THE SIMPLE D-MODULE ASSOCIATED TO THE INTERSECTION HOMOLOGY COMPLEX FOR A CLASS OF PLANE CURVES

S.P. SMITH*

Mathematics Institute, University of Warwick, Coventry CV4 7AL, United Kingdom

Communicated by C.A. Weibel Received 1 March 1986

Let X be an irreducible plane algebraic curve over an algebraically closed field k of characteristic zero. Suppose that X is analytically irreducible at all points. Let $\mathcal{D}(\mathbb{A}^2)$ be the ring of differential operators on \mathbb{A}^2 . This paper gives a direct algebraic proof that $\mathcal{O}(\mathbb{A}^2 \setminus X) / \mathcal{O}(\mathbb{A}^2)$ is a simple $\mathcal{D}(\mathbb{A}^2)$ -module. This may also be proved via the Riemann-Hilbert correspondence.

1. Introduction

Let k be an algebraically closed field of characteristic zero, Y a non-singular affine algebraic variety and $X \subseteq Y$ a hypersurface defined by an irreducible $f \in \mathcal{O}(Y)$. Write $\mathcal{D} = \mathcal{D}(Y)$ for the ring of differential operators on Y, and consider $\mathcal{O}(Y \setminus X) = \mathcal{O}(Y)_f$ as a left \mathcal{D} -module. By Bernstein [1] and Kashiwara [6] it is of finite length as a \mathcal{D} -module. It is not difficult to show that $\mathcal{O}(Y \setminus X) / \mathcal{O}(Y)$ contains a unique simple \mathcal{D} -submodule – this is denoted $\mathcal{L}(X, Y)$. Its existence is proved in greater generality in [2]. The problem is to determine $\mathcal{L}(X, Y)$.

We prove the following:

Theorem. Let $X \subseteq \mathbb{A}^2$ be an irreducible curve. Let \tilde{X} denote the normalisation of X, and suppose that $\pi : \tilde{X} \to X$, the natural projection, is injective. Then $\mathcal{L}(X, \mathbb{A}^2) = \mathcal{O}(\mathbb{A}^2 \setminus X) / \mathcal{O}(\mathbb{A}^2)$.

This theorem is known to the \mathcal{D} -modules experts. It was pointed out to the author, by J.-L. Brylinski and the referee, that it is a consequence of the Riemann-Hilbert correspondence. However the present paper gives the first purely algebraic proof of this result.

One motivation for wanting to describe $\mathscr{L}(X, Y)$ is that the de Rham complex satisfies $DR(\mathscr{L}(X, Y)) = IC_Y[-1]$, the Goresky-MacPherson intersection homology complex for the middle perversity [4].

There are a number of results describing a generator for $\mathcal{L}(X, Y)$; see for

0022-4049/88/\$3.50 © 1988, Elsevier Science Publishers B.V. (North-Holland)

^{*} Current address: Department of Mathematics, University of Washington, Seattle, WA 98195, U.S.A.

example [2] and [9]. In the case of an arbitrary irreducible curve $X \subset \mathbb{A}^2$ defined by f, it is remarked in [2, Introduction] that $\mathscr{L}(X, Y)$ is generated by $f^{-1}df/dx$ when $\mathscr{O}(\mathbb{A}^2) = k[x, y]$. Of course, this does not make it possible to decide if a given element of $\mathscr{O}(\mathbb{A}^2)_f/\mathscr{O}(\mathbb{A}^2)$ belongs to $\mathscr{L}(X, \mathbb{A}^2)$.

The theorem above extends the well-known fact that if $X \subset \mathbb{A}^2$ is non-singular, then $\mathcal{O}(\mathbb{A}^2 \setminus X) / \mathcal{O}(\mathbb{A}^2)$ is a simple $\mathcal{D}(\mathbb{A}^2)$ -module. Recall that the usual proof of this uses the fact that, if X is defined by $f \in \mathcal{O}(\mathbb{A}^2)$, then the ideal of $\mathcal{O}(\mathbb{A}^2)$ generated by df/dx, df/dy and f equals $\mathcal{O}(\mathbb{A}^2)$. Of course such a result is not available to us when X is singular.

The idea of the proof is to extend some of the work in [7]. Let X be any curve, \tilde{X} its normalisation, and let $\pi: \tilde{X} \to X$ the natural projection. In [7, §3] it is shown that if π is injective, then $\mathcal{O}(X)$ is a simple $\mathcal{D}(X)$ -module and furthermore, that $\mathcal{D}(X)$ is Morita equivalent to $\mathcal{D}(\tilde{X})$. In Section 2 we extend this result as follows. Set $R = k[x, y] = \mathcal{O}(\mathbb{A}^2)$, let $f \in R$ define the curve X, and suppose that $\pi: \tilde{X} \to X$ is injective; then for all $n \in \mathbb{N}$, $R/f^n R$ is a simple $\mathcal{D}(R/f^n R)$ -module (Corollary 2.9). Recall that as in [7, §1], $\mathcal{D}(A)$ is defined for any commutative k-algebra A. Having established this, the main theorem is a relatively straightforward consequence. The proof is given in Section 3; by reading Section 3 first the reader will understand the necessity of Section 2.

Let us recall some of the notation of [7]. Let $A \subset C$ be commutative k-algebras. If $D \in \mathcal{D}(C)$ and $f \in C$, write D * f := D(f) for the evaluation of the differential operator D on f. Define $\mathcal{D}(C, A) := \{D \in \mathcal{D}(C) | D * f \in A \text{ for all } f \in C\}$, and $\mathcal{D}(C, A) * C = \{D * f | D \in \mathcal{D}(C, A) \text{ and } f \in C\}$.

2. Differential operators on $k[x, y]/(f^n)$

Set $R = k[x, y] = \mathcal{O}(\mathbb{A}^2)$, let $f \in R$ be irreducible, and let $X \subseteq \mathbb{A}^2$ denote the curve defined by f. Set $A = R/f^n R$.

The goal of this section is to show that there are inclusions of k-algebras

$$A \subseteq \mathcal{O}(X) \otimes k[z]/(z^n) \subseteq \mathcal{O}(X) \otimes k[z]/(z^n) \subseteq \text{Fract } A$$

and that A is of finite codimension in $\mathcal{O}(\tilde{X}) \otimes k[z]/(z^n)$. When the projection $\pi: \tilde{X} \to X$ from the normalisation is injective, the arguments of [7, Propositions 3.3, 3.4] may be adapted to show that $\mathcal{D}(A)$ is Morita equivalent to $\mathcal{D}(\mathcal{O}(\tilde{X}) \otimes k[z]/(z^n))$. But the latter is isomorphic to $\mathcal{D}(\tilde{X}) \otimes_k M_n(k)$, where $M_n(k)$ is the ring of $n \times n$ matrices over k. Hence $\mathcal{D}(A)$ is Morita equivalent to $\mathcal{D}(\tilde{X})$, and in particular is a simple ring. It follows that A is a simple $\mathcal{D}(A)$ -module, and this is the result which is carried forward to Section 3, and used there to establish the main theorem of the paper.

Proposition 2.1. Let $R = k[t_1, \ldots, t_d] = \mathcal{O}(\mathbb{A}^d)$, and suppose that $f \in R$ is irreducible, defining a hypersurface X. Let $n \in \mathbb{N}$. Then there is a k-algebra homomorphism

$$\theta: R \to \mathcal{O}(X) \otimes_k k[z]/(z^n)$$

such that ker $\theta = f^n R$.

Proof. Since $k = \bigcap_{j=1}^{d} k[t_1, \ldots, \hat{t_j}, \ldots, t_d]$ (where $\hat{t_j}$ means 'omit t_j ') we may assume, without loss of generality, that $f \not\in k[t_2, \ldots, t_d]$.

Let $\psi: R \to \mathcal{O}(X)$ be the natural map with kernel fR. Define θ by

$$\theta(t_1) = \psi(t_1) + z$$
, $\theta(t_i) = \psi(t_i)$ $(2 \le i \le d)$.

and extend θ to a k-algebra homomorphism. By Taylor's theorem it follows, for $g \in R$, that

$$\theta(g) = g(\psi(t_1) + z, \psi(t_2), \dots, \psi(t_d))$$
$$= \sum_{j=0}^{n-1} \frac{1}{j!} \psi\left(\frac{\partial^j g}{\partial t_1^j}\right) z^j.$$

Hence, ker $\theta = \{g \in R \mid \partial^j g / \partial t_1^j \in fR \text{ for all } 0 \le j < n\}$. It is clear that $f^n R \subseteq \ker \theta$, and the reverse inclusion follows from the

Sublemma. If $\partial^j g / \partial t_1^j \in fR$ for all $0 \le j < n$, then $g \in f^n R$.

Proof. By induction on *n*. The sublemma is true if n = 1. Assuming that the sublemma holds for n - 1, we may suppose that $g \in f^{n-1}R$. Since $\partial^{j}/\partial t_{1}^{j}(\partial g/\partial t_{1}) \in fR$ for all $0 \le j < n - 1$, the induction hypothesis ensures that $\partial g/\partial t_{1} \in f^{n-1}R$. Write $g = f^{n-1}h$. Then

$$\frac{\partial g}{\partial t_1} = (n-1)f^{n-2}h \frac{\partial f}{\partial t_1} + f^{n-1} \frac{\partial h}{\partial t_1} \in f^{n-1}R .$$

Hence $h \partial f/\partial t_1 \in fR$. By assumption, $\deg_{t_1}(f) \ge 1$, and so (by a degree argument) it follows that $\partial f/\partial t_1 \not \in fR$. Hence, as fR is a prime ideal, $h \in fR$. Thus $g \in f^nR$ as required. $\Box \Box$

We now turn to the case we are interested in, namely d = 2. Write $A = R/f^n R$, and $A' = \mathcal{O}(X) \bigotimes_k k[z]/(z^n)$.

Lemma 2.2. Let $R = k[x, y] = \mathcal{O}(\mathbb{A}^2)$. Let $0 \neq f \in R$ be irreducible defining a curve $X \subseteq \mathbb{A}^2$. Let $n \in \mathbb{N}$, and let

$$\theta: R/f^n R \to \mathcal{O}(X) \otimes_k k[z]/(z^n)$$

be the injective algebra homomorphism obtained in Proposition 2.1. Then

(a) $\theta(R/f^nR)$ is of finite codimension (as a k-vector space) in

 $\mathcal{O}(X) \otimes_k k[z]/(z^n);$

(b) We have inclusions

$$R/f^n R \subseteq \mathcal{O}(X) \otimes_k k[z]/(z^n) \subseteq \operatorname{Fract}(R/f^n R)$$

where Fract() denotes the ring of fractions.

Proof. (a) Write $V = R/f^n R$, $U = \mathcal{O}(X) \otimes_k k[z]/(z^n)$. There are filtrations of these vector spaces $V = V_0 \supseteq V_1 \supseteq \cdots \supseteq V_n = 0$, and $U = U_0 \supseteq U_1 \supseteq \cdots \supseteq U_n = 0$ where $V_i = Af^i$ are $U_i = A'z^i$. The injection $\theta: V \to U$ satisfies $\theta(V_i) \subseteq U_i$ and $\theta(V) \cap U_i = \theta(V_i)$. Hence if we consider the short exact sequences below, and the injections induced by θ , we obtain an injection $\gamma: V_i/V_{i+1} \to U_i/U_{i+1}$ making the following diagram commute:

The aim is to show that $\dim_k(U/\theta(V)) < \infty$, and the idea is to show by induction on *i* that $\dim_k(U_i/\theta(V_i)) < \infty$. It is clear that if $\dim_k(U_{i+1}/\theta(V_{i+1})) < \infty$ and $\dim_k((U_i/U_{i+1})/\gamma(V_i/V_{i+1})) < \infty$, then $\dim_k(U_i/\theta(V_i)) < \infty$. Hence one need only show that $\gamma(V_i/V_{i+1})$ is of finite codimension in U_i/U_{i+1} ; note that as $V_n = 0$ and $U_n = 0$ this will also start the induction process.

Note that U_i/U_{i+1} and V_i/V_{i+1} are both free $\mathcal{O}(X)$ -modules of rank 1. However, γ is an $\mathcal{O}(X)$ -module homomorphism because $\theta(f^i r) = \theta(f^i)\theta(r)$, and $\theta(r) - \psi(r) \in A'z$; hence $\theta(f^i r) = \theta(f^i)\psi(r) \pmod{U_{i+1}}$. As $\gamma \neq 0$, we have that $\gamma(V_i/V_{i+1})$ is a nonzero $\mathcal{O}(X)$ -submodule of the cyclic $\mathcal{O}(X)$ -module U_i/U_{i+1} . Hence, $\gamma(V_i/V_{i+1})$ is necessarily of finite codimension in U_i/U_{i+1} . This establishes (a).

(b) We now consider $A \subseteq A'$. The regular elements of A are precisely those elements not in fA. There exists $\xi \in A$ which is transcendental over k, and $k[\xi] \cap fA = 0$. Hence, $k(\xi) \subseteq$ Fract A. Since A'/A is a finite-dimensional vector space, there exists $0 \neq p(\xi) \in k[\xi]$ such that $A'p(\xi) \subseteq A$. As $p(\xi)$ is a unit in Fract A, we have $A' \subseteq$ Fract A. This completes the proof of (b). \Box

Corollary 2.3. There are inclusions of k-algebras

$$R/f^n R \subseteq \mathcal{O}(\tilde{X}) \otimes k[z]/(z^n) \subseteq \operatorname{Fract}(R/f^n R)$$

and $R/f^n R$ is of finite codimension in $\mathcal{O}(\tilde{X}) \otimes k[z]/(z^n)$. The map $\operatorname{Spec}(\mathcal{O}(\tilde{X}) \otimes k[z]/(z^n)) \to \operatorname{Spec}(R/f^n R)$ is the natural projection $\pi : \tilde{X} \to X$.

Proof. The inclusion of the k-algebras is obtained from the previous lemma together with the natural inclusion $\mathcal{O}(X) \subseteq \mathcal{O}(\tilde{X})$. The fact that $R/f^n R$ is of finite codimension, follows from the previous lemma, and the fact that $\mathcal{O}(X)$ is of finite codimension in $\mathcal{O}(\tilde{X})$. The fact that $\theta: R/f^n R \to \mathcal{O}(\tilde{X}) \otimes k[z]/(z^n)$ induces an isomorphism after factoring out both these algebras by their nilpotent radicals ensures that the map on the spectra is as claimed. \Box

Proposition 2.4. $\mathcal{D}(k[z]/(z^n)) \cong M_n(k)$, the ring of $n \times n$ matrices over k.

Proof. Write $T = k[z]/(z^n)$ and set $J_T = \ker(\mu_T : T \otimes_k T \to T)$, where μ_T is the multiplication map. Then J_T is generated by $1 \otimes z - z \otimes 1$; hence $J_T^{2n} = 0$. Now

$$\mathfrak{D}(T) = \varinjlim_{m} \operatorname{Hom}_{T}(T \otimes_{k} T/J_{T}^{m}, T) = \operatorname{Hom}_{T}(T \otimes_{k} T, T)$$
$$\cong M_{n}(k) . \qquad \Box$$

Proposition 2.5.

$$\mathcal{D}(\mathcal{O}(\tilde{X}) \otimes k[z]/(z^n)) \cong \mathcal{D}(\tilde{X}) \otimes_k M_n(k) .$$

Proof. Write $C = \mathcal{O}(\tilde{X})$, $T = k[z]/(z^n)$, $B = C \otimes_k T$. Denote by J_B , J_C , J_T the kernel of the multiplication maps $B \otimes_k B \rightarrow B$, $C \otimes_k C \rightarrow C$ and $T \otimes_k T \rightarrow T$ respectively. Note that, when we consider $C \otimes_k C$ and $T \otimes_k T$ as subalgebras of $B \otimes_k B$, we have J_C , $J_T \subseteq J_B$. Furthermore, since J_B is generated by $\{1 \otimes b - b \otimes 1 | b \in B\}$ it follows that

$$J_{R} = C \otimes C \otimes J_{T} + J_{C} \otimes T \otimes T .$$

Thus for all $m \in \mathbb{N}$

$$J_B^{2m} \subseteq C \otimes C \otimes J_T^m + J_C^m \otimes T \otimes T \subseteq J_B^m.$$

Since, $J_T^{2n} = 0$, we have for $m \ge 2n$,

$$J_B^{2m} \subseteq J_C^m \otimes T \otimes T \subseteq J_B^m \,.$$

Thus the sequence $J_C^m \otimes T \otimes T$ is cofinal with the sequence J_B^m . Hence

Corollary 2.6. The k-algebras $\mathfrak{D}(\mathcal{O}(\tilde{X}) \otimes k[z]/(z^n))$ and $\mathfrak{D}(\tilde{X})$ are Morita equivalent. \Box

Remark. Thus $\mathcal{D}(\mathcal{O}(\tilde{X}) \otimes k[z]/(z^n))$ inherits the 'good' properties of $\mathcal{D}(\tilde{X})$; in particular it is a simple, noetherian ring of global homological dimension 1.

We now consider the inclusion $A = R/f^n R \subseteq \mathcal{O}(\tilde{X}) \otimes_k k[z]/(z^n)$.

Proposition 2.7. Write $C = \mathcal{O}(\tilde{X}) \otimes k[z]/(z^n)$. The following are equivalent:

- (a) $\mathcal{D}(A)$ is a simple ring;
- (b) $\mathcal{D}(C, A) * C = A;$
- (c) $\mathfrak{D}(A) = \operatorname{End}_{\mathfrak{D}(C)} \mathfrak{D}(C, A);$
- (d) $\mathcal{D}(A)$ and $\mathcal{D}(C)$ are Morita equivalent.

Proof. Exactly the same proof as [7, Proposition 3.3] will work. \Box

Proposition 2.8. When $\pi: \tilde{X} \to X$ is injective, then all the equivalent conditions of Proposition 2.7 are satisfied.

Proof. We shall prove that (b) is satisfied. The proof imitates that of [7, Theorem 3.4].

Consider $A = R/f^n R \subseteq C = \mathcal{O}(\tilde{X}) \otimes k[z]/(z^n)$. Let M be a maximal ideal of A, and let Q be the unique (after Corollary 2.3) maximal ideal of C containing M. Write $S = A \setminus M$, and note that these are regular elements of A. Let P be the maximal ideal of $\mathcal{O}(\tilde{X})$ given by $P = Q \cap \mathcal{O}(\tilde{X})$. Then $A_S \subseteq C_S =$ $\mathcal{O}(\tilde{X})_P \otimes k[z]/(z^n)$. Set $\mathfrak{m} = P\mathcal{O}(\tilde{X})_P$. As $(\mathcal{O}(\tilde{X})_P, \mathfrak{m})$ is a 1-dimensional regular local ring, we may choose $t \in P$ such that $\mathfrak{m} = t\mathcal{O}(\tilde{X})_P$. Let $\partial \in \text{Der } \mathcal{O}(\tilde{X})_P$ satisfy $\partial(t) = 1$. By setting $\partial(z) = 0$ we may extend ∂ to a derivation on C_S .

After Proposition 2.4, $k[z]/(z^n)$ is a simple $\mathcal{D}(k[z]/(z^n))$ -module, so there exists $D_1 \in \mathcal{D}(k[z]/(z^n))$ such that $D_1(1) = 1$ and $D_1(z^i) = 0$ for 0 < i < n. (Explicitly D_1 is a scalar multiple of $\prod_{j=1}^{n-1} (z\partial_z - i)$ where ∂_z is the derivation d/dz). Extend D_1 to an $\mathcal{O}(\tilde{X})_P$ -linear map on C_s , so that $D_1 \in \mathcal{D}(C_s)$.

After Corollary 2.3, A_s is of finite codimension in C_s , so for some $r \in \mathbb{N}$, $t^r C_s \subseteq A_s$. Write $C_s = t^r C_s \oplus V$ where V is the k-vector space with basis $B = \{t^i z^i | 0 \le j < r, 0 \le i < n\}$. Consider $D_2 = \prod_{j=1}^{r-1} (t\partial - j) \in \mathcal{D}(C_s)$. Then $D = D_1 D_2 \in \mathcal{D}(C_s)$ and satisfies $D(t^j z^i) = 0$ for all $t^j z^i \in B \setminus \{1\}$, and $0 \ne D(1) \in k$. Furthermore, $D(t^r C_s) \subseteq t^r C_s$. Thus $D \in \mathcal{D}(C_s, A_s)$ and $1 \in D * C_s$. There exists $s \in S$ such that $sD \in \mathcal{D}(C, A)$, and $s \in D * C$. Hence $D * C \not\subseteq M$. Since M was arbitrary, it follows that $\mathcal{D}(C, A) * C = A$ as required. \Box

Corollary 2.9. If $\pi: \tilde{X} \to X$ is injective, then $R/f^n R$ is a simple $\mathcal{D}(R/f^n R)$ -module.

Proof. After Corollary 2.6 and Propositions 2.7 and 2.8 it has been established that $\mathscr{D}(R/f^nR)$ is Morita equivalent to $\mathscr{D}(\tilde{X})$. Hence $\mathscr{D}(R/f^nR)$ is a simple ring. Consequently R/f^nR is a simple $\mathscr{D}(R/f^nR)$ -module, because any proper factor module would have a nonzero annihilator. \Box

3. The \mathcal{D} -module $k[x, y]_f/k[x, y]$

Keep the notation of Section 2. Recall the definition of the idealiser in [7, §1.5]. Write $\mathcal{D} = \mathcal{D}(k[x, y]) = \mathcal{D}(\mathbb{A}^2)$, and define

$$\mathbb{I}(\mathfrak{D}f^n) = \{ D \in \mathfrak{D} \mid f^n D \in \mathfrak{D}f^n \} .$$

Notice that $\mathfrak{D}f^n$ becomes a two-sided ideal of $\mathbb{I}(\mathfrak{D}f^n)$. If $k[x, y]_f/k[x, y]$ is viewed as an $\mathbb{I}(\mathfrak{D}f^n)$ -module, then $f^{-n}k[x, y]/k[x, y]$ becomes an $\mathbb{I}(\mathfrak{D}f^n)$ -submodule which is annihilated by $\mathfrak{D}f^n$.

Lemma 3.1. Suppose that, for all $n \in \mathbb{N}$, $f^{-n}k[x, y]/k[x, y]$ is a simple $\mathbb{I}(\mathfrak{D}f^n)/\mathfrak{D}f^n$ -module. Then $k[x, y]_f/k[x, y]$ is a simple \mathfrak{D} -module.

Proof. Suppose that the hypothesis holds and let m, m' be elements of $k[x, y]_f / k[x, y]$ with $m \neq 0$. For n sufficiently large, $m, m' \in f^{-n}k[x, y]/k[x, y]$. Hence $m' \in \mathbb{I}(\mathfrak{D}f^n) \cdot m \subseteq \mathfrak{D}m$, and the result follows. \Box

Notice that there is a k-algebra isomorphism $\varphi: \mathbb{I}(\mathcal{D}f^n) \to \mathbb{I}(f^n \mathcal{D})$ given by $\varphi(D) = D'$, where, for $D \in \mathbb{I}(\mathcal{D}f^n)$, $D' \in \mathcal{D}$ is the element such that $f^n D = D'f^n$. One sees that φ induces an isomorphism

$$\psi: \mathbb{I}(\mathfrak{D}f^n)/\mathfrak{D}f^n \to \mathbb{I}(f^n\mathfrak{D})/f^n\mathfrak{D} .$$

However, recall the following:

Proposition 3.2 (Smith and Stafford [7, (1.6)]). $\mathbb{I}(f^n \mathcal{D})/f^n \mathcal{D} \cong \mathcal{D}(k[x, y]/(f^n))$.

Thus, in a natural way, $f^{-n}k[x, y]/k[x, y]$ is given the structure of a left $\mathcal{D}(k[x, y]/(f^n))$ -module. The key observation is now:

Lemma 3.3. As a $\mathcal{D}(k[x, y]/(f^n))$ -module, $f^{-n}k[x, y]/k[x, y]$ is isomorphic to $k[x, y]/(f^n)$.

Proof. This is routine. Just chase the isomorphisms above together with that in Proposition 3.2, as presented in [7, §1.6], and combine these with the natural k[x, y]-module isomorphism $k[x, y]/(f^n) \rightarrow f^{-n}k[x, y]/k[x, y]$. \Box

Hence we obtain the theorem of the introduction:

Theorem. If $\pi: \tilde{X} \to X$ is injective, then $k[x, y]_f/k[x, y]$ is a simple \mathcal{D} -module.

Proof. Combine Lemmas 3.1 and 3.3, Proposition 3.2 and Corollary 2.7.

Remark. In retrospect, the key to the proof is the fact that $\mathfrak{D}(k[x, y]/(f^n))$ is a simple ring. However, $[7, \$1.5, 1.6] \ \mathfrak{D}(k[x, y]/(f^n)) \cong \operatorname{End}_{\mathfrak{D}}(\mathfrak{D}/f^n\mathfrak{D})$. Thus if we had known to start that $\mathfrak{D}/f^n\mathfrak{D}$ were isomorphic to a direct sum of *n* copies of $\mathfrak{D}/f\mathfrak{D}$, we would have had at once that $\mathfrak{D}(k[x, y]/(f^n)) \cong$ $\mathfrak{D}(k[x, y]/(f)) \otimes_k M_n(k)$, and hence the ring is simple (when π is injective). Although our result does not imply the splitting of $\mathfrak{D}/f^n\mathfrak{D}$, we have been informed by Van den Essen and Van Doorn that they can prove that, if $\pi: \tilde{X} \to X$ is injective, then $\operatorname{Ext}^1_{\mathfrak{D}}(\mathfrak{D}/f\mathfrak{D}, \mathfrak{D}/f\mathfrak{D}) = 0$. This of course guarantees the splitting of $\mathfrak{D}/f^n\mathfrak{D}$, and so would give a quicker proof of our Corollary 2.7. Their work, to appear in [8], also shows that $k[x, y]_f/k[x, y]$ is a simple \mathfrak{D} -module. The two approaches are quite different (although they also begin with the Morita equivalence of $\mathfrak{D}(X)$ and $\mathfrak{D}(\tilde{X})$ established in [7]).

References

- J.N. Bernstein, Analytic continuation of generalized functions with respect to a parameter, Functional Anal. Appl. 6 (1972) 26-40.
- [2] J.-L. Brylinski, Le classe fondamentale d'une variété algébrique engendre le D-module qui calcule sa cohomologie d'intersection, in: A. Galligo, M. Granger, Ph. Maisonobe, eds., Systèmes Differentiels et singularités Asterique 130 (1985) 260-271.
- [3] J-L. Brylinski and M. Kashiwara, Kazhdan-Lusztig conjecture and holonomic systems, Invent. Math. 64 (1981) 387-410.
- [4] M. Goresky and R. Macpherson, Intersection Homology II, Invent. Math. 72 (1983) 77-130.
- [5] A. Grothendieck, Elements de Géométrie Algébrique, Publ. Math. IHES 24 (1965).
- [6] M. Kashiwara, b-functions on holonomic systems, Invent. Math. 38 (1976) 33-54.
- [7] S.P. Smith and J.T. Stafford, Differential operators on an affine curve, Proc. London Math. Soc., to appear.
- [8] A. Van Den Essen and R. Van Doorn, \mathcal{D}_n -modules with support on a curve, Preprint, University of Nijmegen, 1986.
- [9] K. Vilonen, Intersection homology D-module on local complete intersections with isolated singularities, Invent. Math. 81 (1985) 107-114.