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Let X be an irreducible plane algebraic curve over an algebraically closed field k of 
characteristic zero. Suppose that X is analytically irreducible at all points. Let g(A’) be the 
ring of differential operators on A’. This paper gives a direct algebraic proof that B‘(A*\X)/ 
0(/I’) is a simple B(A*)-module. This may also be proved via the Riemann-Hilbert corres- 
pondence. 

1. Introduction 

Let k be an algebraically closed field of characteristic zero, Y a non-singular 
affine algebraic variety and Xc Y a hypersurface defined by an irreducible 
f E Q(Y). Write 9 = 9(Y) for the ring of differential operators on Y, and 
consider 6( r\X) = 0’( Y)f as a left 9-module. By Bernstein [l] and Kashiwara [6] 
it is of finite length as a 9-module. It is not difficult to show that 0’( r\X) /6( Y) 
contains a unique simple 9-submodule - this is denoted .9(X, Y). Its existence is 
proved in greater generality in [2]. The problem is to determine _Y?(X, Y). 

We prove the following: 

Theorem. Let X C A” be an irreducible curve. Let P!? denote the normalisation of X, 
and suppose that rr : x* X, the natural projection, is injective. Then 2(X, A*) = 
6(A2\X) /B(A2). 

This theorem is known to the S-modules experts. It was pointed out to the 
author, by J.-L. Brylinski and the referee, that it is a consequence of the 
Riemann-Hilbert correspondence. However the present paper gives the first 
purely algebraic proof of this result. 

One motivation for wanting to describe 3(X, Y) is that the de Rham complex 
satisfies DR(.Z(X, Y)) = IC,[ - 11, the Goresky-MacPherson intersection homol- 
ogy complex for the middle perversity (41. 

There are a number of results describing a generator for 3(X, Y); see for 
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example [2] and [9]. In the case of an arbitrary irreducible curve X C A2 defined 
by f, it is remarked in [2, Introduction] that Z’(X, Y) is generated by f -‘df/dx 
when O(A’) = k[x, y]. Of course, this does not make it possible to decide if a 
given element of 6(A2)flS(A2) belongs to .Z(X, A’). 

The theorem above extends the well-known fact that if X C A2 is non-singular, 
then B(A2\X) /6(A2) is a simple B(A2)-module. Recall that the usual proof of 
this uses the fact that, if X is defined by f E 6(A2), then the ideal of 0(A2) 
generated by dfldx, dfldy and f equals 6(A2). Of course such a result is not 
available to us when X is singular. 

The idea of the proof is to extend some of the work in [7]. Let X be any curve, 
X its normalisation, and let rr : X-, X the natural projection. In [7, 931 it is shown 
that if rr is injective, then 6(X) is a simple a(X)-module and furthermore, that 
g(X) is Morita equivalent to g(X). In Section 2 we extend this result as follows. 
Set R = k[x, y] = B(A2), let f E R define the curve X, and suppose that rr : X+ X 
is injective; then for all 12 EN, R/fnR is a simple g(R/f”R)-module (Corollary 
2.9). Recall that as in [7, $11, 9(A) is defined for any commutative k-algebra A. 
Having established this, the main theorem is a relatively straightforward con- 
sequence. The proof is given in Section 3; by reading Section 3 first the reader will 
understand the necessity of Section 2. 

Let us recall some of the notation of [7]. Let A C C be commutative k-algebras. 
If D E 9(C) and f E C, write D * f := D(f) for the evaluation of the differential 
operator D on$ Define ~(C,A):={DE%(C)ID*~EA for all fEC}, and 
9(C,A)*C={D*flDE9(C,A) andfEC}. 

2. Differential operators on k[x, y]/(f”) 

Set R = k[x, y] = 0(A2), let f E R be irreducible, and let XC_ A2 denote the 
curve defined by f. Set A = Rlf “R. 

The goal of this section is to show that there are inclusions of k-algebras 

A C 6(X) 8 k[z] /(z”) c S(x) 63 k[z] /(z”) c Fract A 

and-that A is of finite codimension in 6(X) @k[z]/(z”). When the projection 
T: X-+ X from the normalisation is injective, the arguments of [7, Propositions 
3.3, 3.41 may be adapted to show that 53(A) is Morita equivalent to 
9(0’(X)@ k[z]l(z”)). But the latter is isomorphic to g(X) Bk M,(k), where 
M,(_k) is the ring of n x n matrices over k. Hence 9(A) is Morita equivalent to 
B(X), and in particular is a simple ring, It follows that A is a simple 9(A)- 
module, and this is the result which is carried forward to Section 3, and used there 
to establish the main theorem of the paper. 

Proposition 2.1. Let R = k[t,, . . . , td] = 6’(Ad), and suppose that f E R is irreduc- 
ible, defining a hypersurface X. Let n E N. Then there is a k-algebra homomor- 
phism 
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such that ker f3 = f”R. 

Proof. Since k = flT=l k[t,, . . . , (., . . . , 
A 

td] (where tj means ‘omit t,‘) we may 
assume, without loss of generality, that fek[t,, . . . , td]. 

Let I,/J : R + 6(X) be the natural map with kernel fR. Define 0 by 

Ott,) = $(l,> + z 1 0(t,) = $(ti) (2 4 i 5 d) 

and extend 0 to a k-algebra homomorphism. By Taylor’s theorem it follows, for 
gE R, that 

Hence, ker 8 = {g E R ( dig/at{ E fR for all 0 I j < PZ} . It is clear that f “R C_ ker 8, 
and the reverse inclusion follows from the 

Sublemma. if #g/at{ E fR for alf 05 j < n, then g E f”R. 

Proof. By induction on it. The sublemma is true if n = 1. Assuming that the 
sublemma holds for n - 1, we may suppose that g E f”-‘R. Since d’/ati(ag/at,) E 
fR for all 05 j< n - 1, the induction hypothesis ensures that dgldt, E f”-‘R. 
Write g = f”-‘h. Then 

$ = (n - l)f”-*h $- + f”-’ $ E f"-'R 
1 1 1 

Hence h aflat, E fR. By assumption, deg,,( f) 2 1, and so (by a degree argument) 
it follows that aflat, @fR. Hence, as fR is a prime ideal, h E fR. Thus g E f”R as 
required. Cl0 

We now turn to the case we are interested in, namely d = 2. Write A = Rlf”R, 

and A’ = 6(X)gk k[z]/(z”). 

Lemma 2.2. Let R = k[x, y] = 6(A*). Let 0 Zf E R be irreducible defining a curve 
XcA*. Let nEN, and let 

8 : Rlf”R+ O(X) Bk k[z] /(z”) 

be the injective algebra homomorphism obtained in Proposition 2.1. Then 
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(a) O(R/f”R) is of finite codimension (us a k-vector space) in 

(b) We have inclusions 

R/f”R C 0(X) (Bk k[z] /(z”) C Fract(R/f”R) 

where Fract( ) denotes the ring of fractions. 

Proof. (a) Write V= R/f”R, U = B(X) mk k[z] /(z”). There are filtrations of these 
vector spaces V= V, 2 V, 2 * . . > V, = 0, and U = U, 2 U, 2. . .> U,, = 0 where 
V, = Af’ are Ui = A’?. The injection 13 : V -+ U satisfies O(Vi) C Ui and 0(V) fl 
Uj = 0(K). Hence if we consider the short exact sequences below, and the 
injections induced by 8, we obtain an injection y : Vi/V,+, -+ U,/ U,,, making the 
following diagram commute: 

o+v,+,+vi~vilvi+,~o 

I I 
o-3 u,+,-t ui+ uilu,,,+o 

The aim is to show that dim,(U/0(V)) < m, and the idea is to show by induction 
on i that dim,(U,/0(V,)) cm. It is clear that if dim,(U,+l/B(V,+l)) <m and 
dim,((U,/U,+,) /y(q/Vj+I)) CM, then dim,(U,/B(V)) <to. Hence one need only 
show that y(Vi/~+I) is of finite codimension in U,lUi+,; note that as V, = 0 and 
U,, = 0 this will also start the induction process. 

Note that U,/U,+, and V/V,+, are both free B(X)-modules of rank 1. However, 
y is an 6(X)-module homomorphism because 0( fir) = fI( f’)e(r), and e(r) - 
$(r) E A’z; hence O(fir) = e(fi)#(r) (mod U,+l). As y #O, we have that r(V/ 
V,,,) is a nonzero B(X)-submodule of the cyclic B(X)-module U,/U,+,. Hence, 
y(y/V,+ 1) is necessarily of finite codimension in U,/ U, +l. This establishes (a). 

(b) We now consider A C A’. The regular elements of A are precisely those 
elements not in fA. There exists 4 E A which is transcendental over k, and 
k[ S] n fA = 0. Hence, k( 6) c Fract A. Since A’IA is a finite-dimensional vector 
space, there exists 0 #p(e) E k[[] such that A’p( c) c A. As p( 5) is a unit in 
Fract A, we have A’ C_ Fract A. This completes the proof of (b). 0 

Corollary 2.3. There are inclusions of k-algebras 

R/f”R C O(z) C3 k[z] /(z”) C Fract(R/f”R) 

and RIf”R is of finite codimension in B(x) @ k[z]/(z”). The map 
Spec(B(X) 63 k[z] /(z”))-+ Spec(R/f”R) is the natural projection 7~ : g+ X. 
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Proof. The inclusion of the k-algebras is obtained from the previous lemma 
together with the natural inclusion 0(X) c 6(X). The fact that R/f”R is of finite 
codimension, follows from the previous lemma, and the fact that O(X) is of finite 
codimension in Q(X). The fact that 0: RIf”R+ 6(x) 8 k[z]l(z”) induces an 
isomorphism after factoring out both these algebras by their nilpotent radicals 
ensures that the map on the spectra is as claimed. Cl 

Proposition 2.4. 9(k[z] /(z”)) g M,(k), the ring of n X n matrices over k. 

Proof. Write T = k[z]l(z”) and set .I, = ker( pT: T @‘k T* T), where pr is the 
multiplication map. Then J, is generated by 1 @z - z @I 1; hence .I’, = 0. Now 

9(T) =l&Homr(T@,TIJT;I, T) =Homr(TBkT, T) 

=iin(k). 0 

Proposition 2.5. 

9(0(x) @ k[z] /(z”)) = 9(x) @.k M,(k) . 

Proof. Write C= 0(X), T = k[z]l(z”), B = C@, T. Denote by J,, .I,, J, the 
kernel of the multiplication 
respectively. Note that, when 
B @‘k B, we have J,, J, c J, 
b G3 1) b E B} it follows that 

Thus for all m E N 

maps B@‘,B+B, C@,C+C and TgkT-+T 
we consider C Qk C and T Bk T as subalgebras of 

Furthermore, since JB is generated by (1 @ b - 

J,@T@T. 

J~m~CcCcJ~+J~~TTTTJ~. 

Since, Jp = 0, we have for m 2 2n, 

J;.“CJ;@TTTTJ;. 

Thus the sequence Js @ T @iI T is cofinal with the sequence Ji. Hence 

9(B) = l%Hom,(B@ BI(JT@ T@ T), B) 
m 

= 1% Horn,,, ((C@CIJ:)@T@T,C@T) 
m 

=12Hom,(C@ C/J:, C)@Hom.(T@ T, T) 

= i(C) ‘8 M,(k) . 0 
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Corollary 2.6. The k-algebras 9(6’(X) 63 k[z]l(z”)) and 9(X) are Moritu 

equivalent. 0 

Remark. Thus 9(B(r?) 69 k[z]l(z”)) inherits the ‘good’ properties of 9(T); in 
particular it is a simple, noetherian ring of global homological dimension 1. 

We now consider the inclusion A = R/f “R C O(X) @3’k k[z] /(z”). 

Proposition 2.7. Write C = 0’(X) 69 k[z] /(z”). The following are equivalent: 

(a) 9(A) is a simple ring; 

(b) 9(C, A) * C = A; 

(4 g(A) = End,(,,a(C, A); 
(d) 9(A) and 9(C) are Moritu equivalent. 

Proof. Exactly the same proof as [7, Proposition 3.31 will work. 0 

Proposition 2.8. When 7~ : X+ X is injective, then all the equivalent conditions of 
Proposition 2.7 are satisfied. 

Proof. We shall prove that (b) is satisfied. The proof imitates that of [7, Theorem 
3.41. 

Consider A = R/f”R c C = O(X) @ k[t] /(I?). Let M be a maximal ideal of A, 

and let Q be the unique (after Corollary 2.3) maximal ideal of C containing M. 
Write S = A\M, and note that these are regular elements of A. Let P be the 
maximal ideal of a(_?) given by P=Qn6(X). Then A,cC,= 

0(X), @ k[z]l(z”). Set m = P0’(X)r. As (f?(2),, m) is a l-dimensional regular 
local ring, we may choose t E P such that m = t6’(&,. Let a E Der 6(x), satisfy 
d(t) = 1. By setting a(z) = 0 we may extend 8 to a derivation on C,. 

After Proposition 2.4, k[z]l(z”) is a simple 9(k[z]/(z”))-module, so there 
exists D, E 9(k[z] /(z”)) such that DI(l) = 1 and D,(z’) = 0 for 0 < i < n. (Ex- 
plicitly D, is a scalar multiple of fl;Zi (za, - i) where d, is the derivation d/dz). 
Extend D, to an B(g),-linear map on C,, so that D, E 9(C,). 

After Corollary 2.3, As is of finite codimension in C,, so for some r E N, 
t’C, c As. Write C, = t’C, G3 V where V is the k-vector space with basis B = 
{t’zi]OSj<r,O%i<n}. Consider D, = fl>l: (ta - j) E 9(C,). Then D = 
D, D, E S(C,) and satisfies D(tiz’) = 0 for all tizL E B\(l), and 0 f D(1) E k. 
Furthermore, D(t’C,) c t’C,. Thus D E 9(Cs, As) and 1 E D * C,. There exists 
s E S such that SD E 9(C, A), and sED*C. Hence D*CgM. Since M was 
arbitrary, it follows that 9(C, A) * C = A as required. Cl 

Corollary 2.9. If rr : X+ X is injective, then Rlf”R is a simple 9(Rlf”R )-module. 
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Proof. After Corollary 2.6 and Propositions 2.7 and 
that S(R/f”R) is Morita equivalent to 9(x). Hence 
Consequently R/f “R is a simple 9( R lf “R) -module, 
module would have a nonzero annihilator. 0 

3. The 5%module k[x, ylflk[x, y] 
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2.8 it has been established 
9(R/f”R) is a simple ring. 
because any proper factor 

Keep the notation of Section 2. Recall the definition of the idealiser in [7, 91.51. 
Write $9 = 9(k[x, y]) = 9(A2), and define 

O(9f”) = {D E 9 1 f”D E 9f”) . 

Notice that 9f” becomes a two-sided ideal of O(9f”). If k[x, y]+k[x, y] is viewed 
as an O(9f”)-module, then fP”k[x, y]lk[x, y] becomes an O(Bf”)-submodule 
which is annihilated by 9f”. 

Lemma 3.1. Suppose that, for all n EN, f-“k[x, y]lk[x, y] is a simple O(Bf”)/ 
Sf”-module. Then k[x, y]/k[x, y] is a simple 9-module. 

Proof. Suppose that the hypothesis holds and let m, m’ be elements of k[x, y],l 

k[x, y] with m # 0. For n sufficiently large, m, m’ E f Pnk[x, y]lk[x, y]. Hence 
m’ E O($Bf”). m c 9m, and the result follows. •1 

Notice that there is a k-algebra isomorphism cp: 0(9f”)+ O( f”9) given by 
p(D) = D’, where, for D E 0(9f”), D’ E 9 is the element such that f”D = D’f”. 

One sees that cp induces an isomorphism 

However, recall the following: 

Proposition 3.2 (Smith and Stafford [7, (1.6)]). U( f”9)/f”9 E B(k[x, y]l( f”)) . 
! 

Thus, in a natural way, f-“k[x, y]lk[x, y] is given the structure of a left 
9(k[x, y] /( f”))-module. The key observation is now: 

Lemma 3.3. As a 9(k[x, y]/( f”))-module, f -nk[x, y]lk[x, y] is isomorphic to 

k[x, yll(f”). 

Proof. This is routine. Just chase the isomorphisms above together with that in 
Proposition 3.2, as presented in [7, 01.61, and combine these with the natural 
k[x, y]-module isomorphism k[x, y] /( fn)+ f -nk[x, y] lk[x, y]. 0 
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Hence we obtain the theorem of the introduction: 

Theorem. If n-:_%+-X is injective, then k[x, y],lk[x, y] is a simple 9-module. 

Proof. Combine Lemmas 3.1 and 3.3, Proposition 3.2 and Corollary 2.7. 0 

Remark. In retrospect, the key to the proof is the fact that ‘3(k[x, y] /( f”)) is 
a simple ring. However, [7, Q1.5, 1.61 9(k[x, y]l( f”)) g End,(&@/f’?B). Thus 
if we had known to start that 9/f “9 were isomorphic to a direct sum of y1 
copies of 9alf9, we would have had at once that 9(k[x, y]l( f”)) s 
Wk[x, rll(f))@‘~M,,(k)> and hence the ring is simple (when rr is injective). 
Although our result does not imply the splitting of 9/f”9, we have been informed 
by Van den Essen and Van Doorn that they can prove that, if rr: X+= X is 
injective, then Exti(9dlf9, 9if9) = 0. This of course guarantees the splitting of 
9/f%, and so would give a quicker proof of our Corollary 2.7. Their work, to 
appear in [8], also shows that k[x, y],lk[x, y] is a simple 9-module. The two 
approaches are quite different (although they also begin with the Morita equival- 
ence of 9(X) and 9(X) established in [7]). 
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