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Fix a simple complex Lie algebra g, not of type G,, Fy, or Eg. Let Oy, denote
the Zariski closure of the minimal non-zero nilpotent orbit in g, and Iet
g=n*®Hh@dn~ be a triangular decomposition. We prove

TuroREM. (1) If g is not of type A, then there exists an irreducible component X
of Opmnnt such that U(g)/Jo=D(X), where J, is the Joseph ideal and 2(X)
denotes the ring of differential operators on X.

(2) If g is of type A, then for n—2 of the n irreducible components X; of
O, .t there exist (distinct) maximal ideals J; of U(g) such that U(g)/J;=
2(X;). © 1988 Academic Press, Inc.

1. INTRODUCTION

Let g be a finite dimensional simple Lie algebra over C and let O,
denote the Zariski closure of the minimal (non-zero) nilpotent orbit in g. If
g is not of type A,, there is a unique completely prime primitive ideal of
U(g) with associated variety O,;, [12]. This ideal is called the Joseph
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ideal, and is denoted J,. Joseph introduces J, as the kernel of a certain
C-algebra homomorphism ¢ from U(g) to a localisation of a Weyl aigebra.
Given an algebraic variety Y, write 2(Y) for the ring of differential
operators on Y. Thus Joseph's construction may be interpreted as
Jo=ker y, where y: U(g) > Z(A™\ H) for a certain hyperplane H < A"
This homomorphism is never surjective.

If g is of type B,, C,, D,, Egz, or E, there is a second procedure for
realising U(g)/J, as differential operators on a suitable variety. One takes a
triangular decomposition g=n*@®h®n" and a suitable irreducible com-
ponent X of O, nn*. Then there exists a homomorphism l/l Uig) —
2(X) due to Goncharov {10]. It is not difficuilt to prove that ¢#{X) becomes
a simple highest weight module and that ker ¢ = J, (see Proposition 3.5,
and [16, Sect. 3] where this is done for so{n}).

The first main result of this paper is to show that v is surjective, and
hence thar U(g)/Jo=2(X). For g of type C, this result is {implicitly)
established in [15, Théoréme 5, p. 1701].

In outline, the theorem is proved as follows. One observes that
R :=y(U(g)) = 2(X) = Fract(R). By a result of Gabber (see Lemma 5.2},
and the fact that R is simple (Proposition 3.5), it then suffices to prove that
GK dim(Rd + R/R) < GK dim(R)—2 for all de 2(X). By passing to the
associated graded ring of R this can be reduced to the problem of showing
that dim(O,;, np ) <dim(O,,;,) — 2, where p is a certain parabolic sub-
algebra of g having an abelian nilpotent radical. This statement is proved
in Section 4. The proof also requires a number of technical but standard
results both on maps from Lie algebras to rings of differential operators
{given in Section 2), and on the details of Goncharov’s construction {given
in Section 3}).

The second main result shows that for g of type 4,, certain completely
prime primitive ideals of U(g) associated to the minimal nilpotent orbit
may be obtained as the kernel of a surjective map from U(g) to the ring of
differential operators on an irreducible component of &_ .. ~n*. Both
Goncharov’s construction (which works when there is a Hermitian sym-
metric space) and the proof of the main theorem, as outlined above, apply
when g is of type 4,. Of course, in this case the Joseph ideal is not defined:
there is a one parameter family of completely prime primitive ideals having
associated variety O, If g=sl(n+1) then O, nn* is a union of »
irreducible components X, (1<, <n), and for each ; Goncharov’s
construction provides a homomorphism ,;: U(g)—2(X)). Let
(¢;=¢;,—¢;,,|1<j<n) be the simple roots for 4, as in Bourbaki [5,
Planche 1, p. 250]. Let p, be the maximal parabolic obtained by deie;hg
the simple root «;. Then X is contained in the nilpotent radical of p,. If
j#1 and j+#n, the proof outllned above goes through and ; is surjfic!.we
(Theorem 5.2); furthermore, if w, is the fundamental weight corresponding
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to the simple root «;, and L(p — w;) is the simple module of highest weight
—w, then ker ;= Ann L(p — ;). This follows from the fact that O(X;)=
L(p—w;). Note that the various kery; (1<j<n) are distinct
(Theorem 3.8). When j=1 or j=n, the outcome is quite different. In this
case there is a 1-parameter family of maps y: U(g) - 2(X,) and none of
them is surjective (in fact, there can never be a surjective map
Y: U(g) = 2(X)); see 3.9). In [20] Musson (using a technique different
from ours) also shows that for 1< j<n there is a surjective
map U(sl(n+ 1)) »> 2(X)).

In Section 6 we show that our results for so(2n), n = 5, give the existence
of two non-isomorphic (singular irreducible affine) varieties X, and X,
such that 2(X,) and 2(X,) are isomorphic. This illustrates that some
information about a variety may be lost in passing to the ring of differential
operators.

Since the proof of the Kazhdan—Lusztig conjectures [1] the connection
between primitive ideals and differential operators has been vigorously
investigated. See in particular [3, 4]. In those papers certain induced
primitive ideals are realised as the kernel of the natural map U(g) -
%(G/P), where P is a parabolic of the connected semi-simple algeraic group
G (where Lie G=gq). In fact, 2(G/P) is isomorphic to a certain primitive
factor ring of U(g). However, the present paper differs in a number of
respects. Our variety X is affine (not projective), it is not smooth (whereas
G/P is), X is not a G-variety, the kernel of ¥: U(g) - 2(X) (viz, J,) is not
an induced ideal (except when g=sl(n+ 1)), and g does not act on X as
vector fields (some elements of g act as second order operators, some as
first, and some as zeroth order operators).

The results outlined above lead us to suspect that many other completely
prime primitive ideals may be obtained as the kernel of a suitable action of
g as differential operators on certain components of O nn* (where O is
the associated variety of the primitive ideal). Apart from those examples
already given, there is an example occurring in type G, (see 5.4). More
recently, the first and third authors have obtained a number of other
primitive ideals in this way [25].

2. GENERALITIES

2.1. This section collects various facts about the action of a Lie algebra
as differential operators on a variety. The following notation will be used,
usually without comment, in the paper. Let Z be an irreducible algebraic
variety. Write @, for the sheaf of regular functions on Z, with global sec-
tions ¢(Z). For each pe Z, write 0 ,, or just (,, for the local ring at p,
with maximal ideal m,. Write &, for the sheaf of differential operators,
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with global sections #(Z), and stalks &, ,. For peZ, let T,Z be the
tangent space to Z at p, T}Z the cotangent space to Z at p, and let
Der ¢ , denote the module of derivations on (7 ,.

Throughout, G will be a connected complex semi-simple linear algebraic
group, and P < ( a parabolic subgroup containing a fixed Borel subgroup
B. Write g=Lie(G), p=Lie(P), b=Lie(B) for the corresponding Lie
algebras. In general closed connected subgroups of G wili be denoted by
uppercase letters, and the corresponding Lie algebra wiil be denoted by the
same letter in lowercase German script. Let 5 b be a fixed Cartan sub-
algebra, and let g=n*@h@n~ be the usual triangular decomposition
relative to the choice of h and b=h@ n*. Write p=m@®r™ as a direct
sum of ad-h-modules, where t* is the nilpotent radical of p, and w the
reductive part. Thus g=r* ®@m @, where ¢+~ is the ad-j-module com-
plement to p. Write M for the closed connected subgroup of G with Lie
M=m.

The Killing form on g is denoted B(X, Y) for X, Yeg.

Write R for the set of roots of g, and R™ for the roots of hinn*. Huis a
root for g then X, denotes a root vector of weight «. Let peh* be the half-
sum of positive roots. Given A e h*, write M(1) for the Verma module with
highest weight 1 —p. Let L(4) be the simple quotient of M(4), and write
J{2) := Ann L(A) for its annihilator.

If Z is a variety on which there is a G-action and peZ, write
Stabg(p) == {ge G| g- p=p} for the stabiliser of p in G, and set g(p) =
Lie(Stabg(p)). Thus g(p) is the kernel of the natural mapg— 7,Z.

Given a C-vector space V, write S(V) for the symmetric algebra on ¥
Write S, (V) for the nth symmetric power of V. Set S(r ™), =@, ., S,z 7).
Similarly, U{q), denote the elements in U(g) of degree < p.

2.2. Let V be a finite dimensional C-vector space with basis y,, ..., v,
and let x,,.., x,; be the dual basis for ¥V* Thus ¢(})=Clx,, .. x,]=
S(V'*). For each yeV write ¢, for the derivation on S(¥*} defined
by ¢ {xi=x(y), for xeV* Write ¢,=0/0x;. The C-linear map V' —
Der S{V'*) given by y, d,=0/Cx; identifies Der S(V'*) with S(V*)®, V.
The ring of differential operators on V is therefore Z{(V)=2(5(V*)i=
Clxy, on Xy, 64y ey 8yl =S(V*)®c S(V).

The Fourier transform F:2(V)— Z(V*) is defined to be the algebra
isomorphism given by F (x;) = id/0y;, F(8/0x;)=1iy,, where i= K/"'—}. The
Fourier transform is independent of the choice of basis.

2.3. (Notation 2.1). Consider g as vector fields on P\G. Identify ¢~
through the exponential map with (a translate of) the large Bruhat cell of
P\G. Restricting the g-action on P\G then gives a Lie algebra homo-
morphism L: g — Der €(r ) which extends to an algebra homomorphism
L:Ulgy > Z{(x )

4817116 2-13
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Through the non-degeneracy of the Killing form identify +* with (r ~)*.
Fix a basis x,, .., x, for t* and let y,, .., y, be the dual basis for r~. We
may assume that the x; are chosen to be ad-h-eigenvectors. As in (2.2), we
have O(r~)=S(t"), DerO(x7)=St")®cr~, and Z(r )=St")®¢
S(x™).

24. Following Blattner [2], the action of g on S(r*)=¢(r ) obtained
through L, and the image of g in ¢(r ~), may be described as follows. First,
set F=Hom,,(U(g), C). This has an algebra structure induced by the co-
multiplication of U(g), and g acts as derivations on F by (Xf)(u) = f(uX),
for feF, Xeg, ue U(g). Define 7: S(r~) - U(g) by

(zy -+ z,)=(1/n) 3 (2512502 G ES,)

for z,,..,z,ex”, where S, is the symmetric group. The map n: F—
Hom(S(x 7), C) given by (nf)(a) = f(t(a)) for feF, ae S(x™), is a vector
space isomorphism, and so allows us to give Hom¢(S(r—), C) an algebra
structure.

There is a natural mapy: S(r*)— S(r7)*=Hom¢(S(r7),C) which
extends the identification of r* with (x " )*. f K= (k|, .., k), J=(J1» or Ja)
are multi-indices, then define o4, =TT, 4, and J!=T],(j;)!. With the
notation of (2.3), 7 is defined by setting x*(y”)=d4,(J!). The following
proposition is now routine:

ProposiTioN (Blattner [2]). Ler F have the g-module structure defined
above, and let S(x*) have the g-module structure obtained through L (as in
(2.3)). Then y: S(+*)—> F=Hom(S(x ™), C) is

(a) a g-module homomorphism,
(b) an injective algebra homomorphism, and

(c} if S(x*}y=C[xy, .., x,] is identified with its image in F, then
F=C[[xy, .., x;1], the power series completion of S(x™).

2.5. Given L:U(g)— Z(r ) as in (2.3), one may apply the Fourier
transform to obtain # o L: U(g) » 2(x"). Alternatively, one may regard
t* as an M-module, and differentiate the M-action to obtain an algebra
homomorphism «: U(m)— Z(r*). Our immediate aim is to give an explicit
formula relating o and the restriction of # o L to U(m). Although this is
presumably well known we could not find it in the literature. We give it in
slightly more generality than we will need.

Thus for the rest of (2.5), let M be any connected affine algebraic group
over C, and set m = Lie(M). Let V be a finite dimensional representation of
M, and let §: U(m) — (V) be obtained by differentiating the M-action on
V. Give V* the contragredient representation, and let a: U(m) — 2(V*) be



4

MINIMAL NILPOTENT ORBIT 4E:

L

obtained by differentiating the M-action on V*. Let % @{(V) > 2(V*} be
the Fourier transform, and let (y,]1<i<d)} and (x;,/1<j<d) be dua,
bases for ¥ and V'*, respectively.

PROPOSITION. For Xem, o(X)=(F o B)(X) —trace A X). In particular.
a(U{m))=(F » BHU(m

Proof. Adopt the notation of (2.2). Fix Xem. Let ;e C (1<, j<d)

be such that X-y,=3%9_  a,y for 1< j<d Then X.x,= -3¢  a,x, for
I €i<d Therefore
d o
AX)y= Z BXNx,)o/ox,= Y (X-x)8jdx;= — ¥ a,x,8/0x,,

i=1 i=1 Li=1

and
d
(‘j’; ¢ ﬁ)(X): Z (6 a}j i Z, 111{11",51'*’1'.;»
Lj=1 =1
Similarly
d d d
(X)= 3 a(X)Ny)0/y,= 3 (X y)é/ey,= 3 a,v,0/0,

j=1 j=1 ij=1

Hence (F < B)(X) — a(X) = T4, «, = trace,fX) e C. In particular,

(F - ,B}(m(—BC)=oc(m@C), and the result follows.

It is easy to check that, if L is as in (2.3), then its restriction L: U{m}—
@(r ) coincides with that obtained by differentiating the M-action on ™,
say fB: U{m)— Z{x ). Hence one obtains

COROLLARY. For Xewm, a(X)=(F o L)} X)—trace~(X). In particular,
oU(m))={F < L) (U(m)).

26. {Notation 2.5). Let X< V'* be an M-orbit. The map o:U{m}—
FZ{V*) restricts to give a: U(m) - Z(X).

LemwMa. For each pe X, the image of a: m — Z{X) generates Der 'y, as
an (y ,~module.

Proof. (Notation 2.1). The map « gives rise to isomorphisms
m/m(p)=T, X=(Cy ,/m,)®. Der €y ,. Hence by Nakayama's Lemma
a{m) generates Der Oy ,.

2.7. Consider the situation in (2.3) and apply the Fourier transform te
obtain & o L: U(g) — Z(r™*). Consider r* as an M-representation, and let
X<1t" be an M-orbit.

431°116°2-157
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ProrPOSITION. (a) The map & o L vrestricts to give a map
x: Ulm) - 2(X).
(b) For each peX, the subalgebra A of Dy, , generated by Oy , and
x(U(m)) contains Der Oy ,, and hence equals Zx ,.

Proof. (a) This follows from Corollary 2.5, and the first sentence of
(2.6).
(b) It follows from (a), and Lemma 2.6, that 4 contains Der Oy ,.

However, X is non-singular at every point p, so &y , is generated by Oy ,
and Der Oy ,. 1

3. GONCHAROV’S CONSTRUCTION

3.1. The first aim of Section3 is to define Goncharov’s map
v: U(g) = 2(X) for a suitable irreducible component X of O, nn*, and
to identify ker y as a particular primitive ideal. Secondly, we compute the
highest weight of ¢(X) when g=si(n+1).

Retain the notation of Section 2. From now on assume that g is simple
and that ¢t is abelian. For completeness all occurrences of this situation
are listed in Table 3.1. The extra notation in the Table is as follows. In each
case p is a maximal parabolic subalgebra of g, and so is completely deter-
mined by the simple root a such that X_, ¢ p. Label the simple roots of g
by «,, .., (in Table 3.1 these have been abbreviated to 1,2,..,/) and
denote by p, the maximal parabolic subalgebra such that X_, ¢p. It
follows from the fact that r* is abelian that r* is an irreducible m-module.
The Dynkin diagram for m,, the reductive part of p;, is the subdiagram of
that for g obtained by deleting «;. Our labelling of the roots is that of
Bourbaki [5].

Let f§ be the highest root for g. Then X} is a highest weight vector in r*
for m. Define X = M - X, the cone of highest weight vectors. Let X denote
the Zariski closure. This is the variety on which g will act as differential
operators. Let I be the ideal in ¢(r*)= S(x ) defining X. As Goncharov
remarks [ 10, Lemma 27, I is generated by I :=In §%(x ™). A proof of this
may be found in [9]. It is straightforward to find the dimension of X
(which is given in the Table); a short description of X is given in Remarks
3.2

3.2. Remarks. (i) For type D, (resp. Eg) the parabolics p, and p,
(resp. p, and p,) are isomorphic but not conjugate.
(ii) For g=sl(n+1), t* may be identified with A, ;,,(C), the
space of jx (n—j+ 1) matrices, and X consists of those of rank <1.
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TABLE 3.1
Parabolics Semi-
p with abelian simple
Typeof g Dyuokin diagram radical nart of m dimr™* dim X
1 2 n
Anin=1) e e pl<j<n) Ay xA,; jin—j+1) n
L 2 n
B, (nz3} o —-..—0—9 P, B,_; 2n—1 n—72
1 2 n
C,{nz2) .o P A,_ aln+1)2 &
l P Dy In =2 -3
D,inz4) *
Pro1s Pa Ay nlp—1y2 213
n—1
1 3 4 5 6
Es 1 Py Ds 16 1i
2 Ps Ds 16 1
1 3 4 5 6 7
£, I P Es 27 17

{iii) For type B,, M=C*xS0(2n—1), t* =C*~ ! with its natural
action, and X is the space of isotropic vectors (including 0) in C** 1.

(iv) For type C,, r* identifies with the space of quadratic forms on
", and X consists of those of rank <1.

(v) For type D,, if p=p,, then v~ =C*""" and M=C*x
SO{2(n— 1)), where X is the space of isotropic vectors. When p = p,,, then
M =GL(n), r* = A*C" = the set of alternating bilinear forms on C”, and X
consists of the alternating forms of rank <2.

{vi) Since X is the orbit of a highest weight vector in %, [24,
Theorem 37 ensures that X is normal. In all cases except type 4, with
equal p, or p,, the singular locus Sing{X)={0}=X\X [24], and
codimg (X)>2. Thus 2(X)=2(X) by [15, Proposition2, p.167]. in
particular, the results of Section 2 may be applied. If g is of type 4,,, with p
equal p, or p,, then X =r" is non-singular.

(vil) There exists Heb* such that [H{m, m]}=0, [H X]=X for
Xert,and {H, Y]= —Y for Yer . To see this note that the Levi decom-
position of m gives Hebh* with m=[m, m]® CH, and so [ H[m, m]1=0.
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Further, as r* is a simple [m, m]-module, ad H| . must act as (non-zero)
scalar multiplication by Schur’s Lemma. Replacing H by a suitable scalar
multiple establishes the claim.

(viii) Note that X=M-X;cG-X3=0,,,, and by comparing the
Table with [11], dim X' =dim(QO,,;,)/2. It follows from [22] that X is an
irreducible component of O, "n™*.

3.3. In [10] Goncharov is able to realise U(g) acting as differential
operators on the cone X cr*. The first step in doing this is to consider
F o L:U(g)— 2(t*) (see (2.3) and (2.7)). Let I be the ideal in @(xr ™)
defining X. It is well known that 2(X)=11(I2(r "))/I2(x ), where
(J):={de2(x”)|d/cJ}. Thus % - L will restrict to a map
U(g) — 2(X) if (and only if) I is stable under the action of g. Unfortunately
I'is not stable under g (although it is stable under the action of m, as noted
in (2.7), and under the action of r~). The key point of Goncharov’s
construction is to replace L by a suitable “twisting,” say L', such that
(F - L')(g) does leave [ stable, and so obtain (& - L)(g) acting as
differential operators on X.

For xeg, write L, and L/ rather than L(x) and L’'(x).

THEOREM (Goncharov). These exists AeC, such that if L':g— 2(x7) is
defined by

(i) L,=L, for yer~,
(i) L'.=L.+2Ax for xer™,
(i) L, , =L, ,7—AB(x, y) for yex™, and xex™,

then I is stable under (¥ o L')(g). Thus & o L' defines a map from U(g) to
2(X).

In all cases except when g is of type 4, and p equals p, or p,, 4 is unique
(and non-zero). In these two exceptional cases X =1", and I=0. Thus I is
table under (# - L)(g) and no twisting is required. Nevertheless, one can
still twist the embedding by choosing any AeC, and so obtain a one
parameter family of maps % o L U(g)—> 2(r*). See (3.9) for a
discussion of this case.

Goncharov does not explicitly compute 4. We will need to compute A
when g=sl(n+1), and p=p, for 1 <j<n.

34. Let AeC be chosen as in Goncharov’s Theorem and write
=% - L' U(g) > 2(x"), and y: U(g) » 2(X) for the induced maps.

Remarks. (a) Recall that 2(¢r*)=S(r " )®, S(r*) with S@~)=0(x*).
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Using the description of L given in {2.4), one may verify {(as claimed in
[107) that

) ot =1,
i) om)c(i”@r7)@®C,
(iily o(r*)c(r” @SB (1®r™).
In particular, the image of U(x ~ ) is S(r 7). Therefore the elements of £~ act
on S{r~y={(x"), and so on (X), as multiplication operators.

{b) (Notation 2.1). The observations in {a) show that the U{g}
action on S{(r ) obtained through ¢ satisfies U(g),-Six™),=S{r"),.,.
Hence for all p,geN, Ulg),-St7),=5("), .

{c) It follows from (a) that O(X)c(U(g)). For peX, define
Y(U(g)), =¥ (U(g)) ®¢x) Ux ,- Since L'(m@C)=L(m@C), it follows
that <pi__b( ))={(# o L)(U(m)). Hence Proposition 2.7 shows that, for
peX, g, and Y(U(m)) generate %y, In particular, for peX.
Y(Ulg)), =% p and one even has ¢(U(p~ )}ngg_p.

The problem in showing that ¥: U(g) - £{X) is surjective is to extend
the equality y(U(g)), =% , for peX to all peX. Since X=X u {0}, the
only problem occurs at p=0. If X is smooth (ie, g=sf{n+1)and p=12,
or p,} then ¥ is not surjective (3.9). However, in all other cases
Sing X ={0}. and ¢ is surjective (Theorem 5.2). Of course, when X :
singular then Z(X) is not generated by ¢(X) and Der 0{X). The point i
that the other generators of 2(X) come from ¥ (r

[P

(d} An explicit description of ¥ for gzso(’i) is given in [i7,
Sect. 3.37.

3.5 ProprosITION. (a) Fract{U(g)/ker ) = Fract #(X};
(by ker is a completely prime primitive ideal,
{c) (X) is a highest weight module, with highest weight vector 1,
{d} kery =Ann ¢ (X);
{ey i g#si(n+1), then ker y =J, (the Joseph ideal), and £(X) is ¢
simple Ulg)-module.

Proof. (a) is an immediate consequence of Remark 3.4(c}. Since
the centre of Fract 2(X) is C, certainly the centre of U{g)/ker i equals C.
Thus (b) follows from [6]. Since @(U(r~))=S{(z"), it is clear that
Y{U(x™))-1=S(xr")-1=¢(X). On the other hand, Remark 3.4(a) shows
that ¢{r7)-1=0, and o(m)-1cC.-1=C. Hence C-1 is a triviai {m, m]}-
module. Thus Y(n")-1=0, and (c) holds. Clearly ker ¢ = Ann ¢(X). Or
the other hand, ¢(X) is a faithful 2(X}-module, whence Ann ({X) < ker i,
Hence (d) holds.



490 LEVASSEUR, SMITH, AND STAFFORD

It remains to prove (e). By (d), dim. U(g)/ker y = cc. Since ker i
is a completely prime ideal, [12, Lemma8.8] implies that
GK dim U(g)/ker ¢ >dim O, with equality if and only if ker ¢ = J,,. Pick
0+# fe 0(X) such that Sing X < f~!(0). Write X,=X\/f"'(0). Then X/ is
non-singular, and by [21, Corollary 2.3], GKdim 2(X;)=2dimX,=
2dimX. Thus by [12] GKdim 2(X)=2dimX=dimO,_,,. Since
U(g)kery c 2(X)c 2(X,) this implies that GKdim U(g)/kery <
dim O,,;,, and hence ker iy =J,. If ¢(X) has a proper factor, say N, as a
U(g)-module, then N has non-zero annihilator as an @(X)-module. Since
O(X)=y(U(g)), this implies that N has nonzero annihilator as a
U(g)/ker y-module. This contradicts the fact that ker ¢y =J; is a maximal

ideal. |

Remark. Not only is O(X) a factor of a Verma module, but it is a factor
of a generalised Verma module, induced from a 1-dimensional represen-
tation of p. This is because p(mPr*}-1<=C-1.

3.6. When g=sl(n+ 1), there is no unique completely prime primitive
ideal associated to the minimal orbit, and so a little extra work is required
to identify ker ¢ as a specific J(u). The rest of Section 3 deals with this
question.

For the rest of Section 3, let g=s/(n+ 1), and let p; be the parabolic
obtained by deleting «;. Write g=r;"®m;®r;, and let X;cr} be the
closure of the cone of highest weight vectors. Let ;: U(g) » Z(X;) be as in
(3.4). To explicitly identify the various ker i, and hence to show they are
distinct, we will compute the highest weight of ¢(X;). Write w; for the fun-
damental weight corresponding to the simple root a,. For 1 <j<n, it will
be shown that the highest weight is —w); (Corollary 3.7), that 0(X)) is a
simple module, and that ker ;= J(p —w;) is a maximal ideal. All these
statements are false when j=1 or n. See (3.9) for a discussion of these two
special cases.

Fix j, 1< j<n, and drop the subscript j from p;, X, etc. Let # denote
the highest weight of @(X). Write y =2(n + 1). This constant will frequently
appear because the Killing form on s/(n + 1) satisfies B(e,,, e,,)=2(n+1),
where the elements e,, (I <a, b<n+ 1) are the usual matrix units. Set
d=dimr* =jn—j+1), and let {x,,.,x,;}={e,ll<a<j, j+1<b<g
n+1} be a basis for t*. As in (2.3), {yy, .., ¥4} is the dual basis for r~.
Hence if x;=e,,, then y,=7y'e,,. We shall sometimes write y,, :=y 'e,,.

LEMMA. The highest weight n of 0(X) is given by n(H) = trace -(H)—
AB(x, y), where HelYy satisfies H=[x, y] for xex*, yer~ (and 1 is
chosen as in Theorem3.3). In particular, n(H,)=0 for i#j, and
N(H,) = —(3+3)
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Proof. Recall Corollary 2.5, with V=1". With the notation of {2.5),
(F o LY H)=oa(H) + trace -(H). However, a(H)=3%¢_| [H, v,10/0y;, and
in particular a(H)-1=0. Thus F(L,) l=trace-(H), and by {3.3),
1e ¢(X) is the highest weight vector. By Theorem 3.3, the action of g on
#(X) defined through  is such that

Y{H 1=F(LYy) 1 =F(Ly)-1—AB(x, y)- 1 =trace -(H) — iB(x, ¥},

where Hel satisfies H=[x, y] with xer™, yer™. In particular, for
H=H,, note that trace-(H)= —(n+1), whence n(H)= —(n+1)—Ay=
— '(A.+ ). On the other hand, we observed in (3.5) that [m, m]-i= &.
Hence n(H,)=01if i# /. |}

3.7 {Notation 3.6). By Lemma 3.6, in order to calculate n{H} we need
to know the value of 4 and thus, by (3.3) we need to compute F (L )(7) for
X e, where [is the ideal of ¢(x *) = S(x 7 ) that defines X. By (3.2(ii})), iz
generated by the polynomials {y., Viu— Vet 1<a, ¢<j, j+1<5,
d<n+1}. Theorem 3.3 says that to find 1 one must ook at the action of
L+ 4X on the various v, V.y~ Vaa Voo When Xert. We shall adopt the
notation and conventions outlined in Section 2.

PROPOSITION. Let X=e ert with 1<a<j, j+1<b<n+1. Then
(with i={(—1)"7?)
(a) Ly=—y 'Z{eseuld/de )| 1<c<j, j+1<d<n+1};
(b)Y F(Lx)=iy H{Z(yl0/0ys)0/oy )| 1 <c <) j+i<d<n+ 1]
+(n+ D(E/0re) )
(¢) if a#l, b#k and 1 <1< j, j+1<k<n+ 1 then
FLx) Vs Vi — Yok ¥io) =1y by
Proof. Recall from (24) that Ly= Z{L e fd/fe d 1< ey,
j+l<d<n+1},and for zert Ly(z)=3,z(y'X)x’/J. Fix z=e,,. Since
X is of weight ¢,—e¢,, and z is of weight g —¢, it follows that if
(1’ X)1#0, then |J| =2, and 3’ =y,y, with the sum of the weights of y,
and y, equal to (g,—e,)+ (e,—¢&.)=1(e,—¢, )+ {e;,—¢,). In that case

2 X)=2([yilye. X1 =Bz, [y Lye, XTD
If a#c and b#d, then y’ is either 7y %¢,,e, or y Ze,.e,. Note that

Ble.s, [esal€aer €511) =0, and therefore Ly(e )= —7 ‘e €. lf a=c and
b #d, then y""= p Zebaeda, and therefore L (e )= —y 'e,p€,q I as ¢ and
b=d, then y —y' Cpalpe, and Lyle.)= —y ‘epe.. I a=c and b=4,
then y’ =y 27, and Ly(e.4) = —7~'e.4€.q- This proves (a).

{b) WNote that F (e e (0/0e.4))= —i{0)0y ,N0/0F g} ¥ea- If a#c and
b#d, this equals —iy . A0/0y,)N0/0y,q). If a=c¢ and b#d, this equals
— iy, 810y )+ 1W8/0y ). I a#c and b=d, this equals —i(y ,(8/dy}
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+ 1)8/0y,,). If a=c and b=d, this equals —i(y (0/0y.)+ 2NE/0y ).
Summing completes the proof of (b).

(c) This follows easily from (b). |

The condition in (c) is vacuous if j=1 or n.

COROLLARY. Let | <j<n. If A is as in Goncharov’s Theorem (3.3) then
(a) A= —ny~", and (b) the highest weight of ((X)) is —w,.
Proof. (a) Let X=e_ er?, with 1<a<j, and j+1<b<n+ 1. Note
that F(AX)(Vap Vi — Var Y1) = iH0/0V o Yab Vi — Y aic Y1v) = 14y . Thus by
Proposition 3.7(c), 4 must satisfy (iny =" +il) y, =0.
(b) By part (a) and Lemma 3.6, n(H,)= —y(A+4)= —y(—my ' +3)
=n—(n+1)= —1. Since n(H,) =0 for i #j, this gives the result. |1

3.8 THEOREM. Let g=sl(n+1), and p=yp; with 1 < j<n. Then
(a) OX))=L(p—w))
(b) kery;=J(p—w;).

(c) In particular, for 1 <j<n, the ker y; are distinct maximal ideals
of U(sl(n+ 1)).

Proof. Corollary 3.7 implies that L(p — w,) is a quotient of ¢(X). Now
by Remark 3.4(b), for any U(g)-module factor module N of ¢(X), one has
GK dim,«, N=GKdim,, N. In particular, since ¢(X) is a domain
GK dim ) N<GK dim ¢(X) whenever N is a proper factor of 0(X).

But GK dim ¢(X)=dim X = ({) dim O,,;,. In particular, either ¢(X)=
L(p —w;), or GKdim L(p — »;) < (3) dim-O,,,, in which case L(p —w;) is
finite dimensional (by [12, 13]). But the latter cannot occur as p — w; is
not dominant integral. Hence ¢(X) = L(p — ;). Part (b) now follows from
Proposition 3.5(d).

For distinct j (1 <j<n), the orbits of the p — w; under the Weyl group
are distinct (the p — w; are all in the dominant chamber and are distinct).
Hence the J(p —w;) are distinct. The maximality of the J(p —w;) follows,
for example from [6]. |

3.9. It is clear from our earlier remarks that the case when g =sl(n+ 1)
and p=p, or p, is “exceptional.” This is essentially because in that case
X =r*, and 7=0. Thus Theorem 3.3 holds for every A€ C, and so for each
A there is a ring homomorphism ,: U(g) —» 2(x"). Set J;=ker ;. Let
j=1 or n. By (34)-(3.6) ©(X,) is the generalized Verma module
U(g) ® y, C of highest weight —2(n + 1)(4+ 3)w,. Thus, sometimes 0(X))
is simple, in which case J, =J(p —2(n+ 1)(4+3)w;).

To show that y, is not surjective in either of these cases, we use the
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following argument shown to us by A. Joseph. In {act, if g is any semi-sim-
ple Lie algebra then a factor ring R = U(g)// cannot contain elements x, y
such that xy — yx=1. To see this note that, as an ad-g module, R decor-
poses as R=C-1@®V for some submodule V. For any a,b,ce R one
has [ab, ¢c]=1[a,bc]+[b,cal; hence [R, Rl=1Ig R]=[g, V]V So
1¢[R R]

4. THE MINIMAL ORBIT

4.1. In Section 4, g will denote one of the Lie algebras with parabolic
subalgebra p described in Table 3.1. One of the key steps in proving that
Goncharov's mapy: U(g)— 2(X) is surjective is to prove thar
dim(Q_;,np~)<dim(O,;,) —2. In this section we prove that this
inequality holds except in the case when g=s/(#+1}, and p=p, or B,
{Notation 3.1). It is only at this point that the proof of the surjectivity of ¢
will fail for (g, p) = (sl{(n+ 1), p, or p,). Since ¥ is not surjective in this case
(see {3.9)}, one is forced to conclude that dim{Q;,, ~np ) =dim{O;,)— 1.
A direct proof of this fact is given in (4.8).

4.2. Given an orbit O in g, and WeQ, then the tangent space to O at
Wis T, 0=[W,g]. Given X eg, view X as a function on g via the Killing
form B. Then the differential dX is an element of 7*g=g%* and we may
again identify dX with X via dX=B(X, —)eg*. Thus, if [W, Z]e T, 0,
then dX-[W, Z]=B(X, [W, Z])=B([X, W], Z). In particular, if we set
g(W)={Xeq|[X, W]=0]} then {Xeg|dX¥=0on T,0}=g(W)

4.3. The strategy is to use the observation in {4.2) to obtain an upper
bound on the dimension of the local rings €{O.,.,np "}, for
YeO_, np~, and so obtain a bound on dim(O . p )

Lemma. Ler WeO_,np~. Suppose that Y., .,Ys are lineariy
independent  elements of v~ such that {(LCY)ng{W)=0  Thren
dim &{G ., 0P ) <dim(0;,) — s

Proof. Observe that €(0,,, N p~ )= (0, }/r ~€(0,,,), since the idea!
in S(g)==(g) of functions vanishing on p~ is generated by r . Let
WeO,,,np , and write R for the local ring €(0,,)w, with maximai
ideal m,,. If Y,, .., Y are as in the statement of the lemma, then certainly
each Y,em, . Furthermore, by (4.2) dY,, .., dY are linearly independent
in T%0 .. Since T%0,, =m,/(my;)* and R is regular, this is equivaient
to saying that Y, .., Y form part of a system of parameters for R. Thus
dim(R/t " R)<dim(R/Y Y,R)=dim R —s, as required. §
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44. To apply Lemma 4.3 we must consider some special cases. Let
WeO_,np~ and write W=W,+ W_, where Wyem and W_er".
A standard density argument (given in detail in Theorem 4.7) will show
that we only need an upper bound on dim O(O,,;, N p )y for Wy #0, so
we will assume for the rest of (4.4) that W #0.

‘As in (3.1(vil)), write m=[m, m]@®CH with Heb. If W,eCH then,
since r~ is abelian, W acts ad-semi-simply on r~, contradicting the fact
that WeO,,;,. Thus W has a non-zero component in [m,m]. If
g=sl(n+1), and p=p, for 1 <j<n, then [m, m] =m, @ m, with each m;
simple. Order the m, such that W has a non-zero component in m;, and set
a=m,® CH. If g is not of type 4, then m, := [m, m] is simple, and we set
a=CH.

CLamM. With the above notation and assumptions, we may assume, in
applying Lemma 4.3 to determine dim O(Opy, 0D ")y, that Wy=bX,+ Z,
where y is the highest root of m,, 0#£be C, and Z is a sum of root vectors in
m, having weights distinct from .

Proof. Write Wy=W,+ W, with 0 W, em, and W,ea. Since m, is
simple, M- W, spans mi;. Thus there exists ge M, such that g-W,=
bX,+Z is as in the claim. But multiplication by ge M, acts as
an automorphism on @(0,;,) that preserves r~@(O;,). Thus
OOin VP )i =0(0rin) w/t "O(0 i) iy = (0 i, 0 P~ ), - and s0 these
algebras certainly have the same dimension. |

4.5. Assume that W= Wy,+ W_eO,_,np  with W, as in the claim
above (so W,+0). We intend to find elements that satisfy the hypotheses
of Lemma 4.3. To do this choose positive roots y(1), ..., y(s} of g such that

451y X 4 nX_,nE17;

(4.5.2) for 1<i<s, u—yp(i) is a root not equal to any —v(j) for
I<j<s;

(453) [0, X CX_, ;1> CX_,;, where ais defined as in (4.4);

(4.5.4) s is maximal with respect to (4.5.1)—(4.5.3).

We remark that if g#sl(n+1), then (4.53) is trivially satisfied since
ad H| = 1.

LEMMA. If the roots y(j) are as above, then (3. CX ;)N g(W)=0.

Proof. This is a routine highest weight argument. Partially order the
roots R of g, such that a<f if and only if f—aecR™. Write
Wo=bX,+ W'+ 1T, where W’ em,; has no component of weight p,
and Tea. Suppose that 0# Ye (3.CX__ ;) ng(W). Write Y=3 a, X _,+
Y azX ;, where a,,ayeC\{0}, and the o’s are the minimal elements
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among the y(j) under the partial ordering on R. Since r~ is abelian and
Yea(W),

O=[Y, W]l=[Y, Wol=bY a,[X .. X, 1+b6) a,0X_, X,]

+LY, T1+0Y, W]

By (4.5.2), the [X _,, X, ] are distinct non-zero roots vectors, so they must
cancel with terms from one of the other three sums. Since the «'s are
minimal they cannot cancel with the [X 4, X,] terms. By {4.5.2) and
(4.5.3) they cannot cancel with the [Y, T'] terms. Hence [X ,, X, ] must
have the same weight as some [X ., X, ] with X, a component of W
But then x—yp(j)=p—v>0, by the choice of u This contradicts the
minimality of the «’s. ]

4.6. A case by case examination is needed to determine the s cf (4.5).
We adopt Bourbaki’s notation [5, Planches I-VI, pp. 250-2667 for the
root system of g. We also retain the notation of {3.1) and (4.5), except thas
we write y; rather than y(j).

(4.6.1) (goftype 4,, p=p,, 1 <j<n) There are two possibilities for
m;. If m; has simple roots o, ..o, then p=¢ —s and
(s oty ={e—e&lj+1<k<n+1}. I m; has simple rocts
%oy &, then =g —e, . and {y,, .,y = {gc—€, 1 1Sk L
Thus s=min{j,n—j+1}.

{(4.62) (g of type B,, n=3). u=e,+e;5, =8 +61 7276 65
Thus s =2.

{463} (g of type C,, n=22). pu=¢,—¢,, y,=2¢ and y,=¢, +e¢,
for 2<i<n Thus s=n.

{4.64) (goftype D,, n=4). There are two cases. First if p=p,, then
U=¢6r+¢&3, Y =€ +¢&, Y,=6 +¢&;, and s=2. Secondly, if p=p,, then
g=¢ —¢g,, and y,=¢;,,,+¢,, for 1<i<n~2 Thuss=n—-2.

{4.6.5) (g of type E;). We only need to consider the case p=p,. Then

=01221, 9, =11221, y,=12221,  y,=12321,  y,=1232i.

3
1 1 1 i 2
Thus s =4.

(4.6.6) (g of type E;). We have

p=123210, y,=123211,  7,=123221,  v,=12332L,
2 2 2 2

ya=124321,  po=134321, 7, =234321.
2

2 2
Thus s=6.
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47. The peceding results are now combined to give

THEOREM. Let (g, p) be as in Table 3.1, and suppose that (g, p)+#
(s{in+1),p,) or (sl(n+1),p,). Let s be as in (4.6). Then

dim(O,;, " p ") <dim(0;,) — s <dim(O ;) — 2.

Remark. For the classical groups, one of us (the first author) can prove
that these inequalities are actually equalities.

Proof. The second inequality has been proved in (4.6). It is enough to
prove that dim ¢(0,, " p ) <dim(0,;,)—s for all W in some dense
subset of O,;,,"p~. As in (4.4) write W= W,+ W_. We have already
proved in (4.4) and (4.5) that the inequality holds if W,%0. Since ¢~ is
closed in p~, the subset U:={WeO_ ,0p |W,#0} is open in
O,.0p . Let V be an .irreducible component of O, ~np~. Either
VeOp,nt =X, or VAaU#. In the first case dim V<dim X<
dim(0O,,;,) —s, by Table 3.1, and (4.6). In the second case dim ¥ < dim U,

and we have already seen that dim U <dim(O,,,,)—s. |

48. For g=sl(n+1) and p=p, or p,, we have s=1. One can show
that in this case dim(Q;, 7 p ~)=dim(0,,;,,) — 1. One roundabout proof is
to note that, although the conclusion of Theorem 5.2 fails in this case (as
was shown in Section 3.9),- the only step in its proof which fails is
Theorem 4.7. A direct proof is as follows:

PrROPOSITION. Let g=sl(n+ 1), and p=yp, or p,. Then
dim(O,,;, np~}=dim(0O,,,)— 1.

Proof. We consider only the case p = p,,. Consider the natural represen-
tation of g on ¥=C"*'. Then O,,;, = {Xeg|rank (X)<1}. It is easy to
see that dim O,;, = 2n. Note that m 2 s/(n)@® CH, where sli(n) = sl(n+1) is
identified with those matrices whose final row and column are zero.

Let n:p~ —» m be the projection, with kernel r—, and consider the
restriction of n to Q,,;, np~. The image is clearly O,;, » m, which coin-
cides with the minimal nilpotent orbit in m. Hence dim n(Q_,np~ )=
2(n—1). Let 0 # xe n(Op, " p~ ), and let y e n~!(x). Thus the component
of y in m equals x, and the last row of y is a scalar multiple of some row
of x, since rank(x)=rank(y)=1. In particular, dimz *(x)=1. Thus
dim(O;,,"np~)=2(n—1)+1=2n—1, as required. |

49 Remark. The fact that Theorem 4.7 does not hold for si(n+1)
when p=p, or p, was a surprise to us. In fact, we once believed the
opposite. Our error was in part due to our not believing the following fact
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which is a consequence of Proposition 4.8, and still strikes us as rather a
surprise.

Let S=%(A") be the nth Weyl algebra; say, S=C[1,, .., Iy, Cis s Ty b
Then there exists a finitely generated noetherian C-algebra R < § {in fact &
is a homomorphic image of U{si{n+ 1))} such that GKdim R=
GK dim S=2n, Fract R=FractS, 1,,.,1,€ R and GKdim{R/R:, + -
+ Rt,)=GKdim R—1=2n—1. In contrast GKdim(S8/8:,+ --- +51,}=
GKdimS—n=n.

The algebra R is obtained as o(U(si{n+ 1))} when p=p, or p,. R is
generated by the elements ¢,, 1,6, and {1,0,+ ---7,0,)6,, for 1 <, j<n

E l'j’

5. THE MAIN THEOREM

5.1. In this section we prove the main theorem of the introduction. This
follows very easily by combining the earlier results with the following
lemma due to O. Gabber. First, however, recall that a finitely generated ieft
U{g)-module M is called d-homogeneous if GK dim M =GKdim N=d for
all non-zero submodules N of M (see [ 14, p. 687).

Lemma. Let g be any finite dimensional Lie algebra over C. Let M be a
finitely generated d-homogeneous left U(g)-module. Let Q be any Uig)-
module (not necessarily finitely generated) that coniains M as an esseniiai
submodule. Then the set of left U(g)-modules

S ={M|McM <Q,with M’ finitely generated and
GK dim(M'/M)<d-2}

contains a unique maximal element.

Proof. The argument of the third step in the proof of I8,
Théoréme 4.2.1] may be used unaltered. §

5.2 THEOREM. Let g be a finite dimensional simpie Lie aigebra no: of
type G,, F,, or Eg. Let p be a parabolic subalgebra with abelian nilpoten:
radical (but exclude the parabolics p, and p,, for g=sl(n+ 1)). Let X be the
irreducible component of O, "n* contained in the nilpotent radical of p.
Let yr: U{g) = 2(X) be the map defined by Goncharov (see 3.3). Then y is
surjective.

Proof. We will apply Lemma 5.1 with M = R=y{U(g)) and @ = Z(X).
Proposition 3.5(a) says that R is an essential submodule of @ as an

R-module, and hence as a U(g)-module. Furthermore R is d-homogeneous,
singe it is a domain.
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We first show that, for all g€ Q =%(X), one has Rg+ Re ¥, the set
defined in LemmaS5.1. Let geQ, and set K= {ae®(X)|ageR}. B
(34(c)), K= R, and there is a surjection R/RK - (Rg+ R)/R. Hence
GK dim(Rq + R/R) < GK dim(R/RK). Let peSpec ¢(X), not equal to m
the maximal ideal of the singular point 0 € X. The local ring Og , 1s regular,
so g, is generated by (g , and Der ¢k ,. By Remark 3.4(c), Qx_p=Rp.
Hence ge R, and K = (% . Thus m" = K for some r >0, and in order to
prove that GK dlm(R/RK })<GKdim R—2 it suffices to prove that
GK dim(R/Rm) < GK dim R—2. To prove this inequality we may pass to
the associated graded algebras; therefore it suffices to prove that
GK dim(gr(R/Rm)) < GK dim(grR)— 2. The GK-dimension of these factor
rings of S(g)= grU(g) equals the dimension of the corresponding sub-
varieties of g. Hence GK dim(grR) = dim O,,;,, and since m is generated by
v, it follows that GK dim(gr(R/Rm))=dim(O,,;,, " p ") (because the sub-
variety of g defined by the vanishing of r ~ < ¢’(g) is p ~ ). Now Theorem 4.7
gives the desired inequality, and therefore Rg+ Re &.

Since Rg+ Re ¥ for all qe 2(X), the only p0551ble maximal element of
& is 2(X) itself. Thus Lemma 5.1 implies that 2(X) is a finitely generated
left R-module. By Proposition 3.5(a), R=%(X)cFract R, and therefore
we may write these generators as d,=e;f ' for some e,, fe R. Thus
2(X)f < R and the right annihilator, r-Ann z(2(X)/R), is a non-zero two-
sided ideal of R. However, by Proposition 3.5(e) and Theorem 3.8(b), R is
a simple ring. Thus r-Ann(2(X)/R)=R and 2(X)=y(U(g)). §

5.3. We emphasise the two contrasting special cases of the Theorm.

COROLLARY A. Let g be a simple of type B,, C,, D, Eg, or E;, and le_t
Jo be the Joseph ideal of U(g). Then there exists an irreducible component X
of O™ such that U(g)/J, = 2(X).

COROLLARY B. Let g be of type A,. Then for n—2 of the n irreducible
components X; of O, "™, there exist (distinct) maximal ideals J; of U(g)
such that U(g)/J, = 2(X)).

5.4. Remarks. (a) It is a consequence of Theorem 5.2 that (with the
notation of 5.2) Der ¢(X) < y(U(g)). This is satisfying to observe, because
prior to the Theorem all one knows is that Der ¢4 ,cy(U(g)), for
peX=X\{0}.

(b) Theorem 5.2 also gives some information about g,, the simple
Lie algebra of type G,. Let J; be the Joseph ideal in U(so(7)). By [17,
Theorem 3.9] there is a completely prime ideal J, in U(g,) associated to
O,, the 8-dimensional nilpotent orbit in g,, such that U(g,)/J, =
U(so(7))/J,. Hence if X is the variety occurring in the Theorem for so(7),
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then U(g,)/J, = 2(X). However, it is also shown in [17, Sect. 5] that X is
isomorphic to an irreducible component of Gg N 1S, where n; is the upper
triangular part of g,. This naturally leads one to ask whether there is a
more extensive version of the theorem, realising other primitive factor rings
as differential operators on certain components of O nn ™, where O is the
associated variety of the given primitive ideal.

(¢c) The main result of Moeglin in [ 9] together with [ 3] shows that
every completely prime primitive factor ring of U(sl(x + 1)) is of the form
2,(G/P), the global sections of a sheaf of twisted differential operators on
G/P, for a suitable parabolic P, and a suitable twisting x. Dimension
arguments show that if the primitive ideal is associated to the minimai
orbit then Lie P must be either p, or p,, whence G/P=P" projective
n-space. Hence we have the curious fact that for the singular affine varieties
X, occurring in Corollary B, 2(X;)= ,(P") for a suitable choice of . It
would be interesting if there were an e priori explanation of this
isomorphism.

6. THE RING OF DIFFERENTIAL OPERATORS
Does NoT DETERMINE THE VARIETY

6.1. 1If X is an irreducible affine variety it is interesting to see how the
geometric properties of X are reflected in the algebraic structure of 2(X).
For example, Makar-Limanov [26] has recently shown that if X and ¥
are non-isomorphic curves of genus>0, then 2(X) and 2(Y) are non-
isomorphic rings. In fact, he shows how the curve X may be recovered from
2(X). The following proposition shows that for higher dimensional
varieties, it is no longer true that X is compietely determined by Z2(X). Gur
example involves a singular variety. As far as we know it is not known
whether for smooth X, Z(X) completely determines X.

ProPOSTION.  Consider the parabolics p, and p,, in s0(2n), for n=5, and
the corresponding components X, and X, of O ,ont. Then 2(X|)=
(X)), but X, and X, are non-isomorphic varieties. In fact H¥(X,, Z)#
H*(X,,Z)

Proof. The fact that the rings of differential operators are isomorphic
follows from Theorem 5.2, since both are isomorphic to U{se(2rn)}/J;.

Recall the explicit descriptions of X, and X,, in (3.2). It is easy to see that
X, and X, are non-isomorphic varieties. To see this, let m, be the maximal
ideal of the unique singular point on X, (i=1, n). It is generated by the
image in (X)) of r,c O(x;")=S(x; ). The ideal in @{r;}) defining X, is
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generated by homogeneous polynomials of degree 2, hence dim, m/m? =
dimr;. But dimr; =2(n—1), and dim r;} =n(n— 1)/2, whence X, Z X,,.

Write L;=[M,, M,], and note that X;= L, - x;, where x,e 1 is a highest
weight vector. Write Q,=Stab, (Cx;), and B;=L,/Q,. There is a fibration
C\{0}=C*>X,— B,. Let Y,=X, be the S'-bundle over B, obtained by
collapsing each fibre C* to the unit circle. Then H*(Y,, Z)= H*(X,, 7).

Viewing Y, as a real manifold, it is a Steiffel manifold §**~* - Y, —»
S =3 To see this recall that X, = {(,, ..., 13,_,) € C* "7\ {0}| 3 12=0]}.
If teY,cX,cC¥ *=R*"?@®iR*™ 2 is written as r=(x, y)=
(X015 e X2n— 25 1o wos Yan_o) then X x2 =3 y2=1Land ¥ x; y, =0. The pro-
jection Y, - R?"~2 onto the first component, fibres ¥, over $¥" 3, with
fibres the spheres S**~* living in the tangent space to $*"~3 Hence by
[18] Y, is (2n—5)-connected, and H*"~4Y,,Z)=H>" 3 Y,,Z)=Z. In
particular, since n> 5, H*(Y,,Z)=0.

Since B, is the Grassmanian of 2-planes in C”, [18] gives for n>=5,
H*(B,,Z)=17 and H*(B,, Z)=Z* The cohomology of B, is concentrated
in even degree, so the Gysin sequence [23] for the fibration S' - Y, — B,
collapses to give short exact sequences

0_)H2,_1(Y", Z)_)Hzrfz(Bn, 7)— Hzr(B,,, Z)—+H2'(Yn’ Z)—0.

In particular for r=2, ¢ cannot be surjective, whence H Y, Z)#0.
Hence H*(X,, Z)# H*(X,,, Z), and the proof is complete. ||
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