M/N,;), so the natural
map EXti(M/ZV7 A) — Exti(M, A) sending g¢; to f; is surjective. O

Theorem 2.3. Let A be a noetherian ring with injdim A = d.
1. Then for each non-zero noetherian right A-module M there is a non-zero submodule N of
M which embeds in some ;.

2. Fvery indecomposable injective module appears in the minimal injective resolution of A.

Proof. Part 2 is an obvious consequence of part 1 and we prove part 1 next.
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Replacing by a submodule, we may assume M is uniform. Suppose to the contrary that no
non-zero submodule N of M embeds in any €2;. Under this hypothesis we claim that there is a

chain of non-zero submodules
M=M_1DMyDM DD My

such that F47'M; = 0 for all t = —1,0,---,d. If t = —1, F4*'M_; = 0 by definition. Now
suppose F4~tM; = 0 for some t. As in Lemma 2.2, Exti(Mt, A) is generated as a left A-module
by fi,--- ,ff;i € Hom (M, ;). Let My, = ﬂm. ker(f;f). Since My does not embed in any €;,
ker(f}) # 0 for all 7, j, whence M1 # 0 because M is uniform. By Lemma 2.2, the natural map
Ext' (M, A) — Ext'(Myy1, A) is zero for all 4, so the natural map Ext?(Ext?(M;11,A),A) —
Ext? (Ext?(M;, A), A) is zero for all p and ¢. Therefore, by the spectral sequence (0-2), the
natural maps from FthH/FiHMtH to Fth/Fi"'lMt are zero for all 7. In particular, the
natural map from Fd_(t+1)Mt+1/Fd_tMt+1 to Fd_(t+1)Mt/Fd_tMt is zero. The filtration is
functorial, so the inclusion M;y; = H(M;y1) — M; = H(M;) embeds FiM,;,; in F*M;. Hence
Fd_tMtH C F¥'M,; = 0, so the morphism from Fd_(tH)MtH to F4= (1 Mg, is zero. Therefore
Fd_(t+1)Mt+1 = 0 and we have proved our claim by induction. Letting ¢ = d we obtain My =
FOM,; = 0, a contradiction. Therefore part 1 follows. O

Proposition 2.4. Let A be a right noetherian ring with injdim A4 = d, and let N be a noetherian
right A-module.

1. If N embeds in €);, then Exti(N, A) # 0, whence j(N) < 1.

2. If every non-zero submodule of N is (d — i)-critical, then N embeds in ;.

3. 1° is essentially d-pure (and d-pure if § is exact).

4. If A has a QF quotient ring Q, then I° = Q is d-pure and every torsion module M (i.e., a
module such that M @4 Q = 0) has j(M) > 1. As a consequence, Qy is (d — 1)-pure, and I' is

essentially (d — 1)-pure. Furthermore, if A is semiprime and & is exact, then I' is (d — 1)-pure.

Proof. 1. The statement is obvious for g = A. If # > 1 and N is a submodule of €;, then there
is a nonsplit exact sequence 0 — Q;,_ ;1 — F — N — 0, so Extl(N7 Q;_1) # 0. By Lemma
2.1.1, Ext'(N, A) = Ext" (N, Qi_;) # 0.

2. If M is (d — t)-critical, then j(M/L) > i for all submodules L C M, so Hom(M,$;_1) =
0, by part 1. However, if Hom(N,I°"!) # 0, then for some non-zero submodule M C N,
Hom(M,Q;_1) # 0 which contradicts the previous sentence; hence Hom(N,I'~!) = 0. By
Lemma 2.1.2, Hom(N, Q;) 2 Ext’(N, A), which is non-zero because j(N) =1, so there is a non-
zero map f : N — ;. But N is critical and €; contains no submodule X with §(X) < d — 4,
so f is injective.

3. Because I° is an essential extension of the d-pure module A, I° is essentially d-pure. If §
is exact, then essentially d-pure is the same as d-pure.

4. Since Qg is injective and @) 4 is flat, () 4 is injective. Since A is essential in Q) 4, @ is an
injective hull of A; that is I° = Q. For every finitely generated submodule M C Q 4, there is a
regular element ¢ such that ¢M C A. Hence j(M) =0 and §(M) = d, whence Q) 4 is d-pure.

If M were a torsion module with (M) = 0, then some non-zero quotient of M would be both

torsion and a submodule of A. But this cannot happen, so torsion modules have grade > 1.
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Since ©; = /A is torsion, every submodule M C € is too, so has grade > 1. Combining
this with part 1 gives j(M) = 1, whence €y is (d — 1)-pure. Now I', being an essential extension
of 1, is essentially (d — 1)-pure. If in addition A is semiprime, then an essential extension of a
torsion module is torsion, so I' is torsion. Thus every finite submodule M of I' has j(M) > 1
or §(M) < d — 1. By exactness of §, §(M) = d — 1, whence I' is (d — 1)-pure. O

If injdim A4 = 0 (i.e., 4 is QF [Fa, 24.5]), then it is obvious that A4 has a pure injective
resolution. If A is a semiprime noetherian ring of injective dimension 1, then its injective reso-
lution is 0 = A4 — Q@ — Q/A — 0, where Q = Fract A, so A has a pure injective resolution by
Proposition 2.4.4; one may also check that A is AG in this case.

Proposition 2.5. Let A be AG with injdim A = d. Then

1. 1% is a direct sum of injective hulls of 0-critical modules, hence essentially 0-pure;

2. Extd(fw7 A) Extd(FdM, A) where FXM is the largest submodule of grade > d.

For next two parts we further assume that A has finite global dimension.

3. pdim M = d if and only if F*M # 0;

4. if L is a right A-module and I%(L) is the d-th term of the minimal injective resolution of
L, then (L) is either 0 or essentially 0-pure.

Proof. 1. We need to show that I contains no s-critical submodules for s > 0. If s > 0 and M

is s-critical then, by (0-3), there is an exact sequence
0 — FYM — Ext?(Bxt®(M, A), A) — Qup2 (M) — 0.

But F4M = 0 because M is s-critical with s > 0, and Qg42(M) = 0 because j(X) < d for all
X # 0,50 Ext*(Ext?(M, A), A) = 0. But j(Ext?(M, A)) > d by the Auslander condition, whence
Ext?(M, A) = 0. So M is not a submodule of Q; = I'¢, by Proposition 2.4.1.

2. Applying Ext*(—, A) to the exact sequence 0 — FIM — M — M/F*M — 0 gives

an exact sequence
Ext®(M/F*M,A) — Ext*(M, A) — Ext®(FIM, A) — 0,

so it suffices to show that Ext®(M/FM, A) = 0. Since L = M/F®M is noetherian and § is
exact, no submodule of I has §-dimension 0. Further, since § is finitely partitive, there is a
finite chain of submodules {L;} such that each L;/L;y; is s;-critical for s; > 0. By part 1 and
Proposition 2.4.1, Extd(Li/LiH,A) = 0 whence Extd(L,A) = 0 by induction, using the long
exact sequence.

3. (<) This is clear because Ext®(M, A) = Ext*(F*M, A) # 0.

(=) If pdim M = d, then Ext*(M, N) # 0 for some N. Writing N as a quotient of a free
module, and using the fact that Extd+1(M, —) =0, it follows from the long exact sequence for
Ext™(M, —) that Ext?(M, A) # 0. Hence, by part 2, F4M # 0.

4. Suppose to the contrary that I¢(L) contains an s-critical module M for some s > 0. By part
2, pdim M < d. By an analogous version of Proposition 2.4.1, valid for an injective resolution of L
(and which can be proved in the same way), we have Extd(M, L) # 0, contradicting pdim M < d.
O



10 K. AJITABH, S. P. SMITH AND J. J. ZHANG

3. The last term in the injective resolution

In this section we will study AG and CMq algebras over a field k. A finitely generated CM
k-algebra of finite injective dimension, which equals GK-dimension, is CMg and a connected
graded AG ring is graded CMy.

Let A be an AG and CMj k-algebra and let 1% be the last term of the minimal injective
resolution of A. By Proposition 2.5.1, I is a direct sum of the injective hulls of finite dimensional
simple modules. Let S be a finite dimensional simple module and F/(S) its injective hull. Then
the multiplicity of E(S) in I? is equal to dim Hom(S, I?)/ dim Hom(S, S). It is easy to see that
Hom(S, I?) 2 Ext*(S, A) = SV and that Hom(S, S) = k if k is algebraically closed.

Theorem 3.1. Let A be an AG and CMy k-algebra with injdim A = d. Then
"= EES)"
s

where S runs over all finite dimensional simple modules, and mg = dim SV /dim End(S4). As a

consequence, the injective module E(S) appears in I? finitely many times. O

For a finite dimensional module M, define M* := Hom (M, k). If M is a left A-module,
M* is a right A-module (and conversely), and M is simple if and only if M* is simple. Since
(M*)* = M, the functor M — M* is a duality between My and M°,. Composing v and *
yields auto-equivalences of Mg and M° (Recall that MY = Ext/(M, A) where j = j(M)). In
general this auto-equivalence is not equivalent to the identity functor. Write M’ := (MVY)*. The

following example shows that M’ need not be isomorphic to M.

Example 3.2. Let L be the 2-dimensional solvable Lie algebra over C generated by z and y and
subject to the relation [z,y] = . Let A be the enveloping algebra U(L). The finite dimensional
simple A-modules are {S, := A/(z,y — r) | r € C}. Each S, is an A-A-bimodule and S} = S,.

The projective resolution of S, as a right A-module is
0 —A—ApA—A—S5 —0 (3-1)

where the boundary map from A@ A to A is defined by fi(a,b) = za+ (y—r)b and the boundary
map from A to A @ A is defined by fy(a) = ((y — r — 1)a, —za). Applying Hom(—, A) to (3-1),
we obtain the complex

0— A+— APGA+— A0

where the boundary maps are f;'(a) = (az,a(y — r)) and fy(a,b) = a(y — r — 1) — bz. Hence
Ext’(S,, A) = 0if i # 2, and SY := Ext*(S,, A) = S,4,. Therefore S’ % S,. O

It is trivial that A := My (k)@ k is AG, CM, and gldim A = 0. There are two finite dimensional
simple modules with dimensions 1 and 2 respectively. There is an obvious auto-equivalence of
M (which is also equal to M) which exchanges the 1-dimensional and the 2-dimensional simple
modules. Hence an auto-equivalence of Mg may change the dimension of simple modules. Next
we will show that the auto-equivalence ' preserves the dimension of finite dimensional modules

in some rings (including enveloping algebras).
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Theorem 3.3. Let A be a filtered ring such that the associated graded algebra gr A is a connected
graded AG and CM k-algebra of injective dimension d. If M is a finite dimensional right A-
module, then dim MV = dim M.

Proof. By [SfZ, 4.4], A is a noetherian, AG and CM k-algebra of injective dimension at most d.
Since grA is connected and noetherian, it is finitely generated, and hence A is finitely generated.
If M is a finite dimensional right A-module, then j(M) = d by the CM property, so injdim A = d.
Since M is finitely generated it has a good filtration so, by [Bj1, 3.1], gr(Extffl(M, A)) is a sub-
quotient of Ext;er (grM, grA). Since grA is connected graded and AG, k¥ = k. By induction we
obtain that dim MV = dim M for every finite dimensional graded gr A-module M. In particular,

dim(grM)" = dim gr M = dim M.

Hence
dim MY = dim Ext% (M, A) = dim gr Ext% (M, A) < dim(grM)" = dim M.

But MYV = M, so dim M = dim M"Y < dim MV. Therefore dim M = dim M. O
Applying Theorems 3.1 and 3.3, we have the following immediate corollary.

Corollary 3.4. Let L be a d-dimensional Lie algebra over an algebraically closed field. Then

the last term in the minimal injective resolution of its enveloping algebra is
Id o @E(S)dims,
s

where S runs over all finite dimensional simple modules, and F(S) is the injective hull of S. O

Remark: For the universal enveloping algebra U (L) of a finite dimensional solvable or semisimple
Lie algebra L, Theorem 3.3 and Corollary 3.4 can be proved without using the filtration on U(L)
(still under the hypothesis that & is algebraically closed). First, suppose L is a solvable Lie
algebra. Every simple right (or left) U(L)-module S is 1-dimensional. Since SV is also simple,
it is 1-dimensional too. Hence dimS = dim SY. Therefore dim M = dim MV for all finite
dimensional modules M. Second, suppose L is semisimple. Non-isomorphic finite dimensional
simple modules S and T are annihilated by different central elements. Since SV = Extd(S, A) and
S = Extd(SV, A), S and SV are annihilated by the same central elements. Therefore S = S’ :=
(SY)*. Hence dim S = dim SV for finite dimensional simples and hence for all finite dimensional
modules. In this case we have a stronger statement: if L is semisimple, then S = S’ for every
finite dimensional simple module S.

If A is Auslander regular and CMjg, then analog of Theorem 3.1 holds for injective resolutions

of all A- modules.

Theorem 3.5. Let A be Auslander regular with gldim A = d and CMy and L a finitely generated

right A-module. Then the d-th term in a minimal injective resolution of L is

(L) = P E(s)"
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where S runs over all finite dimensional simple modules, E(S) is an injective hull of S, and
ls = dim Extd(S, L)/ dimHom(S,S). As a consequence, the injective module F(S) appears in
I4(L) finitely many times.

Proof. By Proposition 2.5.4, I%(L) is essentially 0-pure and hence I*(L) = @4 F(S)'s by CMj.
The multiplicity can easily be seen to be 5 = dim Ext*(S, L)/ dim Hom(S, S). Since Ext’(S, A)
is finite dimensional by CMy (in fact, the only nonzero Ext is Ext?(S, A)), Ext'(S, M) is finite
dimensional for all 2 and M, by induction on pdim M. Therefore g is finite. O

4. Purity

It is well-known that a commutative noetherian ring of finite injective dimension is AG, and
has a pure injective resolution. The PI (polynomial identity) rings will be the next natural
cases to analyze. But we do not know whether an AG, PI ring has a pure injective resolution.
Nevertheless, we prove that an AG, PI, grade-symmetric ring has a pure injective resolution, part

of which is a generalization of [SfZ, 6.4].

Lemma 4.1. Suppose Ay and 4 A have essentially pure injective resolutions with respect to 4.
Then A has a pure injective resolution if and only if every essential extension of a module of

grade s has grade > s.

Proof. Suppose that A has a pure injective resolution, and let M be a module of grade s. Then
M is an essential extension of a direct sum of uniform modules, each of which has grade > s. By
Theorem 2.3, each of these uniform modules embeds in I? for an appropriate ¢t > s, hence M, and
therefore any essential extension of it, embeds in a finite direct sum of copies of various 7' with
t > s. By hypothesis every non-zero finitely generated submodule of I* has grade ¢; therefore
every non-zero finitely generated submodule of this direct sum of various I? also has grade > s;
in particular, every finitely generated essential extension of M has grade > s. The converse is
trivial. O

Theorem 4.2. Suppose that A is AG, and satisfies a polynomial identity.
1. If A is grade-symmetric, i.e., j(aM) = j(Ma4) for every noetherian A-bimodule M, then
e grade is constant on the cliques of A, and
e A has a pure injective resolution.
2. If A is CM with respect to GK-dimension or Krull dimension, then A is grade-symmetric.

Proof. 1. If there is a link ) ~ P, then there is an A/Q-A/P bimodule, B say, finitely generated
and torsion-free on both sides; since ¢ is a dimension function and 4,¢ B is torsion-free, j(A/Q) =
j(aB); similarly, j(B4) = j(A/P); by hypothesis, j(4B) = j(Ba), s0 j(A/Q) = j(A/P). Hence,
by induction, grade is constant on cliques.

Next we show that A has an essentially pure injective resolution. It suffices to show that if
M is a critical submodule of Q;, then j(M) =i. Since M is critical it is uniform, so embeds in
A/P where P = Ann M is a prime ideal of A. Therefore, by [Br, 2.3], since M embeds in I,
Ext’(A/P4, A) is not torsion as a right A/ P-module. By [SfZ, 3.5], Ext'(A/Py, A) is a noetherian
right A/P-module. Hence, by [SfZ, 3.10], j(Exti(A/PA, A)) = j(A/P) as a right A-module. By
the Auslander condition j(Ext‘(A/Py4, A)) > i as a left A-module, and hence as a right module
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by the hypothesis on bimodules. Thus j(A/P) > i as a right A-module, whence j(M) > ¢; the
reverse inequality is given by Proposition 2.4.1, so j(M) = .

Finally, we show that an essential extension of a module of grade s has grade > s. As in
the proof of Lemma 4.1, we need only prove this for a uniform module. Suppose that M is an
essential extension of a uniform module UU. Then M has a unique associated prime, P := Ann U.
Since A is a PI ring, it satisfies the strong second layer condition so, by [GW, 11.4], there is a
chain of submodules 0 = My C --- C M,, = M such that the annihilators of the various M;/M;_4
are primes ideals, say P;, belonging to the clique containing P; moreover, each M;/M;_y is a
torsion-free A/P;-module, so j(M;/M;_1) = j(A/F;) = j(A/P). Thus j(M) = j(A/P) = j(U).

The last two paragraphs allow us to apply Lemma 4.1 to conclude that A has a pure injective
resolution.

2. Since GK-dimension [MR, 8.3.14] and Krull dimension [MR, 6.4.13] are symmetric for
noetherian A-bimodules (the latter because A is a Pl ring), A is grade-symmetric by the CM
property. [l
Remark: If A is a noetherian PI ring of injective dimension d and A4 has an essentially pure
injective resolution with respect to a dimension function 9, then I' = @pEgF where P runs over
all primes with d(R/P) = d — i, where Fp is the injective hull of a non-zero uniform right ideal
of R/P and Np is a positive integer. The proof of this is the same as the second part of the
proof of [SfZ, 3.15]. This remark applies to the rings in Theorem 4.2.

Example 5.4.2 in the next section shows that there is an AG, PI, but not grade-symmetric,
ring of global dimension 1 which has a pure injective resolution.
Next we show that if A has an essentially pure injective resolution with respect to @ and ¢ is

exact, then 0 is essentially the canonical dimension § and A is AG.

Proposition 4.3. Let A be a noetherian ring with finite injective dimension d and suppose that
A4 has an essentially pure injective resolution with respect to an exact dimension function 0 and
that & is exact. Then

O(M)=6M)+0(A) —d

for all noetherian right A-modules M. In particular, § is a dimension function.

Proof. Replacing 0 by the function M — d(M)+d—09(A) we can, and do, assume that d(A) = d.

By exactness and the noetherian property, it suffices to show d(N) = §(V) for some nonzero
submodule N C M. By Theorem 2.3.1, there is a non-zero submodule M’ C M which embeds
in some €; and by purity, there is a nonzero submodule N ¢ M’ C €Q; which is (d — 7)-pure
with respect to 0. By purity of the injective resolution, Hom(N, I*) = 0 for all s < ¢, whence
J(N) > i. By Proposition 2.4.1, j(N) < 7. Hence j(N) =1 and §(N) =d — i = 9(N). Therefore
the results follows. O

Theorem 4.4. Let A be a noetherian ring with finite injective dimension d. Suppose that A4
and oA have essentially pure injective resolutions with respect to exact dimension function 0 and

that & is exact. Then A is AG.

Remark: In Theorem 4.4 the condition that & is exact is necessary as Example 5.4.1 shows.
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Proof. By Proposition 4.3, we may assume d = §. Recall that the exactness of § can be expressed
by 7(M) = min{j(N), j(M/N)} whenever N is a submodule of M, and we simply say that j is
exact when this condition is satisfied. Because j is exact, to prove that A is AG we need only
show that j(E*M) > s for all s and all M. This is true if s = d + 1, so we fix s, and suppose
inductively that j(E*M) > i for all i > s and all M.

If j(M) > s, then j(E*M) = oo > s, so we will argue by downward induction on j(M). We
treat the case j(M) = s.

The FE5-page of the double-Ext spectral sequence for M lives in rows s,s+1,...,d and, by
the induction hypothesis for 7 > s, looks like

EOsM ElsM Es—lsM EsSM EdsM
0 0 0 0 Fstls+lpg ce. Edstlpg
0 0 0 0 0 Est2st2pr ... pdst2pzg
etc etc
In tow s, FO°M = EF'*M = ... = E*"25M = 0, since all these terms survive to the F,, page
which is zero off the main diagonal. Hence we must show that E*~15M = 0.
Because it is an off diagonal term, F27'*M = 0. Hence, because of the zeroes in rows
0,...,s— 1, there is a finite filtration
ESYM O ESVSM D - (4-1)
with embeddings of the factors
BTV MBS M — BTty (4-2)

for r > 2; however, the right hand term in (4-2) is a subquotient of E5T"~'**"~1 A1 50 has grade
>s+r—12>s+1 by the induction hypothesis; by exactness of j, so does the left hand term in
(4-2), and from the filtration (4-1), it follows that j(Es~'*M) > s+ 1 also.

Write N = E*M and t = j(E*"!N) > s+ 1. We have already shown that j(N) > s — 1, so

the E?-page of the double-Ext spectral sequence for N lives in rows s — 1, s,...,d and looks like
0 0 0 0 e 0 EtsTIN L. pds-ly
E°sN ... Es72sN  psTlsN  EsSsN EisN
0 0 0 0 Estlstin o0 L. co. REdstly
etc etc

If ¢ > t, then E2°~1 N = 0 because it is not on the diagonal, so there is a finite filtration
EFFT'NOEITIND - (4-3)
with embeddings of the factors
E*IN/ELZTIN — patrstr=2N

for r > 2; by the induction hypothesis the successive factors in the filtration (4-3) have grade
> q+r>t+2, whence j(EI*"'N) > t+42. Thus j(EZ*"'N) > t 42 for all ¢; therefore, by the
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induction hypothesis for i > s, j(EP(E?*~'N)) > t+2 for all p and ¢. Hence by the convergence
of the double-Ext spectral sequence for E*7'N, j(E*"'N) > t + 2. But this contradicts the
fact that j(E*"IN) = ¢ unless t = 0o, so we conclude that E*"'N = 0 as required; that is,
FE*=1sM =0, whence j(E*M) > s whenever j(M) = s.

Finally, to prove that j(E*M) > s for a general M, we argue by induction on Kdim M;
so suppose that Kdim M = p and that the result is true for modules having Kdim < p. By
noetherian property and the exactness of j, we may assume that M is Kdim-critical and pure
and embeds in Q; for some i [Theorem 2.3.1]. By Proposition 2.4.1, j(M) < ¢ and hence j(M) =,
since A has essentially pure injective resolution. We may assume 7 < s because the result has been
proved for j(M) > s. Let fi,..., f, € Hom(M, Q) be as in Lemma 2.2, and set L = N7_, ker fj;
thus there is a surjection E*(M/L) — E*M. By hypothesis €2, is an essential extension of a pure
module of grade s; since M is pure of grade < s it does not embed in ,. Hence ker f; # 0 for
all 7, whence L # 0 because M is uniform. But M is Kdim-critical so Kdim(M/L) < Kdim M,
whence j(F*(M/L)) > s by the induction hypothesis. Since E*M is a quotient of F*(M/L), it
too has grade > s. 0

Corollary 4.5. If 4A and A4 have essentially pure injective resolutions with respect to some

(not necessarily exact) dimension function 0 and if § is exact, then A is AG.

Proof. Let 0 denote the dimension function. By [MR, 6.8.9], there is an exact dimension function
0" such that (M) = 0*(M) for pure modules M. Then A4 and 4 A have essentially pure injective
resolution with respect to the exact dimension function 0%, so the result follows from Theorem
4.4. O

5. Examples

We first give examples constructed by M. Artin and J. T. Stafford, which show that the
converse of Theorem 4.4 does not hold in general: not every AG ring has an essentially pure

injective resolution.

Lemma 5.1. (Artin) Let A be an AG ring and 0 — Ay — I° — -+ — I? — 0 a minimal

injective resolution of A. Let M be a non-zero finitely generated right A-module, and assume
that M has no submodule N with j(N) = d. If Hom (M, I%) # 0, then Hom 4(M, I%~1) # 0.

Proof. By hypothesis, F* M = 0 and by Proposition 2.5.2, Extd(M, A) = 0. Since Extd(M, A) =
Hom (M, I%) /im(Hom (M, I~1)) and by hypothesis Hom (M, I%) # 0, Hom(M, I¢~1) # 0. O

Let k be a field of characteristic zero and sly the special linear Lie algebra over k. Consider
A :=U(sly)°? ® U(sly), which is isomorphic to the universal enveloping algebra U (sl; @ sl;). Let
B = U(sly)/(92), where Q denotes the Casimir element. It is standard that B has exactly one
non-zero ideal P, the augmentation ideal, and that B/P = k. Thus, as a right A-module, B is
non-split of length two, with factor module finite dimensional and submodule of GK-dimension
two. Now, as is standard, A is Auslander-regular and CM with injective dimension 6 . We may
apply Lemma 5.1 to this example with M = B to conclude Hom 4 (B, I°) # 0. Since non-zero
finite dimensional modules have grade 6, I° contains no non-zero finite dimensional submodules,
whence B in fact embeds into I°. Since j(B) = 6 — GKdim (B) = 4 < 5, we conclude:
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Example 5.2. (Stafford) The universal enveloping algebra U (sly @ sly) does not have an essen-

tially pure injective resolution. O

We may obtain a comparable example for the homogenized universal enveloping algebra
H (sly @ sly) of the Lie algebra sly @ sly. Let L be any finite dimensional Lie algebra over k.
Then H(L) is the subring of U(L)[t] generated by {t} U{tL}. With degt =1, H(L) is a con-
nected graded Auslander regular and CM algebra of global dimension dim L + 1. It is easy to
see that H (L) contains a special central element ¢ such that H(L)[t~'] = U(L)[t,t~'] and that
H(L)/(t) is the commutative polynomial ring k[L]. By a graded version of [ASZ, 3.7], H(L)
has an essentially pure graded injective resolution if and only if U(L) has an essentially pure

(ungraded) injective resolution. By Example 5.2, we get:

Example 5.3. (Stafford) The homogenized enveloping algebra H (sly @ sly) does not have an

essentially pure graded minimal injective resolution. O

As a graded ring H (sly @ sly) has injective dimension 7, and I is essentially pure, but I° is
not.

Second we give examples showing that (a) the hypothesis of & being exact is necessary in
Theorem 4.4, (b) an AG ring need not be grade-symmetric, and (c) the artinian quotient ring of

an AG ring A (if it exists) may not be QF, and in particular, need not be isomorphic to I°.

Example 5.4. 1. There is a noetherian ring A of global dimension 1 such that

(a) & is not exact and hence A is not AG,

(b) the injective hulls of of As and s A are different, whence there is no bimodule resolution
which is a minimal injective resolution of A on both left and right sides, and

(c) As and 4 A have pure injective resolutions with respect to some dimension function.
2. There is an AG ring A of global dimension 1 such that

(a) A is its own left and right ring of fractions, which is not injective on either side, and

(b) A has a minimal prime such that 5((A/P)4) = §(A) and §(4(A/P)) < §(A), i.e., A is not

grade-symmetric.

Fix a field k, an integer n > 0, and let V,, = k™. Define

kv,
(b %)

Since A is artinian, it is its own ring of fractions. By [MR, 7.5.1], gldim A = 1. The simple right
A-modules are S; = (0,k) and Sy = (k,0). It is clear that S; is a direct summand of A, so is
projective and j(S1) = 0. It is easy to see that S; does not embed in A, so j(S3) = 1.

We may view A as a subring of the matrix ring B = M,,41(k) via the embedding

~ (Kl, cn M,(k) ¢\ _
A_(Orn k)c( Tn k)_B’
where ¢, = k" is the column space (k,k,---,k)", and r, = k™ is the row space (k,k--- k).

With this point of view, S; is isomorphic to ((0,0---,0), %) and Sy is isomorphic to (e;k,0) =

((0,0,---,k,---,0),0) for all 7. The minimal injective resolution of Sy is

0— S5 — R=(rn,k) — S — 0.
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If n > 1, then Hom(R, A) =0, s0 j(R) =1> j(5;) = 0. Thus ¢ is not a dimension function and
hence A is not AG. This proves 1(a).

Since A is non-singular on both sides the injective envelope of A on either side has a natural
ring structure extending that on A; hence the injective envelopes are bimodules, and it is natural
to ask whether this bimodule structure makes the injective envelope an injective envelope on both
sides simultaneously. This question is natural given that the ring of fractions of a semi-prime
noetherian ring is simultaneously the left and right injective envelope of the ring. In any case,

for this A the answer is no. The minimal injective resolution of A4 is
0> As — Bs— (B/A)s — 0,

but 4B is not injective if n > 1. This proves 1(b).

To prove 1(c) we define 6, (M) = max{6(N) | N C M} for every noetherian module M. Then
dm (M) = 1 for a right A-module if and only if there is a subquotient of M isomorphic to Sj.
Since 4, (M) is either 0 or 1, 6,, (M) = max{d,,(N), ,,(M/N)} for every submodule N. Other
axioms of a dimension function (see [MR, 6.8.4]) can be checked trivially and hence §,, is an
exact dimension function. It is easy to see that (B/A) 4 is isomorphic to S£n2+n_1). Thus A4
has a pure injective resolution with respect to §,,. Similarly 4 A has a pure injective resolution
with respect to d,,; therefore 1(c).

Now assume n = 1. Then A4 and 4A have the same injective hull and the same minimal

injective resolution, namely

0—>kk—>kk—>00—>0
0 k k k k0 )

It is easy to check that A is AG. Notice that the canonical dimension ¢ is not equal to ei-

ther GKdim or Kdim (but equal to §,,). Finally, if P = (]8 l(j)’ then 6((A/P)4) = 1 and

5(4(A/P)) =0, proving 2(b). By 1(c) A has a pure injective resolution. O
Our last example shows that even a nice AG ring can only have an essentially pure but not a

pure injective resolution.

Example 5.5. Let  be the Casimir element in the enveloping algebra U(sly) over a field of
characteristic zero. We show that U(sl;)/(€2) has an essentially pure but not a pure injective
resolution.

As is standard, Ul(sly)/(€2) is an AG and CM domain of injective dimension two, and hence
has an essentially pure injective resolution [Propositions 2.4.4 and 2.5.1]. By Lemma 4.1, we only
need to show that U(sly)/(€2) has a module of GK-dimension zero having an essential extension
of GK-dimension > 1.

The following construction is well-known. Let A; = k[z,d] be the first Weyl algebra with
relation 9z — 20 = 1. There is an algebra homomorphism ¢ : U(sly) — B = k[0,20,2?0]
determined by

pie— 0, h— =220, f— —2°0,
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where e, h, f have the usual meaning for sly . By a direct computation, 2 = ef + fe + %hQ is in
the kernel of ¢, so there is a surjection U(sly)/(2) — B; but both are domains of GK-dimension
2,50 U(sly)/(2) =2 B. There is a natural action of A; on k[z] defined by

z-f(z)=zf(z), and - f(z)= f'(2)

for f(z) € k[z]. It is easy to see that & is the only proper B-submodule of k[z], so k[z] is an

essential extension of k, whence B does not have a pure injective resolution. O
6. Localization

In this section we prove that, under some extra hypotheses such as grade-symmetric, an AG
ring has a QI quotient ring. As a consequence an Auslander regular, grade-symmetric algebra
is semiprime. Example 5.4.2 shows that the quotient ring (if it exists) may not be self-injective
if the hypotheses fail.

Suppose that A is AG, and let N be its prime radical. Then N*® = 0 for some s; because § is
exact

§(A) = max{§(N'/N*T1) |1<i<s—1} =65(A/N).

We say that N is right weakly invariant with respect to §, if 6(M ®4 N) < §(A/N) = 6(A)
whenever M 4 is finitely generated and §(M) < 6(A) [MR, 6.8.13]. By [Le, 5.3], an AG and CM
ring has a left and right artinian quotient ring; the CM hypothesis ensures that GK-dimension
is exact. The next result shows that the CM hypothesis can be weakened; the symmetry of
GK-dimension can be replaced by the hypothesis (*) below.

Theorem 6.1. Let A be a noetherian ring of finite injective dimension, with N as its prime

radical, satisfying the following conditions:

e § is an exact dimension function, i.e., A is CM with respect to some
dimension function;

e for every bimodule subquotient L of N, j(L 4) = 0 if and only if j(4L) = 0;

e if P is a minimal prime, then j((A/P)a) =0 if and only if j(4(A/P)) = 0.

(*)

Then
1. N is weakly invariant;
2. if P is a minimal prime of A, then j(A/P) =0;
3. A has a left and right artinian quotient ring ¢);
4. @ is self-injective and hence QF.

Remark: If A is AG and grade-symmetric, then the hypotheses in Theorem 6.1 hold.

Proof. Let d = injdim A.
1. We will prove that if B is a bimodule subquotient of N and M, is noetherian with
§(M) < d, then §(M ®4 B) < d. Since ¢ is exact, we may assume that M is cyclic and

critical, and that B is critical as a bimodule; hence the ideals P = ann(My), R = ann(B4)
and L = ann(4B) are all prime, and B is a fully faithful (A/L, A/R)-bimodule. We are done if
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d((A/R)4) < d because M ®4 B is a right A/R-module. So suppose now that §((4/R)4) = d.
By (%), 8(4a(A/L)) =6(uaB) =6(B4) =d. If P ¢ L, then PB is non-zero sub-bimodule of B, so

§(M @ B) < 8(A/P® B) = §(B/PB) < §(B) = d.

Now suppose that P C L; since 6(4(A/L)) = d, L is a minimal prime; whence P = L. By (%),
5((A/P)a) = 6(4a(A/P)) = d. Since 6(M) < 6(A/P), M is a factor module of A'/zA" where
A" = A/P and z is a regular element of A’. Since 4 B is fully faithful, z is a non-zero-divisor
on B and hence B/zB is a torsion A/R-module. By [MR, 6.8.4(iii)], §(B/zB) < 6(A/R) = d.
Therefore

5(M ® B) <§(A"JzA" ® B) = §(B/zB) < d,

which proves that NV is weakly invariant.

2 and 3. By [MR, 6.8.15] and part 1, A has a left and right artinian quotient ring ), whence
C(0) =C(N) by [MR, 4.1.4], where C(I) denotes the set of regular elements in R/I. Let P be a
minimal prime ideal of A. If §(A/P) < d, then PN C(0) # @ by [MR, 6.8.14]; but N contains
the product of the minimal primes, so P NC(N) = 0, so we conclude that 6(A/P) = d and
J(A/P)=0.

4. Since Q/QN = Fract(A/N), every prime ideal of () is minimal and of the form PQ for some
minimal prime P C A. By part 2, j(A/P) = 0 for every such P,s00 = j(A/PR4Q) = j(Q/PQ).
Since every prime factor of () has grade zero, every non-zero (J-module has grade zero. If
d' := injdim @ # 0, we pick a noetherian @-module M such that Ext? (M,Q) # 0. Hence the
grade of Extg (M, Q) is zero. But (0-2) implies that HomQ(Extg (M,Q),Q) =0, a contradiction.
Therefore d' = 0 and @ is self-injective. O

It is easy to produce some corollaries by checking, in certain cases, that §(L4) = d if and only
if (4 L) = d for every noetherian bimodule L. One such case occurred in [SfZ] where A is FBN
and § equals the Krull dimension. Another such case occurs when A is AG of injective dimension
1 and CM with respect to Krull dimension: by Lenagan’s lemma [GW, 7.10], Kdim(L4) = 0 if
and only if Kdim(4L) = 0, whence Kdim(L 4) =1 if and only if Kdim(4L) = 1, so Theorem 6.1

applies. Here are some other special cases.

Corollary 6.2. Let A be a noetherian ring with finite injective dimension. Then A has a QF
quotient ring if

1. A is CM, or

2. A is commutative, or

3. A is an AG ring with finite GK-dimension and A has a unique minimal prime ideal.

Proof. 1. This is a consequence of Theorem 6.1 and the fact that GKdim is symmetric on
noetherian bimodules (see [Le, 5.3]).

2. A commutative noetherian ring is AG if and only if it has finite injective dimension. If A
is commutative, () in Theorem 6.1 holds trivially.

3. By Theorem 6.1, it is enough to show that §(Ls) = d if and only if 6(4L) = d for
all noetherian bimodules L. Let N be the unique minimal prime ideal of A. Then N is the
prime radical, and §(A/N) = §(A). Since ¢ is exact, we may assume that L is a critical fully
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faithful (A/P, A/Q)-bimodule with P, () prime ideals of A. By [GW, 7.1], 6(L4) = 6((A/Q) )
and 6(4lL) = 6(4(A/P)). Therefore, it suffices to show that P = Q = N. If §(L4) = d, then
5((A/Q)4) = d and then @ is a minimal prime of A, namely, @ = N. It remains to prove that
P = N. Suppose not, then P is a prime ideal containing N. Modulo N, we may assume that A is
prime and P is a non-zero prime ideal of A and L is a critical and fully faithful (A/P, A)-bimodule.
If GKdim A is finite this can not happen. O

Another immediate consequence is the following.

Corollary 6.3. Let A be as in Theorem 6.1 and suppose A has finite global dimension (e.g., A

is Auslander reqular and grade-symmetric). Then A is semiprime.

Proof. By Theorem 6.1, A has a QF quotient ring, say (). Since A has finite global dimension, so
has ) and hence ) has global dimension zero, because ) has injective dimension zero. Therefore

() is semisimple artinian. By Goldie’s theorem, A is semiprime. (|
For other basic properties about localization of AG rings see [ASZ, §2].

7. Dualities on Ext

Another type of duality between left and right modules can be introduced by using an idea
similar to the Yoneda product. Let k be a field, and A a CMj k-algebra of global dimension d. If §
is a finite dimensional right A-module, then j(M) = d. By (0-2) we have Ext‘(Ext?(S, A), A) =0
if i £ d, and Ext?(Ext?(S, A), A) = S. Consequently, j(Ext?(S, A)) = d and hence Ext?(S, A) is
finite dimensional. We have seen (in section 1) that Mg and M?°j are in duality via the functors
Ext?(—4, A) and Ext?(4—, A). For a right A-module M, since pd(M) < d, Ext*(M, —) is a right
exact covariant functor from M to mod — k. Recall that M* = Hom (M, k).

Proposition 7.1. Let A be a CMy noetherian k-algebra with gldim A = d. Let S be a finite
dimensional right A-module and N a noetherian right A-module. Then

1. Exti(S, N) and Exti(N, S) are finite dimensional for all i, and

2. Ext™™(S, N)* = Ext'(N, S") for all i, where S' = Ext®(S, A)*.

Proof. 1. Computing Exti(N, S) by using a finite free resolution of N, we see that Exti(N7 S)
is finite dimensional for all i. Since A is CMy, Ext’(S, A) = 0 for all i < d and Ext®(S, A) is
finite dimensional. Hence if N = A then Ext(S, N) is finite dimensional for all i. Since every
finitely generated projective module is a summand of a finite free module, the statement holds
for projective modules N. By induction on the projective dimension of IV, the statement follows.

2. First we prove that Ext?(S, N)* = Hom (N, S). Since Ext®(S, =) is a left exact and con-
travariant functor from M to mod — k, by Watts’ theorem [Ro, 3.36], Extd(S, —)* = Hom(—, S")
where S = Ext%(S, A)*. Part 2 follows because {Ext®™*(S,—)* | i} and {Ext’(—,S") | i} are
universal §-functors, by the CMg condition (see [Ha, pp 205-206] for the definition of é-functor).
[l

When L is a semisimple Lie algebra, S’ 22 S (see Remark after Corollary 3.4), so we have the

following.
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Corollary 7.2. Let S be a finite dimensional simple module over a d-dimensional semisimple
Lie algebra. Then Ext®™* (S, N)* = Ext'(N, S) for all i and all modules N. O

Next is a dual version of Proposition 2.5.3.

Corollary 7.3. Let A be an Auslander regular and CMy noetherian k- algebra with gldim A = d,
and M a finitely generated right A-module. Then injdim M = d if and only if M has a factor
module M /N with 6(M/N) = 0.

Proof. If injdim M = d, then Extd(L, M) # 0 for some L. By Proposition 2.5.3, Extd(N7 M)=0
if N contains no finite dimensional module. Hence Ext*(S, M) # 0 for some finite dimensional
module S. By Proposition 7.1.2, Hom (M, S’) # 0 and hence M has a finite dimensional factor

module. The converse is similar to prove. O

For a finite dimensional right A-module S and a finitely generated right A-module N, we
define

vs(N) = (ng,ny1,---,ng) € N1 and CS(N):Z(—l)ini € Z
where n; = dim Exti(S7 N). For every v = (ng,ny,--+,nq) € N1 7 denotes the vector

(nd7 e 7”17”0)-

Proposition 7.4. Let A be a CMy noetherian k-algebra with gldim A = d. Then

1. vs(A) = (0,0,---,dim SV) and cs(A) = (—1)%dim SV.

2. If N is also finite dimensional, then vs(N)™ = vy (S') and cs(N) = (=1)%en(9’).

3. Suppose that the Grothendieck group Ko of A is Z. For every finitely generated right
A-module N, cg(A) divides cg(N).

4. Suppose that the Grothendieck group Ky of A is Z, d > 0, and that A has an artinian

quotient ring. For every finite dimensional module S, cs(N) = 0 if and only if N is torsion.

Proof. Part 1 follows from the definitions. Part 2 follows from the definitions and Proposition
7.1.2.
3. By the long exact sequence for Ext™(S, —), we see that c¢g(—) is additive on exact sequences.

Since Ky is trivial, every finitely generated module N has a finite free resolution of finite length
0—P—-—P—F—N—70 (7-1)

where P; = A% By additivity, cs(N) = (3,;(—1)'k;)es(A), which is divisible by cg(A).
4. Let () be the artinian quotient ring of A. Tensoring (7-1) with (), we obtain an exact
sequence
0 —PR4Q —  —PL@sQ —-Fh 040 — Ny —0.

Since the length over @) is exact, N ® 4 ) = 0 if and only if Z:Z(—l)zkZ = 0. Hence N is torsion
if and only if cs(N) = (3, (—=1)k;)es(A) = 0. m

As an application of Proposition 7.4, we study the minimal injective resolution of finite di-

mensional simple modules over U(sly).
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Proposition 7.5. Let sly be the special linear Lie algebra over the field k = C. The minimal

injective resolution of a finite dimensional simple module S over U(sly) is of the form
0-S—>FES)=I—-1—FE(S)—0,

where

I = @E(N)dimExtl(s,N)
N

where N runs over all infinite dimensional simple modules.

Proof. Let S and T be two finite dimensional simple modules. Since sl; is simple, Extl(T, S)=0.
If S 2 T, then Ext’(7,S) = 0. By the Remark after Corollary 3.4, S' = S for all finite
dimensional simple modules S. By Proposition 7.1.2, Ext*(T, S) = Ext®~2(S,T) = 0 for all S
and T, and Ext*(T,S) = Ext®(S,T) = 0if S 2 T. Therefore Ext*(T,S) = 0 for all i if S 2 T,
and Exti(S, S)=kifi=0,3 and Exti(S, S) =0if ¢ = 1,2. Consider the minimal injective
resolution of S, say

0—S—1°—=I1'"—1I*"—=I—0. (7-2)

Then I° = F(S). By [Da], I° is locally artinian and hence I°/S is locally artinian. By [Dal,
the essential extension I' is locally artinian. Similarly, I is locally artinian for all i. Since
Exti(T, S) =0 for all T for i = 1,2, I' and I?* contain no finite dimensional submodules; since
Ext®(T,S)=0if T2 S and Ext®(S, S) = k, the only finite dimensional simple submodule of I°
is S, whence I* 2 F(S) @ J? where J? contains no finite dimensional modules. By Theorem 3.5,
J? = 0 and hence I? = F(S). Now let N be an infinite dimensional simple module. Since N is
a torsion module and Hom (S, N) = Ext*(S, N) = 0, by Proposition 7.4.4,

dim Ext' (S, N) = dim Ext*(S, N). (7-3)

Then by Corollary 7.2, we also have Hom(N,S) = Ext*(N,S) = 0, and dim Ext'(N,S) =
dim Ext*(N, S). Since k = C is uncountable, Hom (N, N) = k, so

"= = e
N

Hence (7-2) is of the form claimed. O

The previous result is analogous to what happens for connected graded rings of global dimen-
sion 3.
Let N be an infinite dimensional simple U(sly)-module. By Corollary 7.3, injdim N < 2.

Suppose the minimal injective resolution of NV is
0— N -—EN)—1I"—1I*—0.

By [Da], I' is locally artinian for i = 1,2. By (7-3), dim Ext'(S, N) = dim Ext*(S, N) for every

finite dimensional module S. There is a choice of infinite dimensional simple module N such that
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Ext' (S, N) = 0 for all finite dimensional S; for such an N, Ext'(S, N) = 0 for all 4; thus vg(N)
may be zero for all finite dimensional simple modules S even when N is non-zero.

We can also apply these methods to rings of global dimension 2. For example, we leave the
reader to explore what happens when A is AG, CM and gldim A = 2 and Ky(A) 2 Z.

If A is commutative we can prove a version of Proposition 7.1 without the CMy condition (es-

sentially because a commutative noetherian ring of finite global dimension is Auslander regular).

Recall that M; ={M € M | §(M) < i} is a dense subcategory of M for all i.

Lemma 7.6. Let A be a commutative noetherian ring of global dimension d. If M € M;, then
for every noetherian module N, Ext®(M, N) and Ext*(N, M) are in M; for all s.

Proof. We may assume that M is critical and cyclic, hence isomorphic to A/P for some prime
ideal P with §(A/P) < i. Therefore Ext®(M, N) and Ext®(N, M) are finitely generated A/P-
modules, and hence in M;. d

Proposition 7.7. Let A be commutative noetherian with gldim A = d, and let M be a finitely
generated A-module such that j(M) = s = pd(M). Then

1. Ext®(Ext®(M,N), A) 2 Hom (N, M) for all finitely generated A-modules N;

2. in the quotient category M | My_s_1, there are isomorphisms

Ext®(Ext*™" (M, N), A) = Ext'(N, M)

for all finitely generated N and all ¢ > 0;

3. if s = d, then the isomorphism in part 2 is as A-modules.

Proof. The proof is similar to that of Proposition 7.1 and we leave it to the interested reader. [
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