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SHEAVES OF NONCOMMUTATIVE ALGEBRAS AND THE

BEILINSON-BERNSTEIN EQUIVALENCE OF CATEGORIES

T. J. HODGES AND S. P. SMITH

Abstract. Let Xbe an irreducible algebraic variety defined over a field k. let ¡X be a

sheaf of (noncommutative) noetherian A-algebras on X containing the sheaf of

regular functions 0 and let R be the ring of global sections. We show that under

quite reasonable abstract hypotheses (concerning the existence of a faithfully flat

overring of R obtained from the local sections of ifî) there is an equivalence between

the category of ft-modules and the category of sheaves of ¿^-modules which are

quasicoherent as ©-modules. This shows that the equivalence of categories estab-

lished by Beilinson and Bernstein as the first step in their proof of the Kazhdan-

Lusztig conjectures (where R is a primitive factor ring of the enveloping algebra of a

complex semisimple Lie algebra, and ¿ft is a sheaf of twisted differential operators on

• a generalised flag variety) is valid for more fundamental reasons than is apparent

from their work.

1. Introduction.

1.1. This paper is motivated by the Beilinson-Bernstein Theorem [BB]. Very

briefly, this says that for certain primitive factor rings Dx of the enveloping algebra

of a complex semisimple Lie algebra there is an associated sheaf 2>x of noncommuta-

tive algebras over a complex projective algebraic variety X such that Dx = T( X, 2>x)

and there is an equivalence between the category of left 7)x-modules and the

category of sheaves of left .©^-modules which are quasicoherent as 0-modules ( 0 is

the structure sheaf of X, and is a subsheaf of 3>x). In this paper we abstract some of

the essential features of their construction in an attempt to understand what ring

theoretic properties of Dx ensure this equivalence of categories. We show that the

equivalence of categories follows from the existence of a faithfully flat overring of

Let us give the details.

1.2. Let k be any field and X an irreducible algebraic variety over k. Let S% be a

sheaf of noncommutative noetherian rc-algebras over X. Set R = T(X, ¿%) and

suppose that R has a classical ring of quotients Q. If U is an open affine subset of X

write Ry = T(U, ¿ft). We make the following assumptions concerning St from which

the Theorem below will be deduced.

(i) The structure sheaf 0 of X is a subsheaf of 3i and a? is a quasicoherent sheaf of

left (9-modules.
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(ii) If U c X is an open affine subset of X, then Rv is a subalgebra of ß

containing 7? and is generated as a right or left 7?-module by T(U, 0).

(iii) There is a finite open affine cover (Ua) for X such that the diagonal

embedding R -* ®Ra (where Ra = T(Ua, 92)) obtained from the restriction maps

makes © 7?a a faithfully flat right 7\-module.

Write 7\-Mod for the category of left 7\-modules and 3%-Jtod for the category of

sheaves of left ^-modules which are quasicoherent as 0-modules.

Theorem. There is an equivalence between 7\-Mod and @t-Jt'od given by the

mutually inverse functors M —> 9t <8> R M andJf —> T( X, J().

1.3. It is straightforward to check that 3>x satisfies (i) and (ii) above. Although (iii)

follows from the equivalence of categories established in [BB] we have not been able

to establish its truth on a priori grounds except in some special cases. However, there

are reasons for expecting this may be possible (see §3.1) and then the Theorem

would imply the result of Beilinson and Bernstein. Joseph and Stafford [JS] have

given a direct proof of the flatness condition in (iii), so one only needs to find a

direct proof of the "faithfulness" condition.

1.4. This paper is primarily written for noncommutative ring theorists. The paper

can be read without a knowledge of the work of Beilinson and Bernstein, but we

expect that an understanding of their construction would make the work here more

meaningful.

2. Proof of the Theorem.

2.1. The Theorem will be proved using the language of torsion theory. We recall

the standard terminology and results which we require. The reader is refered to [St]

for a thorough treatment and proofs.

Let R be a ring and A a ring containing 7? (with the same identity). If A is flat as a

right 7\-module and A ®RA —A (under the map a ® b -» ab) as an A-A bimodule

we call A a perfect (left) localisation of R. Denote by & the class of all left 7\-modules

M satisfying A ®RM = 0. We call jT the torsion class associated to A. Because AR is

flat, the class jT is closed under submodules, factor modules and extensions. If M is

an 7?-module there is a largest submodule of M contained in 3t\ we denote this

submodule by r(M) and call it the torsion submodule of M. If r(M) = M we call M

a torsion module, and if r(M) = 0 we say that M is torsion-free. Denote by ^the

class of left ideals 7 of R such that R/I is a torsion module. We call Jñhe Gabriel

filter associated to A.

If a g A, there exists an 7 in J^such that la c R. If M is an 7\-module, then

t(M) = [m e M\Im = 0 for some 7 in J5"}. The kernel of the natural map <¡>:

M —> A ®ß M is t(M) and A <S> M/<b(M) is a torsion module. If 7 and/ are in J^so

are I C\ J and IJ. The filter J^may be characterized as those left ideals I of R such

that AI = A. These facts will be used without comment in what follows.

2.2. Consider the situation described in §1.2.  For simplicity we shall write

Uav-a, = £4, n ' • • n £4„> and Ä«, «„ = T(Uai-a„> &)■ If ^ is a sheaf of ^-mod-

ules we shall write M = T(X, JÍ) and Ma ...a =Y(Ua...a,Ji). Abusing notation,

we shall write pa ...a   for the restriction map Mp ...R   —> Ma ...a   for any subset
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[ßi,.. -,ßm) c {ai,...,«*„}. No confusion should arise as the domain of pa ...„ will

always be clear from the context.

The stalk of0ta\x e X will be denoted by 7? x. If V c X is an open subset, denote

r( V, 0) by A v, and write Ax for the stalk of 0 at x.

2.3. Let us point out some immediate consequences of the assumptions made in

§1.2.
The quasicoherence of 91 ensures that if U c V are open affine subsets of X, then

R-u = Ay ®A R v If V c X is open affine, then there is an equivalence between the

categories 7\^-Mod (of left R^modules) and 9Î\V-Jt'ed'(of sheaves of left 9c\^-mod-

ules which are quasicoherent as 0\ ^-modules). If M is an 7?^module, then view M as

an A ̂ module and form the sheaf M (the notation is that of [H]). If U c V is an

open affine subset, then

r(t7, M) = Av ®AvM = Av ®Av(Rv®RyM) = Rv ®RyM,

so M is a sheaf of 9c | ̂ .-modules with global sections M. Also, if Jf e 9í\ V-J(cd, then

J( — Y(V,J() and T(V,J() is an R^module. Hence the equivalence between

R rMod and 91 \ v-JloJ.

2.4. It is not strictly necessary to assume that 7? has a classical ring of fractions Q.

One could replace Q in the hypotheses by the maximal flat epimorphic extension of

R. The existence of ß is only used in applying the following result.

Proposition [St, Chapter XI, Proposition 2.4]. If A is a ring with R c A c ß

and AR is flat, then A is a perfect left localisation of R.

Corollary. If U c Ua and U is open affine, then Ru is a perfect left localisation of

R.

Proof. By assumption, Ra is flat as a right Tt-module, so is a perfect left

localisation by the Proposition.

Put Aa = r(i/a, 0). As^is quasicoherent, Rv = Av <&A Ra. Now, as/l^, is flat as

an A a-module, Rv is flat as a right R „-module. Hence 7?^ is flat as a right 7<-module.

Apply the Proposition to 7? v.

Thus the hypotheses in §1.2 ensure that each Ra ...a is a perfect left localisation of

R. We shall denote the torsion class associated to the perfect left localisation Raof R

by ¿?~a. The associated Gabriel filter will be denoted by J^, and the associated torsion

functor will be denoted by ra.

2.5. Lemma. Let R be a noetherian ring with ring of fractions Q. Let Ax and A2 be

perfect left localisations of R. Suppose that each A, is generated as either a right or left

R-module by a subset Si and that the elements of Sx commute with the elements of S2.

Let B denote the subring of Q generated by Ax and A2. Then there is an isomorphism of

Ax-A2 bimodules Ax ®RA2 -» B given by ax ® a2 -» axa2, and hence there is an

isomorphism of R-R bimodules Ax ®RA2 — A2 ®RAX.

Proof. If A is a perfect left localisation of R, the map A <8>R A -> A given by

a ® a' -* aa' is an A-A bimodule isomorphism.

The natural maps

Al9MB-*A19K(Al9AB)-> (Ax ® RAX) ®A¡B - Ax ®A¡B^ B
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are all isomorphisms of Ax-B bimodules, so the composition gives Ax ®K B =■ B by

a ® b —* ab.

Tensor the exact sequence 0 -> A2 -* B -* B/A2 -» 0 with the flat 7?-module Ax.

To prove the first part of the lemma it is enough to prove that Ax ®R(B/A2) = 0,

because one may then compose the isomorphisms Ax ®RA2 —> Ax ®RB -* B to get

the result.

A typical element of Tí is a finite sum of terms of the form axa2 with ax g Ax and

a2 g A2 (just use the fact that Sx and S2 commute, and that Ax = SXR = RSX). Let J*

denote the Gabriel filter associated to Ax. Given ax g Ax, a2 g A2 pick 7 in J^such

that Iax c 7?; whence Iaxa2 c A2. So the image of axa2 in B/A2 is in the torsion

submodule (associated to Ax). As every element of B/A2 is a finite sum of torsion

elements, B/A 2 is itself torsion. In other words A x ® R ( B/A 2 ) = 0.

We have shown Ax ®RA2^B as Ax-A2 bimodules, hence as R-R bimodules.

Reversing the roles of A2 and Ax,v/e also have A2 ®RAX = B as R-R bimodules. The

lemma follows.

In the commutative case the isomorphism Ax ®fi A2 -* A2 ®Ä Ax would just be

ax ® a2 —> a2 ® ax. In the noncommutative case the map is not so clear; first

ax ® a2 is mapped to axa2 G B, then axa2 is expressed as a sum of terms of the form

a'2a[ with a'2 g A2, a[ G Ax and each a'2a{ is mapped to a'2 ® a'x g yl2 ® ^4,.

2.6. Lemma. 7\Ui ®ä • ■ • ®Ä R    = Ra       as 7?ai-R«n bimodules.

Proof. For each m ^ n, Ra ...a is a perfect left localization of R (as remarked in

§2.4). Now apply Lemma 2.5 inductively. Notice that to apply 2.5 one must use the

fact that T(Ua n Uß, 0) is generated by the images (under the restriction maps) of

T(Ua, 6) and Y(Uß, 0), and this is guaranteed by the assumption that A'is a variety.

2.7. Lemma. Let N be an R„ „ -module such that R„ „ ® N = 0, where the

tensor product is over R„    „ . Then R „      ® „ N = 0.
r O] ■ ■ • an "n+1 "

Proof.

Ranti®RN = Rai^®R{Ra¡.^®N) = {Rai¡®RRa¡...J®N,

where the second tensor product is over Ra ...a . Now apply the previous lemma.

2.8. Lemma. Let JÍ g 9Î-JtW and put M =Y(X,J(). If pa: M -» Ma is the

restriction map, then kerpa = ra(M).

Proof. If m g ra(M), then 7w = 0 for some /eJ„. Hence

P«(») e ^aPa(w) = 7<a7pa(m) = RaPa(Im) = 0.

Sora(M)c kerpa.

Put N = kerpa, and A^ = pß(N). As á? is quasicoherent, paß(Nß) = Raß ®Ä A^.

But paß(Nß) = paßpß(N) = paßpa(N) = 0. Hence, by the previous lemma, Ra®RNß

= 0, and so each Nß g STa.

Pick «EiV, and put nß = n\v . By the previous paragraph, for each ß there exists

Ip g j*, with 7^«^ = 0. Put 7 = nßIß. Thus 7 g J^a and 7«^ = 0 for all ß. But

Inß = In\u ; as 7« is locally zero and the Uß cover A^, 7« is globally zero. That is

In = 0, and hence« g ra(M).
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2.9. Lemma. Let J(^9î-J(cd, and put M = Y(X, Jt). Let pa: M -» Ma =

Y(Ua, Jt) be the restriction map. Then Ma/pa(M) is in J~a (that is, Ra

®R(MJpa(M)) = 0).

Proof. We need to show that for each m g Ma, there exists /ej^ with

Im c pa(M).

Let m g Ma. Put mß = paß(m) g Maß. As 91 is quasicoherent, Raß ®R

(Maß/paß(Mß)) = 0, so by Lemma 2.7, Ra ®R(Maß/Paß(Mß)) = 0. So for each ß",

there exists Iß g J^ with Ipmp c paß(Mß). Put 7 = 0^7^ g :Wa. If y g 7 we can pick

for each ß an element m'ß g M^ with jm^ = paß(m'ß) = m'ß\u . Notice that m'ß\u

= ymR\,, = ym\,, so the elements m'J,, andm'J,, have the same restriction to

Uaßy. In other words (m'ß\u — m' \v ) g Mß restricts to zero on Uaß , and hence

this element is in the kernel of pa/3y: Mßy -» Maßy. But this kernel is ra(Mßy) so for

each pair (ß, y) there exists /^ G ^a with 7y8>,(w^|(y - fn'J^ ) = 0. Put J' =

C\ß Iß g 5^. If z g /', then zm'ß\u = zm'y\u , so the elements zm^ glue to give a

global section; that is, there exists m g M with mj^ = zm'ß for all /?. By definition,

ma = m, so m'a = yma = ym. Hence m\v = zym and zym g pa(M). As z g /' was

arbitrary, y^w g pa(M).

The choice of 7' depended on y. Pick elements yx,...,ys which generate J and pick

corresponding left ideals J'x,... ,J'S. Put J" = J'XC\ ■ ■ ■ n /;. We still have 7" g J^

andy,"wGpa(M)for; = l,...,i. Hence if 7 = .7" y^ + ■ • • +J"ys , then 7m G pa(M).

It remains to show that 7 g fFa. As 7?// g 3~a, it is enough to show that J /I g 3~a.

As 7 is generated by the y¡, it is enough to show that each Ry, + I/I g STa. But this

module is a homomorphic image of R/J" which is itself in .5^.

2.10. Proposition (Notation as in Lemma 2.8). 77i<? restriction map pa: M -> Mn

extends to an isomorphism <b: Ra ®R M -» Ma.

Proof. Let <f> denote the canonical extension of pa; that is <b(r ® m) = rpa(m) for

r g 7? a, m G M. The diagram

M      -i      Ra®RM

Pa  \ I 4>

commutes, wherey'(w) = 1 ® m.

As j(M) is an essential submodule of Ra ®RM, if ker<f> ¥= 0, then kcrcb C\ j(M)

* 0. Pick m g M withy'(m) * 0 but <bj(m) = 0. Then pa(m) = 0 but j(m) # 0. This

is a contradiction as kerpa = -ra(M) = kery by Lemma 2.8. Hence <b is injective.

Let m g A/Q. By Lemma 2.9, there exists 7 g J^ with 7m c pa(M). But m g 7?am

= RaIm c Rapa(M) = im<¡>. Hence <£ is surjective.

2.11. Corollary. Lei^ g 91-M o d and put M = Y(X, Jt). ThenJt - 92®RM.

Proof. If U c A is any open affine subset, the restriction map M —> My =

Y(U, Jl) extends to a map Rv® RM -» A/^. Hence there is a morphism of

presheaves ^ ®RM -* Ji', and so a morphism of sheaves ^ ®RM -» .#.
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Because 92is quasicoherent, 92 ®R M\u — 92\v ®R M, and so for any open affine

Va Ua, Y(V, 92 ®R M) = Ry®R M. A consequence of the previous proposition is

that if V c Ua is open affine then the natural map Rv ®R M -* Mv = Y(V, J() is

an isomorphism. Hence the morphism 92 ®RM -> J( induces isomorphisms on the

stalks, and so is an isomorphism itself.

In other words, each^# G 92-Jtcdis generated by its global sections.

2.12. Proposition. Let N be an R-module and put JÍ' = 92 ®R N. Then Y(X, Jt) =

N.

Proof. Put M = Y(X, J(). First we show there exists an injective map from N

into M.

Define a map N -* M by associating with each « g A' the global section s of ~#

such that s(x) = 1 ® n g Rx ®r N for each x g X, where Rx is the stalk of 92 at x.

Pick Ua containing x. As 92 is quasicoherent, Rx = Ax ®A Ra and Rx ®RN = Ax

®a„ Ra ®rn- If í = 0 then 1 ® 1 ® n G Ax ®A^ Ra ®R N is zero for all x g Ua.

But as TlxeUAx is faithfully flat over Aa, 1 ® n considered as an element of

Ra ®R N is zero. Hence l®n^Ra®RNis zero for all a. But ®Ra is faithfully

flat over R so n = 0.

As Ra is flat over R, the map above extends to an injective map Ra ®R N -* Ra

®R M. As ^"is quasicoherent, the restriction of the presheaf 92 ®R N to Ua is a sheaf,

and hence Y(Ua, Jt) = Ra ®R N. So the map Ra ®R N -* Ra ®R M is a bijection

by Proposition 2.10. In particular, as 7?a is flat, Ra ®R(M/N) = 0. But this is true

for all a, so the faithful flatness of @Ra implies that M/N = 0. Hence M = N as

required.

It should be remarked that the quasicoherence of 92 implies that 92 ®R N is also

quasicoherent.

2.13. Proof of the Theorem. The Theorem is an immediate consequence of

Corollary 2.11 and Proposition 2.12. We have shown that the functors M -» 92 ®RM

and Jt —> r( X, Jt) are mutually inverse to one another when considered as maps

from the objects of one category to the objects of the the other category. It is

immediate that an 7\-module homomorphism M -* M' extends to a morphism of

presheaves 92 ®R M -» 92 ®R M', and hence gives a morphism of sheaves Jt —> Jl".

Likewise a morphism.^ -* Jt' gives a morphism Y(X, Jt) -» Y(X, Jt'). It follows

that the two functors are inverse to one another when considered as maps on the

morphisms.

2.14. In [BB] the equivalence of categories is proved by showing that every

Jt g S¿x-Jt cd is generated by its global sections and that H'(X, Jt) = 0 for i > 0.

We have been unable to show under the hypotheses of §1.2 that H'(X, Jt) = 0 for

i > 0. However, if we assume that 92 is flat over X (that is, 7?x is a flat ^-module for

each x g X) then we have the following result. We remark first that it is easy to

show each 2X satisfies this condition (the stalk of 3>x at x is just the ring of

differential operators on the regular local ring Ax, and the ring of differential

operators on A x is free as an A v-module).
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Proposition. If92isflat over X, then eachJt^ 92-Jt od satisfies H'(X, Jt) = 0 for

i > 0.

Proof. Put M = Y(X, Jt) and take an injective resolution 0 -» M -* Ex -* E2

-* ■ ■ ■ of the Tî-module M. By the equivalence of categories 0^>Jt^>92®REx -*

92®RE2^> ■ ■ ■ is an injective resolution in the category 92-Jt cd.

Claim. If E is an injective 7\-module, then 92 ®R E is injective in the category of

sheaves of quasicoherent (^-modules.

Let 0 -» %' -* © be an exact sequence of quasicoherent &-modules and suppose/:

(&' ^> 92 ® R E is a morphism of C-modules. To prove the claim it suffices to show

that there exists a morphism g: ® -* 92 ®R E whose restriction to ©' is/.

The natural map 92 ®e W -» 92 ®0 © is injective on stalks as each Rx is a flat

/4v-module, so is an injective morphism of C-modules. A tensor product of quasi-

coherent ^-modules is again quasicoherent, so both these modules are in 92-Jt od.

The morphism / induces a morphism /: 92® 0W -* 92 ®R E. Now as 92 ®R E is

injective in 92-Jt cd, /extends to a map g: 92 ®c,® -> 92 ®RE. The map g is then the

composition ®^>92®®->92®E. This proves the claim.

Now, by [H, III, Example 3.6], 92 ®R E is flasque so we may calculate cohomology

from the sequence 0->^#->¿?®7s1->^®£2—> •■■ after applying Y( X, -). But,

by the equivalence of categories, this gives the exact sequence 0 -* M -> Ex —> E2

-> ■ ■ ■. Hence H'(X, Jt) = 0 for i > 0.

2.15. As remarked in §1.3, condition (iii) of the assumptions in §1.2 follows from

the equivalence of categories. A precise statement of this is the following

Proposition. Suppose that 92 satisfies conditions (i) and (ii) o/§1.2, and that there is

an equivalence between the categories 92-Jt cd and 7<-Mod given by the mutually inverse

functors M -» 92 ®R M, Jt -+ T(X, Jt). Then condition (iii) o/§1.2 also holds.

Proof. First we show that if U c X is open affine, then Rv is flat as a right

7\-module.

Let 0 -> Mx -» M2 be an exact sequence of 7\-modules. Put Jti = 92 ®R M¡. The

assumption implies that 0 ->Jtx -*J¡t2 is exact in 92-Jt cd. Hence 0 —> Y(U, Jt',)

-» Y(U, Jt2) is an exact sequence of R^modules. But, as ^is quasicoherent and U

is open affine, r(í7, JtL) = 7?^, ®RMi (this is because the presheaf 92® M\u is

already a sheaf over (7). Hence 0->Ru®RMx^>Ru®RM2 is exact, and RL, is

flat.

Suppose (Ua) is any open affine cover for X. Put Ra = Y(Ua, 92) and suppose

M is an R-module with Ra ®R M = 0 for all a. As just remarked, Ra ®R M =

Y(Ua, 92 ® M). So 92 ® M is locally zero, hence globally zero. The equivalence of

categories implies that M = Y(X, 92 ®R M) is also zero. Hence ®Ra is faithfully

flat.

In the proof of the proposition the choice of the Ua was arbitrary, so we have

Corollary. If 92 satisfies the conditions o/§1.2, then condition (iii) will hold for any

open affine cover (Ua) of X.
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3. Comments and remarks.

3.1. We adopt here the notation of [BB]. The underlying topological space of the

sheaf £¿x is X = G/B, the flag variety of the connected complex semisimple Lie

group corresponding to the complex semisimple Lie algebra g. The cover (Ua) in this

case could be obtained by taking the translates of the large Bruhat cell under the

action of the Weyl group; that is each Ua = wBw0B for some w g W, the Weyl

group, where w0 is the long element of W. Each Ra is isomorphic to the Weyl algebra

An, where n = dim X. In [HS] it was shown that the restriction map Dx = Y(X, 3>x)

-* Y(Bw0B, 3>x) = A is (up to an automorphism of g and an automorphism of A)

the Conze embedding DK x -» A obtained through the action of g on the Verma

module M(w0X). In order to establish (iii) directly one would need to show (among

other things) that the embedding Dw Ä -» A makes A flat as a right Dw A-module.

It is shown in [JS] for X dominant regular that A is the union of the right

DK ^-modules L(w0X,w0p) (of g-finite maps from the Verma module M(w0X) to

M(w0p)), where the union is taken over all dominant regular p such that ¡u — X is

dominant integral. It already follows from [BG] that the L(w0X,w0p) are finitely

generated projective right Dw x-modules, and hence A is flat as a right Dw A-module.

3.2. The hypothesis that X was irreducible was made only to avoid the possibility

that some of the Ua ...„   might be empty and therefore that some of the Ra ...„

might be zero. If one assumes that X has a finite number of irreducible components

X¡, and the hypotheses in §1.2 are adjusted so that 92\x satisfies (i)-(iii), then one

can still show that 7\-Mod and 92-Jt od are, equivalent.

References

[BB] A. Beilinson and J. N. Bernstein, Localisation de %-modules, C. R. Acad. Sei. Sér. A-B 292 (1981),

15-18.

[BG] J. N. Bernstein and S. I. Gelfand, Tensor products of finite and infinite dimensional representations

of semi-simple Lie algebras, Compositio Math. 41 (1980), 245-285.

[G] P. Gabriel, Des categories abeliennes. Bull. Soc. Math. France 90 (1962), 323-448.

[H] R. Hartshorne, Algebraic geometry. Graduate Texts in Math., no. 52, Springer-Verlag, New York,

1977.

[HS] T. J. Hodges and S. P. Smith, Differential operators on the flag variety and the Conze embedding

(preprint).

[JS] A. Joseph and J. T. Stafford, Modules ofV-finite vectors over semi-simple Lie algebras, Proc. London

Math. Soc. (3) 49 (1984), 361-384.

[St] B. Stenstrom, Rings of quotients. Springer-Verlag. New York, 1975.

Department of Mathematics, University of Utah, Salt Lake City, Utah 84112

Mathematics Institute, University of Warwick, Coventry CV4 7AL, England (Current address

of S. P. Smith)

Current address (T. J. Hodges): Department of Mathematics, University of Cincinnati, Cincinnati,

Ohio 45221


