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ABSTRACT 
This note first describes the basic properties of the skew derivations on the 
polynomial ring k[X]. As a consequence of these properties it is proved that 
the q-analogue of the enveloping algebra ofsl(2), Uq(sl(2)), has a unique action 
on C[X], where "action" means that C[X] is a module algebra in the Hopf 
algebra sense. This depends on the fact that the generators of a subalgebra of 
Uq(sl(2)) described by Woronowicz must act via an automorphism, and the 
skew derivations associated to it. 

1. Skew derivations 

Let  A be an  algebra over  a field k,  and  fix a E AutkA. A skew derivation [O] o f  
A is a k- l inear  m a p  ~ : A ~ A such that  

~(ab) = J(a)b  + a(a)O(b) for  all a ,  b ~SA. 

Since the definit ion depends  on a ,  we call 8 a a-derivation. The  set o f  all 
a -de r iva t ions  is deno ted  by  De r ,A .  No te  that  a -  1 E D e r , A ,  and  i f  

~ Der ,A ,  then a S a -  l E DeroA. 
Suppose that  A is commuta t ive .  Then  DermA is a left A-module ,  where A acts 

by  left mult ipl icat ion.  The  power  rule for  a -de r iva t ions  becomes  

tJ(a") = (a ~-1 + an-2a(a)  + . . .  + a(a)n-1)d(a)  

(a n - a(an)) 

a - a(a)  
~(a)  i f a  ~ a(a).  
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More generally, if f is a function of  a, the rule for differentiating a composition 
of  functions becomes (when a ~ a(a)) 

O(f)  = ( f  - a ( f ) ) ( a  - a(a ) ) -  ' ~(a ). 

IfA -- k [ a l , . . . ,  a,] is any finitely generated k-algebra, then a a-derivation 
is completely determined by J(al) . . . .  , J(a,) .  For the free algebra F - -  
k ( X l  . . . . .  X~), the J(Xj) may be chosen arbitrarily. Let I b e  an ideal o f F .  If  
a(I)  C I, and O(I) c I, then a induces an automorphism ofF~I ,  and t~ induces 
a a-derivation on F/ I .  To check that a(I)  c I, and ~(I) c I, it is enough to 
check that a(ra)~ I, and 6(ra)E I for generators ra of  the ideal I. 

We now examine the polynomial ring k[X]. Let 0 be the a-derivation given 
by O ( X ) =  1. Since t ~ D e r o k [ X ]  is determined by ~(X), if t~(X)= p, then 

= pO. Thus Derok[X] is the free k[X]-module with basis 0. What are the 
eigenvalues of  the action of  a on Derok[X] given by ~ ~-> aOa-~? 

LEMMA 1.1. Let  a ~ A u t k k [ X ]  with a ( X ) =  a X  + fl where a, fl ~ k .  Con- 
sider the eigenvalues for  the action o f  a on Derok[X]. 

(a) The only possible eigenvalues are a "-  1, n = 0, 1, 2 , . . . .  
(b) Suppose that a is not a root o f  1. Then the eigenvectors are 

( X  + fl(a - 1) - 1),0 with corresponding eigenvalues a" - 1, n = 0, 1, 2 . . . . .  

PROOF. Let ~ = pO. We view a, p, ~ EEndkk[X] wi thp  acting on k[X] by 
left multiplication. Thus aOa -1 = a p a - l a 0 a  -1. Now a 0 a - l ( X ) = a  -1, so 
a0a  - 1 = a - 10; and apa - 1 = a(p)  because apa - l(f) = a ( p .  a - l(f)) = a (p ) .  f .  

Thus a~a - 1 =  a- la (p )O ,  and ~ is an eigenvector, with a~a -1 = / d  if  and 
only if a (p )  = p ( a X  + fl) = altp(X).  Thus we must find eigenvectors for the 
action of  a on k[X]. 

I f a  = 1 the result is trivial. I r a  ~ 1, we may set Y = X + fl(a - 1)-1. Since 
a ( Y " )  = a " Y  ~, the eigenvectors for the a action on Der,k[X] are the Y"O 
having eigenvalue a n- I • 

COROLLARY 1.2. Let  a ( X )  = a X  + fl where a is not a root o f  1. I f  (~l, ~2~ 
Dero k [X] satisfy a~l a - l = ltd~ and  a~2a- ~ = # - 1~2 for  some  I v~ /a ~ k ,  then ( up 
to scalar multiples) the only possibilities are 

o r  

~ = 0 ,  O 2 = ( X + f l ( a - 1 ) - ~ ) 2 O  and  l t = a  -~ 

~ = ( X + f l ( a - 1 ) - ~ ) 2 0 ,  6 2 = 0  and  l a = a .  
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2. Some Hopf algebras involving skew derivations 

This section gives two examples of non-commutative, and non-cocommuta- 
tive Hopf  algebras, both involving skew derivations. Recall that, i f H  is a Hopf 
algebra with co-multiplication A : H - - - H  ® H, given by A(h) = E~h)htl ) ® h~2), 
then an algebra A is an H-module algebra if A is an H-module, and H 
"measures" A; that is, h .  1 = e(h)l and 

h. (ab) = ~, (ho). a)(ht2 ) • b) for all a, b EA. 
(h) 

An element J E H  is called a-primitive if A ( J ) - - J ~  1 + a ~ J  for some 0 
a ~ H .  The coassociativity of H forces A ( a ) =  a ~ a; that is, a is group-like. 
The properties of the antipode s of  H imply that s(a)= a -~EH and that 
s(J) -- - a - l J .  Hence if A is a H-module algebra, then a acts on A as an 
automorphism, and J acts as a a-derivation. 

EXAMPLE 2.1. Fix 0 ~ aEk ,  and define H = k[Y] • (a) to be the skew 
group ring of the group (a)  ~ Z, over the polynomial ring k[Y] where the 
action is a(Y) = aY. Thus in H, aY = aYa. Make H into a Hopf  algebra by 
defining 

A ( a ) = a ~ a ,  A ( Y ) = Y ~ I + a ~ Y ,  e ( a ) = l ,  

e(Y)=O, s (a )=a  -1, s ( Y ) = - a - l Y .  

Thus H is neither commutative, nor co-commutative. 
The commutative polynomial ring A = k[X] may be made into an H- 

module algebra with a acting as the automorphism a(X) = a -~X and Y acting 
as the a-derivation O~Der, k[X], i.e. Y(X) = 1. Thus H is isomorphic to the 
subalgebra k[a, a -  i, 0] of  Endkk[X]. 

As a Hopf algebra, H is similar in spirit to IS, p. 89] and to [T]. However, 
those examples were not represented as skew derivations. The connection 
between skew derivations and Hopf  algebras was pointed out to one of us by 
Kharchenko [K]; he used the tensor algebra on the vector space generated by 
a//skew derivations of an arbitrary algebra A to construct a Hopf algebra. Our 
H is the "smallest" non-cocommutative subalgebra of his construction. We 
thank M. Artin for suggesting we look at the special case A = k[X]. 

EXAMPLE 2.2. This example reappears in Section 4 in connection with 
Uq(sl(2)). Fix 0 ~ E k ,  and define A = k ( x , y ) / ( x y - ~ y x ) .  Define a ~  



Vol. 72, 1990 SKEW DERIVATIONS 161 

Autk(x,  y) by 0 - ( x ) =  7x and 0-(y)= 7-1y. Consider the a-derivations 01, 02 
on k ( x ,  y )  defined by 

01(x) = O, 01(2) = x and 02(x) = y, 02(2 ) = 0. 

Since ( x y - T y x )  is stable under a, and 8 ~ ( x y - ? y x ) = 0 ,  we may view 
t r E A u t k A  and 0~, 0s~Der,A. Let H = k[O~, 02, 0-, 0--1] be the subalgebra of 
EndkA generated by these elements. 

In H the following relations hold: 

(2.3) a O l = ~ 2 0 1  O, a O S = ~ - - 2 O 2  a 

(2.4) 0102 - -  7-20201 _~_ (~)2 - -  1)- l(0-S __ 1). 

Notice that (2.4) says 0~02 - ?-20201 is a aS-derivation ofA. It is not difficult to 
show that H is defined by precisely these relations: first use the Diamond 
Lemma [B] to show that the algebra defined by the relations (2.3) and (2.4) has 
a basis agorot,  then check that these elements acting on A are linearly 
independent. 

Make H into a Hopf algebra by defining 

A ( a ) = a @ e ,  A ( 0 ~ ) = 0 i @ l + a @ 0 i ,  e(0 . )=l ,  e(0i)=0, 

S ( a )  = 0--1,  S(01 ) = _ 0--101 ' S(02 ) = _ 0.-102. 

This algebra H, which is neither commutative nor co-commutative, first 
appeared in [W], and is isomorphic to a subalgebra of Uq(sl(2)); see (3.1) 
and (3.4). 

3. Uq(sl(2)) and its action on C[X] 

This section concerns the action of Uq(sl(2)), the q-analogue of the envelop- 
ing algebra of sl(2), on C[X]. F i x  0 v~ q E C, not  a root o f  un i ty .  As defined by 
Jimbo [J] and Drinfeld [D], Uq(sl(2)) = C[E,  F, K, K-1] is defined by relations 

K E  = qSEK,  K F  = q - 2 F K ,  E F  - F E  = ( K  z - K - 2 ) / ( q  s - q-S) .  

Make Uq(Sl(2)) a Hopf algebra by defining 

A(E) = E @ K  -1 + K @ E ,  

s ( E )  = - q - 2 E ,  

e ( E )  = O, 

A ( F ) = F @ K  - I  + K @ F ,  

s ( F )  = - qSF, 

e (F)  = O, 

A(K) = K @ K, 

s (K) -- K-  l, 

e ( K )  = 1. 
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Independently of Drinfeld and Jimbo, Woronowicz [W, Table 7, p. 150] 
defined an algebra which, in retrospect, is isomorphic to a subalgebra of 
Uq(sl(2)). We will denote this algebra (which depends on a parameter 
0 ~ vEC) by Wv = C[I[, V~, V2] , with the relations 

v Vo- v-'VoV2= V,, 

v2V V0 - v-2VoV  = (1 + v2) , 

V2~VI -- V-2VI~ = (1 + V2)~. 

LF.MMA 3.1. Suppose that v = q2. Then there is an injective algebra homo- 
morphism Wv --, Uq(sl(2)) defined by 

Vo ~ - qFK, 

VII ~ qEK, 

V 2 v--> (K 4 - -  1 ) / ( q  - 4 -  1). 

PROOF. First consider the subalgebra C[EK, FK, K 4, K -4] of Uq(Sl(2)). The 
defining relations are 

(3.2) K4(EK) = qS(EK)K4, K4(FK) = q-a(FK)K 4, 

(3.3) ( E K ) ( F K ) -  q-4(FK)(EK) -- (K 4 -  1)/(q 4 -  1). 

Consequently, the proposed images of X[, V~, ~ satisfy the defining relations of 
W~. Hence the proposed algebra homomorphism exists. It follows from the 
Diamond Lemma [B] that W~ has a basis V~ V 6 V k with i , j ,  k ~N,  and that 
Uq(sl(2)) has a basis EiFSK k ( i , j  E N, k E Z). The injectivity of the given map 
follows. • 

Thus we may identify W~ with its image in Uq(sl(2)). We shall consider the 
slightly larger algebra W¢:= C[EK, FK, K 2, K-Z]. Notice that We is a sub- 
Hopf algebra of Uq(Sl(2)); the K 2 term is required by consideration of A(EK), 
and the K -2 term is required by consideration ofs(K2). Although W, C Wq, Wv 
is not a Hopf subalgebra; this is the reason we prefer to focus on Wq. 

THEOREM 3.4. Suppose that C[X] is a Wq(sl(2))-module algebra with I( 2 
acting as the automorphism a(X)  = a X  +ft .  Set Y = X + fl(a - 1) - ' .  Then 
(up to an automorphism o f  Wq) there are two possibilities: 

(1) a =  q -4 and E K  ~--> O, FK ~-~ - q -4y20, 
(2) a = q4 and E K  ~-~ - q4y20, FK ~-->0, 
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where O is the o-derivation O( Y) = 1. Furthermore, there is no loss o f  generality 
in assuming that # = O. 

PROOF. Not ice  that  K 2 is group-like, and EK and FK are K2-primitive. 
Therefore  K 2 must  act as an au tomorphism,  and EK and FK act as skew 
der ivat ions  with respect to this au tomorphism.  Write  a ,  81, 62 for the images o f  
K 2, EK, FK in EndcC[X]. After (3.2) and (3.3) the following relations hold: 

(3.5) a6,a  -1 = q'61, a62a -1 = q- '6s ,  

(3.6) 6102 - -  q--46261 = ( a  2 - -  l ) / ( q  4 - -  1). 

Since q4 is an eigenvalue for the a action on Der~C[X], it follows f rom (1.1) 
tha t  q4 is a power  o f  a, and hence a is not  a root  o f  unity.  Set Y =  
X + fl(a - 1) - i. As in (1.1), Y is a a-eigenvector,  and replacing X b y  Y, we may 
take p = 0 .  

B y  ( 1 . 2 )  ei ther  
(1) 61 = Y10, 62 = Y2Y20 and a = q - 4  

o r  

(2) 61 = Yl Yso,  62 = )'20 and a = q4,  

where Yl and Y2 are scalars to be de te rmined  by the requi rement  that  ( 3 . 6 )  

holds. To  de te rmine  y : = YlY2 we compute  the action o f  the expressions in (3.6) 
on  Y". In case ( 1 )  

y(OY20 - aY20 2) : Y" ~-~ y(1 - a")(1 + a")(1 - a) - I y . ,  

(a s - 1)/(q 4 - 1) : rn w-~ a(a 2~ - 1)(l - a) - 1 r . .  

Therefore  7 = - a. In case (2) 

7(y20 2 - a-lOYSO) : Y" ~ 7(1 - a" ) ( l  + a")a -~a - l) - iyn ,  

( a  s - -  1 ) / ( q  4 - -  1) : I:" ~ (a s" - 1)(a - 1) - i y , .  

Therefore  y = - a. 
The  map EK ~ yIEK, FK ~ Y7 tFK, Ks ~ KS is an au tomorph i sm of  Wq. 

Thus,  up to an au tomorph i sm of  Wq, we may assume that  Yl = 1, and so 
Ys = Y = - a ,  or Ys = 1 a n d  yl  = - a .  • 

COROLLARY 3.7. Suppose that C[X] is a Uq((2))-module algebra. Then (up 
to isomorphism of  module algebras, and automorphisms o f  Uq(sl(2)) there are 
two possibilities: 

(1) K=a:X~--> q-2X, E = O a  -1, F =  --q-4X20tT-l, 
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(2) K = a : X ~-~ q2X, E = - -  q 4 X 2 O a -  1, F = Oa- 1, 
where 0 is the a-derivation O(X) = 1. 

PROOF. Instead of proving (3.6) up to an automorphism of Wq, set 
X = ~,- iy and X = ~,2-1Y in cases (1) and (2). Thus X is a K2-eigenvector of 
eigenvalue o~. Write K ( X )  = ~X; thus ~2 = a in the notation of(3.6). In case (1), 
K E ( X )  = a d a - l ( X )  = aO(~-tX) = a(~-l)  = ~-i,  and E K ( X )  = O(X) = 1. 
However, KE = q2EK so ~-1 = q2 and ~ = q-2 in case (1). The second possi- 
bility is obtained in a similar manner. • 

The statement of (3.7) may be slightly changed to avoid mention of 
automorphisms of Uq(sl(2)). 

COROLLARY 3.8. Suppose that C[X] is a Uq(sl(2))-module algebra. There 
exists Y E C[X] such that C[Y] = C[X], and one o f  the following two possibili- 
ties occurs: 

(1) K = a : y ~ - ~ q - 2 y ,  E = O a  -1, F = - q - 4 y E O t r - I  ' 
(2) K = a :  Y~-~ q2y, E = - q 4 y 2 o a - I ,  F = O a  -1, 

where 0 is the a-derivation O(Y) = 1. 

This section was motivated by analogy with the action of U(sl(2)) on C[X] as 
differential operators. That action is given by 

E = 0 ,  H = - 2 X 0 ,  F = - X 2 0 ,  

where 0 = d/dX.  Observe that C[X] is the dual of  a Verma module, and 
contains the trivial module. 

4. A "base afline space" for Uq(Sl(2)) 

Recall the natural action of U(sl(2)) acting as differential operators on the 
commutative ring C[X, Y]. The action is obtained as follows. Let sl(2) act on 
C 2 in the obvious way. There is a unique extension of  this to an action on 
S(C2), the symmetric algebra, such that sl(2) acts as derivations. Explicitly the 
action is given by 

E = Xcg/OY, H = XO/OX - Ycg/OY, F = YO/OX. 

The decomposition of S(C 2) = (~n S n (C 2) into its homogeneous components 
is an sl(2)-module decomposition, and Sn(C 2) is the unique (n + 1)-dimen- 
sional sl(2)-module. 

What is the analogue of this for Uq(sl(2))? 
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THEOREM 4.1 ([L], [R3]). Suppose that q is not a root o f  unity. Then,for 
each n > 0 there are precisely 4 simple Uq(Sl(2))-modules (up to isomorphism) 
o f  dimension n. 

THEOREM 4.2. I f  q is not a root o f  unity, then for each n >_- 1, W, (v = q2) 
has exactly one simple module o f  dimension n. 

PROOF. This follows from [W, Theorem 5.4], with the proviso that invert- 
ing the element K 4 has eliminated all except one of the 1-dimensional modules 
for Wv. See also [BS]. • 

THEOREM 4.3. Let A = C[x, y] where xy  = q2yx. There is an action o f  
Wq(sl(2)) = C[EK, FK, K -+2] on A such that 

(a) A is a Wq(sl(2))-module algebra; 
(b) each homogeneous c o m p o n e n t  A n = ~ l ~ i ~ n C x i y  n-i is a simple 

Wq(sl(2))-module o f  dimension n + 1; 
(c) each A, remains simple over the subalgebra C[EK, FK, K -+4] ~ W v 

(v = q2); 

(d) A is a Uq(sl(2))-module algebra, and the action of  E, F, K on Al is 
E(x)  = 0, E(y)  = qx, F(x)  = q-~y, F(y) = O, K(x) = qx, K(y) = q-~y. 

PROOF. This follows at once from Example 2.2 and Lemma 3.1. Define K 2 
to act via the automorphism x ~-~ q2x,  y w--> q-2y and EK, FK to act as the 
a2-derivations 

EK : x ~--~ O, y ~--~ x, FK : x ~--~ y, y ~-~ O. 

It is routine to check (b) and (c). 

Clearly the same question can be asked for Uq(~). Let G be the simply 
connected, connected algebraic group with Lie G = g, let B be a Borel 
subgroup, with unipotent radical N. The action of U(g) as differential opera- 
tors on C(G/N) is such that each finite-dimensional simple ~-module appears 
in (~(G/N) with multiplicity 1. What is the analogue of ¢(G/N) for Uq(g)? In 
effect we are asking for a quantum version of Borel-Weil-Bott. The action of 
sl(2) on S"(C 2) may be interpreted as an action on the global sections of the line 
bundle t~p,(n). Pursuing this analogy, one may interpret A as the homogeneous 
coordinate ring of the "quantum projective line", and the homogeneous 
components A, as the sections of line bundles. 
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FINAL REMARKS. Consider the relationship between the three different 
algebras Uq(sl(2)), Wq(sl(2)) and IV~ with v--q2.  There are inclusions as 
follows: 

Uq(sl(2)) = C[E, F, K +- 1] 

D Wq(sl(2)) = C[EK, FK, K +-~] D W~ = C[EK, FK, K-+4]. 

The first two are Hopf  algebras, but the last one is not. I fn  > 0, then Uq(sl(2)) 
has 4 distinct n-dimensional simple modules, Wq(sl(2)) has 2 distinct n- 
dimensional simple modules and Wv has a unique n-dimensional simple 
module. In terms of  irreducible representations, W~ is the most like U(sl(2)). 

REFERENCES 
[BS] A. D. Bell and S. P. Smith, Some 3-dimensionalskewpolynomial rings, in preparation. 
[B] G. Bergrnan, The Diamond Lemma for Ring Theory, Adv. Math. 29 (1978), 178-218. 
[D] V. G. Drinfeld, Quantum Groups, Proc. Int. Congr. Math. Berkeley 1 (1986), 798-820. 
[J] M. Jimbo, A q-difference analogue of U(g) and the Yang-Baxter equation, Lett. Math. 

Phys. 10 (1985), 63-69. 
[K] V. K. Kharchenko, Skew derivations of prime rings, Lecture, Stefan Banach Center, 

Warsaw, 1988. 
[L] G. Lusztig, Quantum deformations of certain simple modules over enveloping algebras, 

Adv. Math. 70 (1988), 237-249. 
[M] T. Masuda, K. Mimaehi, Y. Nakagami, M. Noumi and K. Ueno, Representations of 

quantum groups and a q-analogue of orthogonal polynomials, C. R. Acad. Sci. Paris 307 (1988), 
559-564. 

[O] O. Ore, Theory of non-commutative polynomials, Ann. of Math. 3,1 (1933), 480-508. 
[R1] M. Rosso, Comparaison des groupes SU(2) quantiques de Drinfeld et de Woronowicz, 

C. R. Aead. Sei. Paris 304 (1987), 323-326. 
[R2] M. Rosso, Representations irreducibles de dimension finie du q-analogue de l'algebre 

enveloppante d'une algebre de Lie semisimple, C. R. Aead. Sei. Paris 305 (1987), 587-590. 
[R3] M. Rosso, Finite dimensional representations of the quantum analogue of the enveloping 

algebra of a complex simple Lie algebra, Commun. Math. Phys. 117 (1988), 581-593. 
[S] M. Sweedler, HopfAlgebras, Benjamin, New York, 1969. 
IT] E. J. Taft, The order of the antipode of finite dimensional Hopf algebras, Proc. Natl. Acad. 

Sei. U.S.A. 611 (1971), 2631-2633. 
[W] S. L. Woronowiez, Twisted SU(2)-group. An example of a non-commutative differential 

calculus, Publ. R.I.M.S., Kyoto Univ. 23 (1987), 117-181. 


