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TRANSACTIONS OF THE 
AMERICAN MATHEMATICAL SOCIETY 
Volume 329, Number 2, February 1992 

POLYNOMIAL SOLUTIONS TO CONSTANT COEFFICIENT 
DIFFERENTIAL EQUATIONS 

S. PAUL SMITH 

ABSTRACT. Let D1, . Dr E C[0/tXl, .../ 0OXn] be constant coefficient 
differential operators with zero constant term. Let 

S = {f E C[xl, 1 -., xn]lDj(f) = 0 for all 1 < j < r} 

be the space of polynomial solutions to the system of simultaneous differen- 
tial equations Dj(f) = 0. It is proved that S is a module over 9(V), 

the ring of differential operators on the affine scheme V with coordinate ring 

[/0919X., * * *, 9/oxn]/(DI ... . Dr) . If V is smooth and irreducible, then S 
is a simple O(V)-module, S = 1. 9(V), and the generators for 9(V) yield 

an algorithm for obtaining a basis for S. If V is singular, then S need not 

be simple. However, S is still a simple O(V)-module for certain curves V, 

and certain homogeneous spaces V, and this allows one to obtain a basis for 

S, through knowledge of 9(V). 

0. INTRODUCTION 

Let D1, ..., Dr E C[aO/xl, ... , O/Ox,] be constant coefficient differential 
operators acting on C[xl, ... , xn], the commutative polynomial ring in n in- 
determinates. Our basic problem is to understand 

S={feC[xI, ... ,xn]lDj(f)=0forall 1 <j<r}, 

the space of polynomial solutions to the system of simultaneous differential 
equations Dj(f) = 0. For example, can one give an algorithm for determining 
a basis for S? This paper outlines an algebraic approach to understanding S. 

We take the following point of view. The solution space S is made into 
a module over a certain noncommutative algebra, which we will call R for 
now. Thus given one solution f E S, acting on f by elements of R produces 
new solutions. The problem then becomes to analyse S as an R-module. For 
example, if S is a simple R-module (which it will sometimes be), then given any 
0 $ f E S, S = R.f; that is we can obtain all polynomial solutions by acting 
on f by elements from R. To turn this idea into an effective computational 
tool one needs to know the elements of R. This is close to the heart of the 
problem. R itself will consist of certain differential operators (with polynomial 
coefficients), but will be described in such a way that it is not at all easy (initially) 
to determine the elements of R. Thus our strategy for understanding S falls 
into two parts. One is to find an effective means of determining the elements 
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552 S. P. SMITH 

in R, and the other is to understand S as an R-module. In many cases both 
these questions can be adequately dealt with. 

A relatively easy, but familiar, example is given by the I-dimensional heat 
equation. Set D = 0/8x - 02/0y2. The most important element in R is 
Q = 2x0/Oy + y (see Examples 1.3(a) and 5.2). It is easy to check that Q 
and D commute with one another, and by Proposition 5.1 (which is a special 
case of Theorem 4.4) a basis for S is given by Qn (1) (n > 0). Moreover, 
given g E C[y], then the unique f E C[x, y] such that f(O, y) = g(y) and 
D(f)=O isgivenby f=g(Q)(l). 

Let us describe R. Write 0 = C[xi, ..., xn, 0/axi, ...a, /axn] for the 
ring of differential operators with polynomial coefficients. The natural action 
makes C[x1, ... , x"] a left 9-module. Suppose that Q E 0 has the following 
property: for each j = 1, ..., r there exist Pjl, Pj2, ... , P3r E 0 such that 
DjQ = Pj1 D1 + * * * + PjrDr . Thus Q has the property that if f is a solution to 
the system of equations, then so too is Q(f) : it is important to observe that 
this does not depend on f being a polynomial. The set of all such Q forms 
an associative subalgebra of 0 which contains OD, + * + 9Dr as a two- 
sided ideal. The quotient algebra is a familiar object (to some); namely, it is 
anti-isomorphic to the ring of differential operators on the affine scheme, V say, 
defined by the ideal of the commutative polynomial ring C[a /lx,, ... ., 0/0xa ] 
generated by DI, ... , Dr (see ? 1). Write 9(V) for the ring of differential 
operators on V; some basic facts about 9(V) are given in ? 1. For the purposes 
of this discussion one may take R to be either the set of all such Q, or the 
algebra 9 (V). 

We shall discuss the case when V is irreducible; that is, V is the variety with 
coordinate ring C[0/9xl, ... , O/Oxn]/(DI, ... , Dr). If one of the Dj has a 
nonzero constant term (that is, 0 ? V) then 0 is the only polynomial solution 
(2.3), so suppose that is not the case. If V is a smooth variety (in fact, if V is 
smooth at 0), then S is a simple module over the ring R, and it is easy to give 
an algorithm to obtain all the elements of S: essentially all one needs to know 
are generators for the module of derivations on V, or equivalently the tangent 
vectors to V at 0. When V is singular then 9(V) is not so well understood, 
and consequently it is more difficult to obtain a basis for S (although it is still 
possible to determine the dimension of the polynomials in S of degree < k). 
When V is of dimension 0, then (because of the irreducibility hypothesis) V is 
a single point, and dimc S = 1 . Hence the first nontrivial case occurs when V 
is a curve. In that case a lot is known about O(V), and consequently we obtain 
fairly good information about S. For example, one can say precisely when S is 
a simple O(V)-module. However, we would still like better information when 
V is a singular curve, and there are still important questions to be answered 
about 9(V) (see ?4). 

When dim V > 2, and V is singular, one has much less information about 
9(V), and consequently less information about S. Thus the point of view 
of this paper leads to the algebraic problem of understanding 9(V) for such 
V. Some important cases lead to singular V. For example, if D = 0/0x2 + 
*.** +0a /0x2, then V is singular. However, this is a case that can be effectively 
handled (?6), in part because there is an action of the Lie algebra so(n + 2) 
on S. In fact S becomes an irreducible representation of so(n + 2) related 
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to the completely prime primitive ideal corresponding to the minimal nilpotent 
coadjoint orbit (the Joseph ideal). However, for general singular V, we are 
unable to obtain as strong results as we would like. 

The paper is arranged as follows. ? 1 gives some basic information about 
rings of differential operators, and explains how S ismade into a module over 
the ring of differential operators, 9(V). ??2 and 3 are not part of the main 
theme, and are not new. They do contain some relevant material, and some of 
the ideas are required in later sections. ?2 discusses the relationship between 
polynomial and C?? solutions (due to Malgrange), and ?3 discusses the pairing 
between C[a/0x1, ... , a/0xj] and C[xl, ... , x,] which allows one to deter- 
mine the dimension of the space of solutions of degree < k. The main theme 
of the paper continues in ?4 where the structure of S as a O(V)-module is 
described. An important result is that S is simple when V is smooth. ?4 also 
discusses the difficulty of describing 9(V) when V is singular, and to what 
extent these difficulties can be handled when V is a curve. ?5 illustrates how 
our approach applies to an evolution equation of the form 0/0 t - Q where 
Q e C[0/0x1, ... , 0/0x,]. ?6 gives some examples related to enveloping al- 
gebras of Lie algebras; here V is always singular, but 9(V) can be described. 
It is a quotient ring of the enveloping algebra of a semisimple Lie algebra, and 
S is a simple O(V)-module, (equivalently an irreducible representation of the 
Lie algebra in question). As remarked above 8/0x2 + + 0/0x,2 is one such 
example. 

The problem of describing S is both natural and basic, yet I have been 
unable to find any papers which deal with it. It should be emphasised that this 
question is purely algebraic, and can be asked over any field (even of positive 
characteristic); therefore there should be a purely algebraic approach to the 
question. This is what this paper offers. Although our techniques are algebraic, 
the problem itself is of wider interest. Therefore the algebraic background is 
given in some detail. Hopefully those to whom this material is familiar will 
make allowances for such pedantry. 

The first observations concerning this work were made about three years 
ago during a visit to the University of Nijmegen. I would like to thank the 
mathematicians there, particularly A. van den Essen, for the hospitality, and for 
the stimulating environment they provided. I have had a number of very useful 
conversations about this material since then with T. J. Hodges, T. Levasseur 
and A. van den Essen. I thank them all. The ideas were first presented in a talk 
at Seminaire d'Algbre Malliavin in Paris in 1985, and a brief account appears 
in [Si]. 

1. THE RING ACTING ON THE SPACE OF SOLUTIONS S 

This section begins with some background on rings of differential operators 
on algebraic varieties. A basic reference for such material is [Bj], and [SS, ? 1] 
for the case of singular varieties. Next we describe how the ring R = 9(V) 
acts on S. Finally, an example is given to illustrate how the general principles 
of this paper may be applied to find all polynomial solutions of 02f/Ox22 
20f/0x - 02af/0y2 = 0. 

Let V be an irreducible affine algebraic variety (over C) . We give a defintion 
of 9(V) which takes advantage of the fact that V is irreducible. Write M (V), 
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or A, for the coordinate ring of V, and let K be the field of rational functions 
on V. Choose a transcendence basis tl, ... , td for K. Each partial deriva- 
tive 0/0tj on C(ti, ..., td) extends uniquely to a derivation on K. Define 
9(K) = K[a/0t1, ..., 0/0td]; that is 9(K) is the associative subalgebra of 
End,c K generated by K (acting on itself by multiplication) and by the 0/0 tj . 
Think of 9(K) acting on K from the left. Then 9(A), or 9(V), the ring 
of differential operators on V, is defined by 

9(V):= {D E O(K)ID(f) E A for all f E A}. 

By construction, A = 6(V) is a left O(V)-module. It can be shown that 
9(K) does not depend on the choice of transcendence basis, and hence 9(V) 
depends only on V. 

Let us point out at once that while it is obvious that A c 9(V), it is far from 
obvious how to get one's hands on the other elements of 9 (V). For V smooth, 
this is possible. In that case 9(V) = A[31, ... , a,m] where 31, ... , a,m generate 
DerA, the space of C-linear derivations on A, as an A-module. However, if V 
is singular, it need not even be true that 9(V) is generated by A and finitely 
many other differential operators. This point is taken up in ?4. 

Given D E 9(V) c 9 (K) define the order of D in the usual way. That is, 
elements of K are of order zero, and each aj is of order 1, etc. 

Write = = (An)= C[x1, ... , xn, 0a, ... , an] for the ring of differen- 
tial operators on C[xi, ... , xn] where aj = 0/Oxj. Thus C[xi, ... , xn] is 
a left 9-module. The ring C[01, ... , an] is a commutative polynomial ring 
in n indeterminates. It- is useful to observe that when C [xl, ... , xfn] is con- 
sidered as a C[01, ..., 0n]-module by restriction, every nonzero submodule 
contains 1. In fact, C[xi, ..., xnl is isomorphic to the injective envelope of 
the C[01, ... , an]-module C[01, ... , an]/(Olj ... an) 

Notation. We follow the usual conventions for multi-index notation. If a = 

(al,..., an) then xa = xl *** Xan and OQ = a1 , *anan . Write I a= ai + 
+ an,, and a! = (a,)!...(an)! . If a, f, are multi-indices, then 3af is the 

Kronecker delta i.e., 3af = 1 if a = ,B, and 0 otherwise. 
There is another useful way to describe 9(V). Since V is affine, suppose 

that V c An . Let I be the ideal of C[xi, ... , xn] defining V; that is A = 

C[Xi ... , xn]/I. If D E 0 is such that D(I) c I, then there is an induced 
operator D on A. The set of all such D forms a subalgebra of 0, T say, 
and {D E ID(f) E I for all f E C[xi, ... , Xn]} is a two-sided ideal of T; 
in fact this ideal is IO. Then 9(V) _ T/II (for a proof see [SS, 1.6] or 
[MR, 15.5.13]); this can be taken as a definition of 9(V) which applies to any 
affine scheme V. Now we give a precise description of this isomorphism. The 
point to be explained is this: given D E 9(V), how does one find an element, 
F say, of T c 0 = C[xl, ..., Xn , al an] such that the image of F in 
9(V) = T/II is the given D. 

Let V: C[xi, ... , xn] (-+ V) be surjective with kernel I. Write yj = 

yI(xj). Let D E O(V) . We will construct F E C[xi, ... ., xn, 01 ,. . . , an] such 
that the action of F on C[xi, ... , xn] satisfies F(I) c I and Vy/(F(xa)) = 
D(ya) for all multi-indices a. Suppose that D is of order m. For each a 
with lIal < m choose ba E C [xi, ... , xn ] such that Vy/(ba) = D(yav). Since 
D is completely determined by D(ya) with jal < m (see [MR, 15.5.11]), it 
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suffices to find an F such that F(xa) = ba for all a with jic < m. This 
is done recursively by defining Fj for j = 0, ... , m and setting F = Fm. 
Define Fo = b(o,.0,. Given Fj-1, for each multi-index ,B with flu, = j 
choose a E C[xi, ...C , x,] such that 

b,0= Fj1(x) + fl!af. 

Define 
FjFj-l + afaffl. 

Ifll=i 

By construction Fm(Xa) = ba for all a with Ija < m. Thus Fm is the F we 
require. Example 1.3 below illustrates this procedure. 

One more preliminary definition is required. Let L be a left ideal of 0. 
The idealiser of L is the subalgebra of 0 defined by 

E[(L) := {D E ILD c L}. 

The ring 1[(L) contains L as a two-sided ideal, and is the largest such sub- 
ring of 0 (whence the terminology). It is important to note that 1[(L)/L _ 
Endo(O/L). There is a similar definition of the idealiser of a right ideal. One 
may show that T, appearing in the above description of 9(V), is the idealiser 
of IJ (see [MR, 15.5.9]). Thus the above says that 9(V) 

- f(I?)/II, and 
we have just described this isomorphism. 

Notation. This notation is fixed throughout the paper. Let J be the ideal of 
? 91, ..., An] generated by D1, ... , Dr. The object of interest is 

S = {f E C[xi, ... , x,]IJ.f = 0} = {f E RIYJf = 01. 

Let V be the affine scheme defined by &(V) = C[Ol, ... , aO]/J. 
The point of view offered by this paper is encapsulated in the following 

two easy lemmas. They describe how to give S the structure of a 9(V)- 
module. Thus, S is no longer just a "shapeless" vector-space, but may be 
analysed according to its structure as a O(V)-module. 

Lemma 1.1. Let L be a left ideal of 0, and set S = {f E [x, C *X , xn]lL.f = 

01. Then S is a left module over E[(L). Furthermore, the annihilator of S in 
E(L) contains L. Thus S is a left (L)/L-module. 
Proof. Let Q E E(L), D E L and f E S. Then DQ E LQ c L. Therefore 
D(Q(f)) = DQ(f) E L.f = 0, whence Q(f) E S. The rest is obvious. 0 

Remarks. (1) One can replace C [xi, . . ., xn] in (1.1) by any space F of func- 
tions on Cn (or some subset of C'n), provided that 7 is a 9-module. 

(2) It is not at all obvious how to get one's hands on the elements in E[(L), 
and unless one can do that (1.1) is of little use. Therefore the key observation 
(given in (1.2)) is that if L is generated by constant coefficient operators then 
one can relate E[(L) to an algebra which is somewhat more tractable. Of course it 
would be wonderful to be able to eliminate the restriction to constant coefficient 
operators, but this problem is infinitely more difficult. 

Let a: - 0 be the anti-automorphism defined by a(xj) = aj and 
c(aj) = xj . 
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Lemma 1.2. (Notation as above). There is an anti-isomorphism ID: ff(OJ)/1J 
-* ?(V). Thus, S is a right ?(V)-module. 
Proof. The anti-isomorphism a induces an anti-isomorphism ~o: ff(OJ)/1J 
-- f(a(J)O)/1a(J)O. However, a(J) is an ideal of C[xl, ... , x,] such that 
6(V) -_ C[D1 , ... , an]/J- C[xi, ... , xd]/a(J). We remarked above that, if 
I is an ideal of C[xl, ..., xn], then O(C[x1, ..., x,]/I) _ ff(I9)/I9J. The 
result follows, with I = a(J). O 

Hence the first part of the strategy is to determine 1[( J); one does this by 
first determining 9(V) (find generators), and then applying the anti-isomor- 
phism between 9(V) and 1[(. J)/O J . The example shows how this works in 
practice. 

Example 1.3. (a) Find all polynomial solutions f E C[x,y] to the 1-dimensional 
heat equation D(f) = af/Ox - 02f/Dy2 = 0. 

The image of the operator D under the anti-automorphism a is x -y2, so V 
is the curve defined by x -y2. There is an isomorphism q/: C[x, y]/(x -y2) -* 

C[t] given by yI(x) = t2, y,(y) = t, hence V is just the affine line C, and 
6(V) - C[t]. Thus 

9(V) = C[t, d/dt]. 

A preimage of t in C[x, y, 0/Ox, a/ly] is y. To determine a preimage of 
d/dt note that 

d/dt(yi(x)) = 2t and d/dt(y,(y))= 1. 

Hence a preimage of d/dt is given by 

F = 2yD/Dx + 0/Dy. 
Applying a to F gives 

Q:= 2xD/Dy + y. 
Therefore the point of (1.1) and (1.2) is that if f E S then so is Q(f) E S. 
Since 1 E S we have Qk(1) E S for all k. In fact, these elements are a 
basis for S (4.4). In particular, since Qk(1) is of degree k, there is a unique 
polynomial solution of degree k for all k. It is thus routine to obtain solutions 
of arbitrarily high degree. The fact that y is a preimage of t gives the rather 
uninteresting fact that if f E S, then so is a(y)(f) = af/Dy. It is the operator 
Q which is important. 

(b) Find all polynomial solutions f E (C[x, y] to D(f) = D 2fl/Dx2 - 2D fl/Dx 
_2f/ay2 = 0. 
Clearly a(D) = x2 - 2x - y2, V is the curve defined by x2 - 2x -y2. 

This curve is C?\{0}, so &(V) C C[t, t-] with t = VI(x - 1 - y), t- 

V(x - 1 + y). Thus 9(V) = C[t, t-I, d/dt]. Preimages of t and t-1 in 
C[x, y, 0/Ox, 0/Dy] are obvious. To determine a preimage of d/dt note 
that 

d/ddt(y(x)) = 2(1 - t-2) = yI(y - xy - y2) 

and 
d/dt(v1(y)) 2(- t-2) = I(y -xy -y2- 1) 

Hence a preimage of d/dt is given by 

F = (y-xy - y2)D/Dx + (y-xy y2 -1)0/Dy 
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Applying a to F gives 

Q := (x + y) (a, _ igx(y _ a}2) _ y. 

Since 1 E S we have Qk( 1) E S for all S. By Theorem 4.4 these elements are 
a basis for S. Again it is obvious how to obtain solutions of arbitrarily high 
degree. Since the preimages of the elements of 9(V) are not unique, there is 
no uniqueness to the choice of operator playing the role of Q. 

The structure of S as a 2(V)-module, and the question of generators of 
9(V) is taken up in ?4. ??2 and 3 can be skipped by those wanting to continue 
with the main theme of the paper. 

2. POLYNOMIAL SOLUTIONS VERSUS C?? SOLUTIONS 

One is usually interested in more than just polynomial solutions. This section 
explains how the problem of C0 solutions leads one to look at polynomial 
solutions. The explanation is the result of Malgrange [Mal] which we quote 
below. See [T, Chapter 1, ? 10] for more details. 

Notation. For each at = (aIl, ..., (en) E Cn , set ea,x = e(alxlx+anxn) , write 
,Sa' := C[x *. xn]e x and `9 = Da` Let Q c Ce be a nonempty 

open subset (in the usual topology). Write C00(Q2) for the space of infinitely 
differentiable C-valued functions on Q. Give C?? (Q) the topology of uniform 
convergence. Note that Y c C?' (Q), and that both .D and C?00(Q) are 2- 
modules. 

For any space of functions Y which is a 9-module, we write SF := {If e 
SIJ.f = 0}. In [Mal] Sa is called the space of polynomial-exponential solu- 
tions. 

Theorem 2.1 (Malgrange). Let Q be a nonempty convex open set in Cn . Let J 
be an ideal in C[1, ..., On]. Then every f E ScoO(Q) can be approximated by 
elements in Efa S-9 

Thus it is natural to determine the spaces S15P = {f E S9a I J.f = 0} . The next 
lemma says that determining the S.a may be reduced to finding the polynomial 
solutions for a related system of constant coefficient differential equations. 

Fix a = (a1, ... , an) e Cn. Let A: An -* An be the affine transformation 
A(q) = q-a, for q e An . Let vo be the comorphism on C [0a, ..., an] . That 
is '(0j) = 9 + aj for all j. Set J':= 9(J), and S':= {f E RIJ'.f = 0}. 

Lemma 2.2. With the above notation, S4a = e-a,XSl. 
Proof. Observe that [0,, ea.x] = a jea X, whence (aj - aj) = ea.xaje-a-x . Thus 
((D) = ea.XDe-x, and J' = eaxJe-x . In particular, J', f = 0 if and only 
if J.e-a.xf = 0. u 

Sometimes S = 0; for example, if D = d/dx - 1, then there are no poly- 
nomial solutions, the only power series solution being f(x) = ex. In order to 
have a problem to study we characterise when S = 0. 

Lemma 2.3. 
(a) S:A 0,*0 E V'-*J C (O, 5... an)*- 
(b) S4 5$ 0 X oa E V. 

Proof. (a) If J C (0a, ... , an) then 1 E 5, and S $: 0. Conversely, suppose 
thtJ0(, .. , ,. Le , wtD=Q ,u whr Q E ... .. . s an) 
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and 0 $ , E C. If f E C[[xI,... ,x,] then degQ(f) < degf, whence 
degD(f) = degf . Therefore D(f) $ 0. Hence S = . 

(b) Follows from (a) and (2.2). 5 

Remarks. (1) Let p E C[T1, ..., Tn] and set P = P(i,... ,On). Then 
P(eax) = p((a)eaX , whence eax E S a X a E V. This is the key point in 
(2.3). Furthermore, SA $ 0 X eax E S a 

(2) Each Sy is a right O(V)-module, and the analysis which we will apply 
to S = Sy, in ?4 can be applied to each Sya (a E V). 

Hencefoth, we shall suppose that J C (a,, ... , an). Write m for the image 
of (a,, ... , an) in M(V) = C[Oi, ... , an]/J; thus m is the maximal ideal at 
the point 0 E V. We will write Am for the local ring of V at 0. 

3. THE PAIRING Cb[9i, ... , An] x C:[Xi, * :, Xn] --+ , AND 
THE NUMBER OF SOLUTIONS OF A GIVEN DEGREE 

Write Rk = C[X1, . . ., Xn ]Ik for the space of polynomials of degree < k . Set 
Sk = S n Rk. We show how to determine dimc Sk, or at least how to reduce 
it to a problem in commutative algebra which can in some sense be solved. A 
trivial consequence (via the Hilbert-Samuel polynomial) is that dimc Sk is a 
polynomial in k of degree dim V for large k. The problem of computing 
dimc Sk is addressed in the papers [St 1] and [St2]. This approach is slightly 
different; for example, those papers are mainly concerned with the case where 
D, ... , Dr are homogeneous. Some results on dim(c Sk may also be found in 
[Mat]. 

Let D E C[ a,n...,a] and f E C[xi,., xn]. Write (D, f) = D(f)Jo i.e., 
the evaluation of D(f) at xl = .. = Xn= 0. Because (Xa, aIl) = 3a,6a! this 
pairing is nondegenerate in the sense that the induced maps 

C[O . ***, an] C[Xl, ..* , Xn]* = Homc(C[xl, ...Xn, C) 

and 
C[Xi, XnV C9[i, ... , an]* = Homc(C[al, ... a, n], C) 

are both injective. 
Since this pairing is standard, so too are the results below. We include them 

for completeness, and because (3.3a) and (3.4) are required later. 

Lemma 3.1. S = {f E C[xi, ... , x ]nl(J , f) = 0} . 
Proof. If f E S then certainly (J, f) = 0, because P(f) = 0 for all P E J. 
If f S 5, then P(f) :$ 0 for some P E J. Therefore, there exists D E 
C[Oi, ., an] such that DP(f) = 1. Hence (DP, f) = 1 E (J, f). a 

Lemma 3.2. 

Rk= C[xl,. ,Xn]k 

= If E (C[XI, ..., Xn]1(01,.., an)k+l, f) = O}. 
Proof. Since Rk and (O1, ..., an)k+l have bases of the form {xal ji? < k} 
and {ai f I,i > k} respectively, the result is immediate. a 

Proposition 3.3. 
(a) Sk = {f E C[xI, ..., xn]l(mk+l, f) = 0} - (&(V)/mk+l)*. 
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(b) dimcSk= dimic(V)/mk+l. 
(c) dim S < oo if and only if 0 e V is an isolated point in Max Spec V. 
(d) Suppose that all the D1, ... , Dr are homogeneous. Then dimS < x0 if 

and only if Max Spec V = {0}. 
(e) If V is smooth at 0, and d = dimX, then dimc Sk = (k+d) for k >> 0. 

Proof. (a) follows from (3.1), (3.2), and the nondegeneracy of (, ). An im- 
mediate consequence is (b). 

Note that 0 is an isolated point of V if and only if the only irreducible 
component of V containing 0 is 0 itself. This is equivalent to m being a 
minimal prime of (V). Suppose that m is not a minimal prime of 6(V). 
Let p C m be a prime ideal. Write n for the image of m in 6(V)/pi. By [AM, 
Corollary 10.18], fl=%nk?l = 0. Hence dim&(V)/nkmk+l = 0, whence 
dimS = 00 by (b). Conversely, suppose that m is a minimal prime of M(V). 
In a noetherian ring 0 is a product of the minimal prime ideals (with repetitions). 
Say 0 = p ... ptmS, where the pj are minimal primes distinct from m. Since m 
is maximal, and p *I -*Pt : 0, it follows that (V) = m+p. I..pt . Hence mS = 
(m+pl *... pt)mS = ms+l . Thus M(V)/ nk mk+l = &(V)/mS is finite dimensional. 
Thus dimS < oo. This proves (c). 

Suppose that D1, ..., Dr are homogeneous. If x E V, then Cx c V. 
Hence, if V :$ {0}, then 0 is not an isolated point, and conversely. Therefore 
(d) follows from (c). 

Finally (e) follows from (b) and the Hilbert-Samuel polynomial [AM, Chapter 
11]. 0 

Corollary 3.4. Under the natural map S -* Homc(&(V), C) = M(V)*, the 
image of S is {t E &(V)*l6(mk) = 0 for k >> 0}. As an 6(V)-module, this 
is isomorphic to the injective hull of &(V)/m. 

Proof. See [B, ?1, Exercises 29-32] for the isomorphism from {i E 6(V)* 1 
6(mk) = 0 for k >> 0} to the injective hull of 6(V)/m. o 

(3.3e) has also been established by P. F. Stiller [St 1, 5St2] when the DI, * * , Dr 
are homogeneous. He proves that the solutions of degree precisely k are the 
global sections of a certain line bundle on the projective variety of lines on V. 
Furthermore, (3.3d) has been previously proved (for homogeneous Dj) by C. 
Micchelli [St2, Proposition 3.1]. 

4. STRUCTURE OF S AS A ?(V)-MODULE 

The main theme of the paper continues in this section. We describe the 
structure of S as a O(V)-module. It is shown that if V is smooth at 0, then S 
is a simple O(V)-module. The significance of S being a simple ?(V)-module 
is that S = 1.9(V) because 1 E S. Thus (4.4) gives a precise description of a 
basis for S in the case V is smooth at 0. A key point is that if V is a smooth 
irreducible variety, then 0( V) is generated by A = ( V) and Derc A (see [G, 
16.11.2]). That is Q9(V) = A[k1, ... ,&,am] where Derc A = Ai1 + *- * + Adm . 

Unfortunately, S may be far from simple when V is singular. Examples 
4.9 and 4.10 are illustrations. However, there are also cases where S is simple 
although V is singular; see (4.6) and the discussion of 0/0x2 + *-- + 0/0x2 
in ?6. Hence, the problem becomes to understand 9(V) and S when V is 
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singular. There is no decisive information available except when V is a curve. 
That case is treated in detail below; one can say exactly when S is simple (4.6). 

First, some terminology (see [SS, ?1] for more details). As usual A = &(V). 
Let M and N be A-modules. If a E A, and i E Homc(M, N), then we 
denote by [a, i] the element of Homc (M, N) defined by 

[a, i](m) = ai(m) - i(am) for all m E M. 

We define 2A(M, N) to be the set of all i E Homc (M, N) such that there 
exists p E N with the property that 

[ao[al[** [ap,6i]*]]] = O wheneveraO,al,...,apEA. 

We call 2A(M, N) the space of differential operators from M to N. In gen- 
eral, 2A(M, M) is a ring, and in particular, it can be shown that 2A(A, A) = 
29(A). One can show that ?A(M, N) is a ?A(N, N) -QA(M, M) bimodule. 
In particular, ?A(A, N) is a right ?(A)-module for all N. 

Consider ?A(A, A/m). This is a certain subspace of A* = Homc(A, C). 
In fact, it is shown in [SI] that it consists of precisely those linear maps which 
vanish on some power of mr. Hence after (3.3a), ?A(A, A/m) can be identified 
with S. Moreover, all the actions of 9(V) are compatible (see [SI, Proposi- 
tion 4.1] for details). Hence the next result, which gives an extremely concrete 
description of S as a O(V)-module. 

Proposition 4.1. As a right ?72(V)-module, S -_ (A, A/m). 

The module O(A, A-/m) also plays an important role in [DE]. 
The proof of (4.2) will use the fact that 9(V) has a natural filtration, and 

therefore has an associated graded algebra. Once more the reader is referred 
to [SS, ? 1] for details. The filtration is given by the order of the differential 
operators, and if V is smooth then the associated graded ring gr2(V) is 
simply the coordinate ring of the cotangent bundle to V, T* V, which is again 
a smooth affine algebraic variety. The other important fact used in the proof is 
that if M is a nonzero left 2(V)-module, then the associated graded module 
grM, which is a module over &(T* V), has Krull dimension at least dim V. 
One possible reference for this fact is [Bj]. 

Proposition 4.2. Suppose that V is a smooth irreducible variety. Then 
(a) S is a simple ?(V)-module, 
(b) S= I1.2(V), 
(c) S -_ (V)/inO(V) and Ann (1) = nmB(V) . 

Proof. By [SS, 1.3(d)], O(A, A/m) -_ Q(V)/ni2(V). In [SS, 1.4(g)] we 
claimed that ntr(V) is a maximal ideal of 9(V) (for V smooth). The argu- 
ment there was rather brief, and we take this opportunity to fill in the details. 
We begin by showing that gr(nrr(V)) = mgr.2(V) . 

Note that gr(mO(V)) D mrgrQ0(V). Recall that gr2T(V) _ SA(DerA), the 
symmetric algebra on DerA, over A = 6?(V) . Therefore 

gr2(V)/mgr2(V) _ A/m 0A SA(DerA) - SA/m(A/mn A DerA) 

where the last isomorphism depends crucially on the fact that DerA is a pro- 
jective A-module. But SA/m(A/mr0A DerA) is a polynomial ring on dim V in- 
determinates (it should be thought of as the regular functions on the fibre of the 
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cotangent bundle lying above 0 E V). Therefore mgr?2'(V) is a prime ideal 
of gr2T(V). Hence if gr(mt(V)) :$ m gr2T(V) , then the associated graded 
module of (V)/nmB(V) has Krull dimension strictly less than dim V. But 
the only such ??(V)-module is 0. Therefore gr(m (V)) = m gr?J(V) . 

Similarly, it follows that nm(V) is a maximal right ideal of 9(V) (by 
considering the Krull dimension of the associated graded module). The result 
follows from (4.1). o 

It is clear from some of the earlier results (for example, (2.3), (3.3) and (4.1)) 
that it is not so much V which is relevant, but rather the structure of V locally 
at 0. This is made more precise by the following result. 

Proposition 4.3. S is also a right ?2(Am)-module, and the ?2(Am)-module action 
restricted to ?(V) c ?(Am) coincides with the natural ?(V)-module action. 
As a right ?(Am)-module, S -_ (Am, Am/mAm) -- 0(Am)/flt(Am). 

Proof. By (2.4), S is an injective &(V)-module, therefore divisible. Hence 
every a e 6(V)\m acts as a unit on S. Therefore, S 0A Am = S. However, 
S ?9(A) O(Am) S 0O(A) 9(A) OA Am = S 0A Am = S. This gives S a 
2(Am)-module structure. 

Finally, just as O(A, A/m) can be identified with those elements of A* 
vanishing on a power of m, so can O(Am, Am/mAm) be identified with those 
elements of A* vanishing on a power of mAm . But these are the same space. a 

Theorem 4.4. Suppose that V is smooth at 0, and dim V = d. Then there exist 
i, ..., ad E DerA such that DerAm is free on di, ..., ad a If P, ..., Pd E 
(OJ) are such that D(Pj) = dj (D as in (1.2)) for 1 < j < d, then S has a 

C-basis {P' . Pdd(l) lil, ... , id > O}. 

Proof. Since V is smooth at 0, DerAm is free of rank d. By (4.3) S may 
be viewed as a right ?T(Am)-module. As a left Am-module -(Am) has a basis 
b11 ..ddd [G, ?16]. Hence 

O(Am) = mi?(Am) + @ (CJ' ... **dd3, and by (4.2c), S = eCLJ. id. o 

Thus (4.4) essentially solves the problem of finding a basis for S when 
V is smooth at 0. Suppose that V is smooth at all points. To find all 
polynomial-exponential solutions, then for each a E V one must compute 
5SAa = eax, 9(V) _ 2(A, A/ma) where ma is the maximal ideal of 6(V) 
at a. Once more it is simply a matter of knowing the derivations on M(V), 
and a basis for the derivations on AMa . 

Example. Find all polynomial-exponential solutions to 

D(f) = 02f/Dy2 - 0af/Ox3 + af/Ox = 0. 

The image of the operator D under the anti-automorphism a is y2 - x3 + 
x. Hence V is the elliptic curve defined by y2 - x3 + x. The module of 
derivations Der6(V) is free on 3, where 3 is the derivation on &(V) with 
preimage (3x2 - l)a/Oy + 2yO/Ox in C[x, y, ax, ay]. Applying a gives 
Q := 3yax2 + 2xay - y. Therefore {Qk(eax+flY)Ik > 0, (a, ,B) E V} is a basis 
for the polynomial-exponential solutions. 
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We now turn to the case where V is singular. If dim V > 2, then ?(V) is 
not well understood, so we concentrate on the case where V is a curve. 

After (3.3), there is a nondegenerate bilinear pairing 

(, ): O(A, A/m) x A -C = A/m 

given by evaluation. There are two ways to think of this. By identifying 
O(A, A/m) with 0(V)/m?/(V), if P E 9(V) then (P, f) = P(f)lo. How- 
ever, by identifying O(A, A/m) with a subspace of A*, then (P, f) = P(f) . 
Observe that O(A, A/m) is a right 2(V)-module, and A is a left 9(V)- 
module, and the pairing respects the action of 9(V) in the sense that for all 
P E O(A, A/m), f E A, Q E 9(V) we have (PQ, f) = (P, Q.f). 

If N is a subspace of A, write N' {= 0 E ?(A, A/m)ji(N) = 0}. If K 
is a subspace of ?(A, A/m), write K' {a E AEiA(a) = 0 for all i E K}. 
It is well known that the maps N -* N' and K -* K' give mutually inverse 
maps (an order reversing isomorphism) between the lattice of ideals I of A 
such that Supp(A/I) c {m} (equivalently the lattice of ideals of Am of finite 
codimension), and the lattice of proper A-submodules of O(A, A/m). Call 
these lattices Yj and 2 respectively. 

Since ( , ) respects the 2(A)-module action, the maps N --* N' and 
K --* K1 restrict to mutually inverse maps between the sublattices of Yj and 
2 consisting of those A-submodules which are actually ?(A)-submodules. 

Proposition 4.5. Suppose that V is an irreducible curve. Then the map N 
N1 gives an order-reversing lattice isomorphism between the lattice of '(Am)- 
submodules of Am, and the lattice of ?(A)-submodules of ?(A, A/m). In 
particular, if Am is a simple ?2r(Am)-module, then S is a simple ?(V)-module. 
This is the case if 9(V) is a simple ring. 
Proof. Since V is a curve, every nonzero ideal of A is automatically of finite 
codimension, so the sublattice of Yj consisting of the ?(A)-submodules is in 
fact all the 2(A)-submodules I with Supp(A/I) c {m}. This is the same as 
the lattice of ?(Am)-submodules of Am. The result follows. 0 

Theorem 4.6. Let V be an irreducible curve. Then S is a simple ?(V)-module 
if and only if V has only one branch at 0. 
Proof. By [SS, 4.2] 6(V) is a simple ?(V)-module if and only if the normal- 
isation map 7r: V -* V is injective. The local version of this is that Am is a 
simple 2(Am)-module if and only if V has only one branch at 0. Now apply 
(4.5). 0 

Also see [DE, ?3; Si, ?4] for proofs of (4.6). 

Proposition 4.7. Let V be an irreducible curve. Then S is a finite length ?2r(V)- 
module. 
Proof. This follows from (4.5), because 6(V) is of finite length as a 9(V)- 
module [SS]. 0 

Example 4.8. This shows how to use (4.4). 
Consider the eigenvalue problem Af = A2f (A E (C) for the Laplacian A = 

02/0X2 + 02/0y2 + 02/0z2 . Thus we consider the single operator D = A - A2, 
and we show how to obtain all polynomial-exponential solutions. 
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First suppose that A :$ 0 . Then V is the complex 2-sphere x2 + y2 + z2 _-2 

which is smooth, and Der6(V) is generated by xay - Y&x, Y0z - zOy, ZOx - 
x&z . Let (a, fi, y) E V . Then any two of these derivations are free generators 
of Der A(a , y) where A(a, , ) is the local ring at (a, f,, y) . Applying the anti- 
isomorphism a to these elements just fixes them. Now eax+flY+YZ is a solution, 
and the space S(a fly) has C-basis (xay - yax)i (y&z - zay )i(eax+fy+7z). 

Now suppose that A = 0, and let (a, f,B y) E V. If (a, ,B, y) :$ (0, 0, 0) 
then this is a smooth point, and so can be treated as above. The point (0, 0, 0) 
is singular, so it is not immediately clear whether or not S is a simple 9(V)- 
module. Certainly applying any of the above derivations to 1 E S is of no 
use at all. Nevertheless it turns out that S is a simple O(V)-module, and this 
example is a special case of those covered in ?6. 

Example 4.9. This is an example where S is of infinite length as a 9(V)- 
module. 

Consider D = O +O,+z . As [BGG] shows, the ring of differential operators 
on the cubic cone V, given by x3 +y3 + Z3 = 0, is badly behaved. For example, 
9(V) has an infinite descending chain of two-sided ideals. Here we show that 
there is an infinite ascending chain of O(V)-submodules of S. 

Claim. If m is the maximal ideal of 6(V) corresponding to the singular point 
at 0, then mik is a ?(V)-submodule for all k > 0. 
Proof. For i > 0, set Ei the homogeneous elements of degree i in 6(V) . 
Note that mki = ei>kEi. For j E Z, set j.(V) = { e 2EI(V)Ji(En) C 
En+j for all n}. For each m > 0, set Ik := e>jk i(V). One of the 
main results of [BGG] is that each Ik is a two-sided ideal of 9(V). Hence 
Ik./(V) is a ?(V)-submodule of 6(V). But Ik.6&(V) = mk, and therefore 
6(V) D m i m 2 D ... is an infinite descending sequence of O(V)-submodules 
of &(V). 

By (4.5), there is therefore an infinite ascending chain of O(V)-submodules 
of S, namely 0cm' c (m2)' c . 

Example 4.10. This is the easiest case where V is a curve, and S is not a 
simple module. 

Let D = 09y2- _0-3 _92 . Thus V is the plane curve defined by y2 = X2(X+ 1). 

This is a rational curve, with parametrisation x = t2 - 1, and y = t(t2 - 1). 
There are two branc-hes at 0, so by (4.6) S is not a simple 7(V)-module. In 
[SS, 4.4b] it is shown that 

O(V) = C E (t2 _ 1)C[t, d/dt] c C[t, dl/dt. 

The only proper two-sided ideal of 9(V) is (t2 - l)C[t, d/dt], and the only 
proper ?(V)-submodule of &(V) is m = (t2 - 1) = (x, y). 

By (4.5), 5 has a unique proper 7(V)-submodule, namely C, and S/C is a 
simple 7(V)-module. Thus to determine S, a key point is to find an element 
of S\C. One can see at once that such elements include x, y, xy, x2 + y2. 
Since dim mk/Mk+I = 2 for k > 1, it follows from (3.3) that a basis for the 
space of solutions of degree < 2 is given by { 1, x, y, xy, x2 + y2} . Finding 
solutions of degree > 2 is not quite so trivial. 

Consider the elements (t2 - 1)0 and (t2 - 1)02 of 9(V). Some (nasty) 
calculations show that elements of 1I(OD) mapping to these are the operators 
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P = 2xOy + 3yO2 + 2y0x and 

Q = (4x2 + 3y2)a2 + 12xyOxOy + 9y2O,2 + (4X2 + 2x + 4y2)Ox + (8xy + 6y)Oy. 

Notice that Q raises degree but P does not. In particular, one finds that 

Q(xy) = 20xy + 12x2y + 4y3 and Q(X2 + y2) = 8x3 + 24xy2+ 12x2+ 36y2. 

Hence a basis for the solutions of degree < 3 is 

{1, x,y, xy, A2+y2} U{3x2y +y3, X3 + 3xy 2+ 3y2}. 

Thus to obtain elements spanning S it suffices to continue acting on these 
solutions by P and Q. 

Example 4.11. There are some interesting examples of curves V where (4.6) 
applies. That is, V is singular at 0, but S is a simple ?(V)-module. The easi- 
est such example is when V is defined by y2 -x3, corresponding to 02f/Dy2- 
03f/0X3 = 0. 

Let A c N be a submonoid (subsemigroup) such that N\A is finite. Let 
V c An be the curve with the property that 6(V) = CA, i.e., C[t] D 6(V) = 

eCEAoCtA. Set a = d/dt. For each k E Z set Ak = A\(A- k). Then 
9(V) contains C[ta], and is in fact a free C[ta]-module with basis tkfk where 
fk = I7jEAk (ta - j). Given the description of S as those elements in A* 
vanishing on some power of m, and the pairing described above, it follows that 
a basis for S is given by {1.tr1fjiJi E A}. Now it is shown in [P, 4.2] that 
the elements t-ifJi span a subalgebra of 9(V) which is isomorphic to (V); 
the isomorphism is given by t-if E -* ti. Hence S is a free module over this 
subalgebra of 2(V). 

In order to describe S proceed as follows. Let 0 $A A be the smallest element 
of A. There is a finite set F such that A is the disjoint union of the sets 
{y+adja E NU{O}}lyE. Then &(V) is the free Cj[t]-module with basis {tYjy E 
F}. Find a preimage of t-Af A in 0 = O(An), apply the anti-isomorphism 
a to obtain PA say. Do the same for each y E F to obtain P,. Then a basis 
for S is given by {PyPk(1)jy E F, k > O}. 

5. EVOLUTION EQUATIONS 

Introduce another variable, t say, which may be thought of as time, and 
think of the x 's as space coordinates. Accordingly set 

? = C[t, xi, * * , Xn , at al, *... , an] 

where at = a/lt. Let D = at - Q where Q E C[al, ... , an]. A differential 
equation, D(f) = 0 with D of this form is called an evolution equation. A 
realistic physical example is the heat equation, which we discuss below. 

Such an evolution equation is nicely handled by our technique. First there is 
an explicit description of the Pj occurring in (4.4), and secondly it is easy to 
obtain a solution to an associated "initial value problem" when the initial value 
is a polynomial. Recall that [Q, x] denotes Qx - xQ. 

Proposition 5.1. Let D = at - Q where Q E C[al, ... , an]. Set S = {f E 
C[t, xi, ..., xn]ID(f) = O}. For 1 < j < n, set Pj = xj + t[Q, xj]. Then 
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(a) the Pj commute with one another and C[PI, . P. , Pn] is an n-dimensional 
polynomial ring-, 

(b) S = C[P1, , P4].l and S is a free C[P1, , P,]-module; 
(c) given g E (C[xi, ..., x,]j, there is a unique f E C[t, xi, , x, ] such 

that D(f) = 0 and f(O, xi, ..., xn) = g(x1, ..., xn); moreover 

f =g(PI, ***-, Pn)(1); 
(d) all the Pj commute with D. 

Proof. Clearly C[Ot, 01, ..., n]/(D)- C[1, ..., a] so V _ An. In partic- 
ular, V is smooth and irreducible, so S is a simple ?(V)-module by (4.2). 
Write 6(V) =C[yi, .. ., Yn], and 9(V) = C[yi, ... .,Y, Yn 9 0/9 , * * , 0/OYnj . 
By (4.4), S = L.C[Ol/yj, *.. , a/0aYn], and is a free module over the commu- 
tative polynomial ring C[O/0YI, ... , /0Yn ] 

As in ?1, let Vt: C[t, xi, ... , xn] -* 6 (V) be given by tV(xj) = yj and 
VI(t) = Q(Y1, . . ., Yn) . To find a preimage in 0 of 0/lyj consider the action 
of 0/0yj on Vg(t), Vt(x1), ..., Vt(xn). Choose bj E C[t, xi, ... , xn] such 
that yg(bj) = 0/0yj(yV(t)). Then a preimage of 0/ayj is bjat + a0. Take 
Pi = ar(bjat + aj) and apply (4.4). There is some choice in bj, but one such 
choice leads to the P1 defined in the statement of (5.1). A calculation shows 
that the elements Pj are pairwise commuting. 

Thus by (4.4), S = C [P1, ... , Pn1]. . This proves (a) and (b). 
(c) Set B = C[t, xi, ... , xn]. The problem is to find f E Sn(g+tB). How- 

ever, it follows from the form of the Pj that g(Pi, ... ., Pn) = g(xI, * * *, Xn)+P 
for some P E t2. Therefore g(P1, ... , Pn)(l)It=o = g(x1, ..., xn). Thus 
f = g(Pi, ... , Pn)(1) is a solution to the initial value problem. 

To see the uniqueness, suppose that fi and f2 are both solutions to the 
initial value problem. Then fi - f2 E tB, and D(fi - f2) = 0. Suppose 
that fi :$ f2. Then fi - f2 = tkh for some h E B\tB, and 0 = D(tkh) = 
ktk-lh + tkOh/Ot + tkQ(h). Whence h E tB, contradicting the choice of h. 
So, we must have fi = f2. E 

Similarly, the polynomial-exponential solutions are given by 

C[Pwc) 
... 

, 

Pn].ea,x1+ 

anxn-Q(ajX... an)t 

where (ael, a.,Cn) E C8n. 

Example 5.2. (a) Consider the (3-dimensional) heat equation viz. D = at - 

ax2- aY2 -az2. By (5.1), S = C[x+2t0x, y+2tay, z+2taz].1 . If we label these 
three operators as Px , Py and Pz respectively, then {Px1P;yP zk(l)li j, k > 0} 
is a basis for S. 

(b) Consider the 1-dimensional heat equation. Write P = x + 2t0x. We 
show how P interacts with some of the standard features of the heat equation 
(see [C and W]). By (5.1) {Pn(1)In > 0} is a basis for the space of polynomial 
solutions to the heat equation. The "heat polynomials" Vn(x, t) are defined 
via the generating function 

00 

eXZ+tz2 =Z Vn(x, t)z/n!n 
n=O 

Since exz+tz is a solution to the heat equation (because (z2, z) E V; cf. ?2), 
so too is each Vn(x, t). What is interesting from our point of view is that 
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Vn (x, t) = pn (1); this is routine to check. There is an explicit formula for 
vn (x, t) which is obtained by writing exz+tz2 = exzetz2 and multiplying out the 
power series. As we will now explain, our point of view gives an alternative way 
to obtain this explicit description. First observe that there is an automorphism, 
i say, of 2 givenby x >-* x+2tOx = P, at i-* at-0x2, ax -ax, t - t . Let 3 
be the inner derivation of 0 given by 3 = ad(ta,2); that is 3 (r) = tOx2r- rtOx2 . 
Then 3 is locally nilpotent on 0, so exp(3) is an automorphism of ?. The 
point is that i = exp(3). Now pn = O(xn), so 

00 

pn(1) = (I/k!)[ad(tax2)]k(xn)(1) 
k=O 

- E(l/k!)[tx2]k(xn) because (tx2)(1) = 0 
k=O 

- Z(tk/k!)Xk (xn) 
k=O 

00 

- n! Z(tk/k!)xn-2k/(n - 2k)! 
k=O 

which is the usual expression for vn (x, t). 
The fundamental solution to the 1-dimensional heat equation is 

K(x, t) = (47rt)1/2 exp[-x2/4t]. 

Note that P(K(x, t)) = 0. The solution to the initial value problem f(x, 0) = 

g(x) is 

f(t, x) = j(4rt) 1/2 exp[-(x - y)2/4t]g(y)dy. 

By (5.1), if g is a polynomial then f(x, t) = g(P)(1) . Arguably, using P is a 
simpler way to obtain the solution. 

This simple example illustrates the ideas involved in this paper; the same 
technique applies to other evolution equations. Both [C] and [W] have a sec- 
tion on how to obtain new solutions from known solutions, but neither book 
mentions the role played by P. I do not know whether the operator P has 
been "discovered" before. 

6. SPHERICAL HARMONICS AND OTHER EXAMPLES RELATED TO 

ENVELOPING ALGEBRAS OF LIE ALGEBRAS 

Let n > 3, and set D = O2 + + an2. Then V is the quadratic cone 
x2 + + x2 -0 in Cn . This has a singularity at 0, so 9(V) is difficult to 
understand. Write U(so(n + 2)) for the enveloping algebra of the Lie algebra 
so(n + 2, C). In [LSS] it is shown that there is a surjective map 

~o: U(so(n + 2)) -* 9(V) 

such that the kernel is the Joseph ideal of U(so(n+2)) (see also [L]). The Joseph 
ideal is a distinguished primitive (indeed maximal) ideal of U(so(n + 2)) (see 
[J]). In particular, 9(V) is a simple ring (whence S is a simple O(V)-module), 
and 9(V) is finitely generated over C. 
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The following basis for (o(so(n + 2)) is explicitly given in [L]: 
n 

xiai + (n - 2)/2; 

i= = 
xi 2- ai xiai + (n -2)/2 aj I <j j<n, 

xi, 1 <j<n, 

Xkam - Xmak 1 < k < m < n. 

Applying the anti-automorphism a, gives the following elements of 1[(2D): 

n 

Zxiai + (n - 2)/2, 
i=l 

Pi = x2 aj-xj xiai + (n-2)/2 < j < n, 

ai, 1 <j<n, 

Xkam - Xmak 1 < k < m < n. 

In [L] it is shown that the Pj commute with one another. Using the Poincare- 
Birkhoff-Witt Theorem, it is easy to see that 1[(OD). 1 = C[Pi, ... , Pn]. 1 . 

It is clear that D possesses an SO(n) symmetry, and hence there will be an 
action of so(n) on the space S. However, the fact that there is an so(n + 2) 
action on S is much more of a surprise, and is revealing a "hidden symmetry". 

There are a number of other related examples where the system of differential 
equations has a large degree of symmetry, and S can be effectively computed 
although V is singular at 0. It is more efficient to describe V than the system 
of differential equations. Let V be one of the following varieties: 

(A)all pxq matricesof rank<k (1 <k<q<p), 
(B) all symmetric n x n matrices of rank < k (1 < k < n), 
(C) all skew-symmetric n x n matrices of rank < 2k (2 < 2k < n - 1). 

Each V has a singularity at 0. However, it is proved in [LS] that 9(V) is 
a finitely generated simple ring. Therefore S is a simple O(V)-module. In 
each case 9(V) is a factor ring of the enveloping algebra of a semisimple Lie 
algebra: these are gl(p+q), sp(2n), so(2n) in cases A, B, and C respectively. 
Explicit generators for 9(V) are given in [LS, Chapter IV, ? 1.9] (although the 
expressions there do not make it easy to compute the appropriate preimages in 
2). I do not know if these systems of differential equations arise anywhere, 

nor if there is any other way to describe all the polynomial solutions. 
The easiest case is A with k = 1, p = q = 2. Then there is a single 

differential equation in variables xiI, Xi 2, X2l, X22; the operator is 011022 - 

012021. Using [LS] gives S = C [PiI, P12, P21, P22].1 where 

Pij = Xij + E: XiaXbj'9ba 

1<a, b<2 

Questions. The issues raised in this paper lead to the following questions. 
1. When is 9(V) a finitely generated algebra? When is 9(V) a simple 

ring? When is &(V) a simple module? When is S a simple module? 
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2. If 9 (V) is finitely generated, give a procedure for obtaining a set of 
generators. For example, find an integer k, such that 9(V) is generated by 
those operators of order < k. 

3. Let M be a cyclic 9-module. Study Endo M. When is it finitely gener- 
ated etc.? If the ideas of this paper are to be extended to differential operators 
with nonconstant (polynomial) coefficients, then one must first understand the 
rings End M. A starting point might be the following question. 

4. Let J be an ideal of C[xl, ... , x, ] defining a smooth variety. What prop- 
erties of the module O/J.,T lead to the ring Endo(O/JO) being a finitely 
generated, simple, noetherian domain? This should give some clues for under- 
standing Endo(O/L) when L is a more general right ideal of . 
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