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Fix a simple complex Lie algebia 9, not of type GZ, F4, or Es. Let Omin denote 
the Zariski closure of the minimal non-zero nilpotent orbit in g, and let 
g=n+@fjOn- be a triangular decomposition. We prove 

THEOREM. (1) If g is not of type A,8 then there exists an irreducible component x 
of Qn,,~n+ such that lJ(g)/.J,,=g(x), where Jo is the Joseph ideal and 63(x) 
denotes the ring of differential operators on x. 

(2) If g is of type A, then for n-2 of the n irreducible components xi of 
O,innnf there exist (distinct) maximal ideals Ji of U(g) such that U(g)/J,= 
@xi). 0 1988 Academic Press, Inc. 

1. INTRODUCTION 

Let g be a finite dimensional simple Lie algebra over @ and let Omin 
denote the Zariski closure of the minimal (non-zero) nilpotent orbit in g. If 
Q is not of type A,, there is a unique completely prime primitive ideal of 
U(g) with associated variety Omin [12]. This ideal is called the Joseph 
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ideal, and is denoted J,. Joseph introduces J,, as the kernel of a certain 
@-algebra homomorphism $ from U(g) to a Iocalisation of a Weyl algebra. 
Given an algebraic variety Y, write Q(Y) for the ring of differential 
operators on Y. Thus Joseph’s construction may be interpreted as 
J,, = ker ti, where $: U(g) + g(A”\H) for a certain hyperplane Hc .4” 
This homomorphism is never surjective. 

If g is of type B,, C,,, D,, E,, or E, there is a second procedure fzr 
realising U(g)/J, as differential operators on a suitable variety. One takes a 
triangular decomposition g = n + @ h 0 n ~ and a suitable irreducible com- 
ponent X of Omin r\ n +. Then there exists a homomorphism $: U(g’; --P 
9(X) due to Goncharov [lo]. It is not difficult to prove that e(X) becomes 
a simple highest weight module and that ker + = J, (see Proposition 3.5, 
and [ 16, Sect. 31 where this is done for so(n)). 

The first main result of this paper is to sho,~ rhar $ iz subjective, md 
hence that U(g)/J, = g(8). For g of type C, this result is (implicitly) 
established in [15, Thtoreme 5, p. 1701. 

In outline, the theorem is proved as follows. One observes thar 

R := \i/( U(g)) c 9(x:) c Fract(R). By a result of Gabber (see Lemma 5.2), 
and the fact that R is simple (Proposition X5), it then suffices to prove that 
GKdim(Rd+ R/R)<GKdim(R)-2 for all dip. By passing to the 
associated graded ring of R this can be reduced to the problem of showing 
that dim(a,i, n p ~ ) < dim(O,i,,) - 2, where p is a certain parabolic sub- 
algebra of g having an abelian nilpotent radical. This statement is proved 
in Section 4. The proof also requires a number of technical but standard 
results both on maps from Lie algebras to rings of differentiai operators 
(given in Section 2), and on the details of Goncharov’s construction (given 
in Section 3)). 

The second main result shows that for g of type A,,, certain completely 
prime primitive ideals of U(g) associated to the minimal nilpotent orbit 
may be obtained as the kernel of a surjective map from U(g) to the ring of 
differential operators on an irreducible component of 
Goncharov’s construction (which works when there is a 
metric space) and the proof of the main theorem, as outlined above, app 
when g is of type A,l. Of course, in this case the Joseph ideal is not define 
there is a one parameter family of completely prime primitive ideals having 
associated variety Omin. If g =sl(n + 1) then mm n n + is a union of n 
irreducible components it, (1~ j < p2), and for each ,! Goncharov’s 
construction provides a homomorphism $:: U(g) --i 9(Xj). Let 
(#x~ = sj- sj+ i / 1 <j< n) be the simple roots for A,, as in Bourbaki [S? 
Planche 1, p. ZSO]. Let pj be the maximal parabolic obtained by deleting 
the simple root x~. Then Z$ is contained in the nilpotent radical of pj. Ef 
i # 1 and j # n, the proof outlined above goes through and $j is surjective 
(Theorem 5.2); furthermore, if oj is the fundamental weight corresponding 
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to the simple root OL/, and L(p - oi) is the simple module of highest weight 
-wj then ker tij = Ann L(p - ol). This follows from the fact that C(xj) z 
L(p -w,). Note that the various ker tij (1~ j < n) are distinct 
(Theorem 3.8). When j= 1 or j= n, the outcome is quite different. In this 
case there is a l-parameter family of maps $: U(g) + g(Xj) and none of 
them is surjective (in fact, there can never be a surjective map 
Ic/: U(g) + Q(x.i); see 3.9). In [20] Musson (using a technique different 
from ours) also shows that for 1 <j< n there is a surjective 
map U(sl(rz + 1)) + g(XJ. 

In Section 6 we show that our results for so(2n), n > 5, give the existence 
of two non-isomorphic (singular irreducible affine) varieties X1 and it,, 
such that 9(X,) and 9(X,) are isomorphic. This illustrates that some 
information about a variety may be lost in passing to the ring of differential 
operators. 

Since the proof of the Kazhdan-Lusztig conjectures [l] the connection 
between primitive ideals and differential operators has been vigorously 
investigated. See in particular [3, 41. In those papers certain induced 
primitive ideals are realised as the kernel of the natural map U(g) --f 
g( G/P), where P is a parabolic of the connected semi-simple algeraic group 
G (where Lie G = g). In fact, g(G/P) is isomorphic to a certain primitive 
factor ring of U(g). However, the present paper differs in a number of 
respects. Our variety X is affine (not projective), it is not smooth (whereas 
G/P is), x is not a G-variety, the kernel of $: U(g) + g(it) (viz., J,) is not 
an induced ideal (except when g = sl(n + l)), and g does not act on R as 
vector fields (some elements of g act as second order operators, some as 
first, and some as zeroth order operators). 

The results outlined above lead us to suspect that many other completely 
prime primitive ideals may be obtained as the kernel of a suitable action of 
g as differential operators on certain components of 0 n n + (where 0 is 
the associated variety of the primitive ideal). Apart from those examples 
already given, there is an example occurring in type Gz (see 5.4). More 
recently, the first and third authors have obtained a number of other 
primitive ideals in this way [25]. 

2. GENERALITIES 

2.1. This section collects various facts about the action of a Lie algebra 
as differential operators on a variety. The following notation will be used, 
usually without comment, in the paper. Let Z be an irreducible algebraic 
variety. Write &. for the sheaf of regular functions on Z, with global sec- 
tions B(Z). For each PEZ, write L/?&,, or just CJP, for the local ring at p, 
with maximal ideal mp. Write g= for the sheaf of differential operators, 
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with global sections 9(Z), and stalks 9$, p’ For p E Z, let TPZ be 
tangent space to Z at p, Tp*Z the cotangent space to Z at p, and 
Der tL$ p denote the module of derivations on ~3~~~. 

Throughout, G will be a connected complex semi-simple linear algebraic 
group, and P c G a parabolic subgroup containing a fixed Bore1 subgroup 
B. Write g = Lie(G), p = Lie(P), b = Lie(B) for the corresponding Lie 
algebras, In general closed connected subgroups of G wili be denoted by 
uppercase letters, and the corresponding Lie algebra will be denoted by the 
same letter in lowercase German script. Let h c b be a fixed Cartan rub- 
algebra, and let g = n+ Oh 0 nP be the usual triangular decomposition 
relative to the choice of h and b = $0 n +. Write p = m @Tj r + as a direct 
sum of ad-h-modules, where r + is the nilpotent radical of pI and m the 
reductive part. Thus g = r + 0 m 0 r -, where r ~ is the ad-~-rnod~~e com- 
plement to p. Write M for the closed connected subgroup of G with Lie 
M = m. 

The Killing form on g is denoted 5(X, Y) for X, YE g. 
Write R for the set of roots of g, and R+ for the roots of h in n+. If c( is a 

root for g then X, denotes a root vector of weight a. Let p E h* be the half- 
sum of positive roots. Given 1 E h*, write M(A) for the Ve module with 
highest weight 1 -p. Let I;(n) be the simple quotient of A), and write 
J(A) := Ann e(A) for its annihilator. 

If Z is a variety on which there is a G-action an 
Stab,(p):= jgEGl g.p=p> for the rtabiliser of p in 6, 
Lie(Stab,(p)). Thus g(p) is the kernel of the natural map g -+ TPZ. 

Given a C-vector space V, write S(V) for the symmetric algebra on Ti’. 
Write SJ V) for the nth symmetric power of V. Set S(r- ), = @,IGq S,(r- ). 
Similarly, U(g jp denote the elements in U(g) of degree 6 p. 

2.2. Let V be a finite dimensional @-vector space with basis :‘; 5 . ..I J’d 
and let x L, .,.) xri be the dual basis for V*. Thus O( V) = C [A+[ ) ..~, x*] = 
S( V* ). For each y E V write I?,, for the derivation on S( V”) defined 
by iri.(.u) = .X(F). for x E I/*. Write 2, = 13/3x,. The C-Linear map V--+ 
Der S( V*) given by I;H dj= 6;l,“.xj identifies Der S( Vc) with S( V*) EC ;: 
The ring of differential operators on F’ is therefore 9( iv) = 5?(§( V*)) = 
C[.x,, I.:) .Yd, 61) . ..? a,] = S( if*) oc S( vj. 

The Fourier transform 9: 5?(V) -+ 9( V*) k defined to be the algebra 
isomorphism given by 9(-u,) = id/?rlj, 9(8/3.~.,) = Q:,+ where i = J-l. The 
Fourier transform is independent of the choice of basis 

2.3. (Notation 2.1). Consider g as vector fields on P’\G. Identify r - 
throu the exponential map with (a translate of) the large Bruhat cell of 
P’s, G. estricting the g-action on P\G then gives a Lie algebra homo- 
morphism L: g + Der O(r-) which extends to an algebra homomor~hjsm 
k: r;(g) + 5qr ~ ). 

a! 116 2-15 



484 LEVASSEUR, SMITH, AND STAFFORD 

Through the non-degeneracy of the Killing form identify r + with (r - )*. 
Fix a basis x,, . . . . xd for r+ and let J’~, . . . . y, be the dual basis for r-. We 
may assume that the .y/ are chosen to be ad-h-eigenvectors. As in (2.2), we 
have O(r-)=S(r+), DerC”(r-)=S(r+)@,r-, and 9(rP)=S(r+)Oc 
S(r ~ ). 

2.4. Following Blattner [2], the action of g on S(r + ) = @(r ~ ) obtained 
through L, and the image of g in O(r ~ ), may be described as follows. First, 
set F= Horn U(Pj( U(g), C). This has an algebra structure induced by the co- 
multiplication of U(g), and g acts as derivations on F by (Xf)(u) =f(uX), 
for fE F, XEg, UE U(g). Define r: S(rr)-, U(g) by 

for z1, . ..) Z,EC, where S,, is the symmetric group. The map 7~: F + 
Hom,(S(r -), C) given by (xf)(a) =f(~(a)) for f E F, UE S(rr ), is a vector 
space isomorphism, and so allows us to give Homc(S(r - ), C) an algebra 
structure. 

There is a natural map y: S(r+) + S(r)* = Hom,(S(r-), C) which 
extends the identification of r + with (r - )*. If K = (k,, . . . . /cd), J= (j,, . . . . j,) 
are multi-indices, then define S,= n, 6, and J! = n,(j,)!. With the 
notation of (2.3), y is defined by setting x”( y”) = 6&J!). The following 
proposition is now routine: 

PROPOSITION (Blattner [2]). Let F have the g-module structure defined 
above, and let S(r + ) have the g-module structure obtained through L (as in 
(2.3)). Then y: S(r+) + F= Hom(S(r-), C) is 

(a) a g-module homomorphism, 
(b) an injective algebra homomorphism, and 
(c) if S(r + ) = C[x,, . . . . xd] is identified with its image in F, then 

F= @[[x 1, . . . . s,]], the power series completion of S(r’). 

2.5. Given L: U(g) + 9(rr) as in (2.3), one may apply the Fourier 
transform to obtain F 0 L: U(g) + 9(r + ). Alternatively, one may regard 
r+ as an M-module, and differentiate the M-action to obtain an algebra 
homomorphism CI: U(m) + 9(r +). Our immediate aim is to give an explicit 
formula relating c1 and the restriction of F o L to U(m). Although this is 
presumably well known we could not find it in the literature. We give it in 
slightly more generality than we will need. 

Thus for the rest of (2.5), let M be any connected afftne algebraic group 
over C, and set m = Lie(M). Let V be a finite dimensional representation of 
M, and let /?: U(m) -+ 9( V) be obtained by differentiating the M-action on 
V. Give V* the contragredient representation, and let CC U(m) -+ 6Z?( V*) be 
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obtained by differentiating the M-action on Yap Let 9: P(V) + 9( P’” j be 
the Fourier transform, and let (~‘~1 I < i 6 d) and (x, / 1 <i< d) be duz.l 
bases for V and V*: respectively. 

PROPOSITION. For Xe'm, cc(X) = (9 0 ,R)(X) -trace i.(X,!. In particular, 
r(U(m)) = (9 0 fi,( U(m)). 

Pro@: Adopt the notation of (2.2). Fix XE m. Let CL,E C (9 6 i, /<d) 
Se such that X.J)=~~=~ aliyi for 1 <j<d. Then X.X,= -xf=, CI,;:C, for 
I d i < 6. Therefore 

/3(X)= 2 j!qx)(xi)s,/&Yi= f (x~.u;)s/?.u,= - f ai,x;S:cTxi, 
i=l i=l i.f= I 

and 

i,J= 1 i,j= ! 

Similarly 

x(X)= f ct(X)(~$3/~yj= -f (xq))Ly2J;= fy r+ Jy?/k?y/. 
,=I j= I i.j=I 

Hence (9 c b)(X) - R(X) = Cf=, clii = tracev!K) E C. In particular, 
(9 3 ,&j(m@@j = cr(nt@@ j, and the result follows. 

It is easy to check that, if L is as in (2.3), then its restriction L: U(m) --i 
B(r- j coincides with that obtained by differentiating the M-action OE r-, 
say p: U(mj + 9(r- j. Hence one obtains 

COROLLARY. For XEm, or(X)= (9 c L)(X)- trace,-(X). 1~ paificzh-, 
cc(U!m)) = (9 c L)( U(m)). 

2.6. (Notation 2.5j. Let XC V* be an M-orbit. The map a: L{(m) --b 
9( V*) restricts to give II: U(m) -+ 9(X). 

LEMMA. For each p E X, the image of a: nr + g(x) generates 
an iclx, ,-module. 

Proqfi (Notation 2.1). The map x gives rise to isomer 
ni/m( p j z T, X z (CF, p/ml, j @I~- Der &., p. Hence by Nakayama’s Lemma 
r(m) generates Der CX,P. 1 

2.7. Consider the situation in (2.3) and apply the Fourier transform to 
obtain 9 o L: U(g) + Q(r + ). Consider r + as an M-representation, and let 
XC I + be an M-orbit. 



486 LEVASSEUR, SMITH, AND STAFFORD 

PROPOSITION. (a) The map 9 0 L restricts to give a map 
x: U(m) +2?(X). 

(b) For each p E X, the subalgebra A of GSxep generated bJ1 Ox,, and 
x( U(m)) contains Der Ox,x,,, and hence equals 94x,p. 

Proof: (a) This follows from Corollary 2.5, and the first sentence of 
(2.6). 

(b) It follows from (a), and Lemma 2.6, that A contains Der ox,,. 
However, X is non-singular at every point p, so gx,, is generated by ox, p 
and Der 0x3 p. 1 

3. GONCHAROV'S CONSTRUCTION 

3.1. The first aim of Section 3 is to define Goncharov’s map 
$: U(g) + s(X) for a suitable irreducible component X of Omin n n+, and 
to identify ker II/ as a particular primitive ideal. Secondly, we compute the 
highest weight of U(X) when g = sl(n + 1). 

Retain the notation of Section 2. From now on assume that g is simple 
and that t + is abelian. For completeness all occurrences of this situation 
are listed in Table 3.1. The extra notation in the Table is as follows. In each 
case p is a maximal parabolic subalgebra of g, and so is completely deter- 
mined by the simple root CI such that X-, $ p. Label the simple roots of g 
by ~1, . . . . CI, (in Table 3.1 these have been abbreviated to 1, 2, . . . . I) and 
denote by pi the maximal parabolic subalgebra such that X-@,$ p. It 
follows from the fact that r + is abelian that r+ is an irreducible m-module. 
The Dynkin diagram for m,, the reductive part of pj, is the subdiagram of 
that for g obtained by deleting aj. Our labelling of the roots is that of 
Bourbaki [ 51. 

Let /? be the highest root for g. Then X, is a highest weight vector in r + 
for m. Define X = M . X,, the cone of highest weight vectors. Let X denote 
the Zariski closure. This is the variety on which g will act as differential 
operators. Let I be the ideal in U(r + ) = S(r -~ ) defining X. As Goncharov 
remarks [ 10, Lemma 21, lis generated by I(2) := In S2(r-). A proof of this 
may be found in [9]. It is straightforward to find the dimension of X 
(which is given in the Table); a short description of X is given in Remarks 
3.2. 

3.2. Remarks. (i) For type D,, (resp. E6) the parabolics pn and pnml 
(resp. p, and p6) are isomorphic but not conjugate. 

(ii) For g=sl(n+l), rf may be identified with IW~,,,-~+~(C), the 
space of j x (n-j+ 1) matrices, and X consists of those of rank < 1. 
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TABLE 3.1 

Type of 9 Dynkin diagram 

Parabolics 
I, with abelian 

radical 

Semi- 
simple 

part of m direr+ dim R 

(iii) For type B,, M= C* x SO(2n - l), r + = QZ~~-’ with its natural 
action, and X is the space of isotropic vectors (including 0) in Gm ~ I. 

(iv) For type C,, r + identifies with the space of qua 
C”; and X consists of those of rank d 1. 

(v) For type D,, if p =nt, then I’- =@“+i: and M=C* x 
SO(2(n - I ) ), where X is the space of isotropic vectors. hen p = p,: then 
M = GL(n), r + = A’C” = the set of alternating bilinear forms on @‘$ and X 
consists of the alternating forms of rank ~2. 

(vi) Since X is the orbit of a highest weight vector in T+, [2h7 
Theorem 3] ensures that X is normal. In all cases except type A, with p 
equal pt or P,, the singular locus Sing(X) = i0) = R\X [24], and 
Godims 3 2. Thus 9(X)=9(X) by [IS, Proposition 2, p 167]. In 
particular, the results of Section 2 may be applied. If g is of type A,, with $: 
equal g i or p,,, then X = r + is non-singular. 

(vii) There exists HER* such that [H[m? m]] =O, [H, X] = A’ for 
XEr+, and [H, Y] = - Y for YE r -. To see this note that the Levi decom- 
position of m gives HE h* with m = [m, m] 0 CH, and so [H[m> m]] = 0. 



488 LEVASSEUR, SMITH, AND STAFFORD 

Further, as r + is a simple [m, ml-module, ad H 1 E+ must act as (non-zero) 
scalar multiplication by Schur’s Lemma. Replacing H by a suitable scalar 
multiple establishes the claim. 

(viii) Note that X = M. X, c G. X, = Omin, and by comparing the 
Table with [ll], dim x=dim(O),i,)/2. It follows from [22] that X is an 
irreducible component of Omin n n +. 

3.3. In [lo] Goncharov is able to realise U(g) acting as differential 
operators on the cone X c r +. The first step in doing this is to consider 
B 0 L: U(g)+g(r+ j (see (2.3) and (2.7)). Let Z be the ideal in B(r) 
defining it. It is well known that g(X) = II(Zg(rr))/Zg(r -), where 
II(J) := {d~g(r-)ldJc J}. Thus 9 5 L will restrict to a map 
U(g) + g’(X) if (and only if) Z is stable under the action of g. Unfortunately 
Z is not stable under g (although it is stable under the action of m, as noted 
in (2.7), and under the action of rr ). The key point of Goncharov’s 
construction is to replace L by a suitable “twisting,” say L’, such that 
(9 0 L’)(g) does leave Z stable, and so obtain (F 0 L)(g) acting as 
differential operators on X. 

For XE g, write L, and L: rather than L(x) and L’(x). 

THEOREM (Goncharov). These exists A E C, such that if L’: g + s(r ~ ) is 
defined bJ 

(i) L;,=L,, for YErr, 
(ii) LI,=L,+lx for .xEr+, 

(iii) Lks, y, = LC.r,-v, - M(x, y) for J’ E r-, and x E r +, 

then Z is stable under (9 0 L’)(g). Thus B 0 L’ defines a map from U(g) to 
B(X). 

In all cases except when g is of type A, and p equals pi or p,, 1 is unique 
(and non-zero). In these two exceptional cases X = r+, and Z= 0. Thus Z is 
table under (9 a L)(g) and no twisting is required. Nevertheless, one can 
still twist the embedding by choosing any AE C, and so obtain a one 
parameter family of maps 9 0 L’: U(g) + g(r+). See (3.9) for a 
discussion of this case. 

Goncharov does not explicitly compute A. We will need to compute ;1 
when g=sl(n+ I), and p=pj for 1 <j<n. 

3.4. Let 1 E @ be chosen as in Goncharov’s Theorem and write 
cp=g c L’: U(g) -%+(r+), and $: U(g)-tg(X) for the induced maps. 

Remarks. (a) Recall that C%?(rf)=S(rP)@cS(r+) with S(r-)=O(r+). 



MINIMAL NILPOTENTORBIT 489 

Using the description of L given in (2.4), one may verify (as claimed in 
gIlO]j that 

(i) 0(r)=r~, 
iii) ~(m)c(t-Or+)@@, 

(iii) ~(~+)c(c~OS~(~+))O(~O~+). 
In particular, the image of U(r ~ ) is S(r ~ ). Therefore the elements of r - act 
on S(r ~ i = Ur + ), and so on C(ft j, as multiplication operators. 

(b) (Notation 2.1). The observations in (a) show that the U(g) 
action on .S’(r- ) obtained through CJJ satisfies U(g)i . S(r- j, = S(r- jqL i 
Hence for all p,q~N, ci(s);S(r~),=S(:~),+,. 

! It follows from (a) that 84X)c $(U(g)) For PEX, define 

that ~(~~(m)) = (5 u L)( U(m)). Hence Proposition 2.7 shows that, for 
and $( U(m)) generate gK, p. In particular, for p E X 

and one even has $( U(p ~ )), = 9s. p. 
The problem in showing that $1 U(g) + Q(X) is surjective 

the equality $( U(g)), = &, p for p E X to all p E X. Since X = 
only problem occurs at p = 0. If X is smooth (i.e., g = sl(rf i 1 
or p,) then $ is not surjective (3.9). However, in all other 
Sing X = {O), and ti is surjective (Theorem 5.2). Of course, when 
singular then 9(X) is not generated by C(X) and Der Lo”(X). The point is 
that the other generators of G?(X) come from 51/(r+ ). 

(d) An explicit description of $ for g = 47) is given in [i7, 
sect. 3.3 ]I. 

3.5 PROPOSITION. (a) Fract(U(g)jker $) = Fract a( 
jb) ker $ is a comp!etelJ, prime primitiue ideai; 
(c) C(8) is a highest lreight module, with highest ti,eight uecror I; 

(d) ker $ = Ann C(X); 
(e j if g # s&n + 1 ), then ker II/ = J, (l&z Joseph ta’eaf), and a( 

simple di( g )-module. 

PYOOJ (a) is an immediate consequence of Remark 3.4(c). Since 
the centre of Fract 9(X) is C, certainly the centre of Ujg)/ker $ equals Cc. 
Thus (b) follows from [6]. Since q( U(r- )) = sjr- )? it is clear that 
~~U(r~-)).1=S(r-).l=e(i3). On the other hand, 
~hat~7(~~)~1=0,and~(m)~1c@~1=@.Hencea3~1isatrivial~m.m~- 
module. Thus $(n +) 1 = 0, and (c) holds. Clearly ker $ c Ann C(X). Qc 
the other hand, C(X) is a faithful 5?(X)-module, whence -Ann C(X) c ker 3. 
Hence (dj holds 
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It remains to prove (e). By (d), dim, U(gj/ker Ic/ = a. Since ker I,$ 
is a completely prime ideal, [ 12, Lemma 8.81 implies that 
GKdim U(g)/ker $ B dim Omin with equality if and only if ker $ = J,,. Pick 
0 #f~ 0(X) such that Sing X cf-‘(0). Write X,= X\f-‘(0). Then X,. is 
non-singular, and by [21, Corollary 2.31, GKdim 9(X,) = 2 dim X,-= 
2 dim X. Thus by [ 121 GKdim g(X) = 2 dim X = dim Omin. Since 
U(g)/ker ti c a(X) c 9(X,) this implies that GKdim U(g)/ker $ Q 
dim Omin, and hence ker $ = J,. If c”(X) has a proper factor, say N, as a 
U(g)-module, then N has non-zero annihilator as an 6(X)-module. Since 
0(X) c $(U(g)), this implies that N has nonzero annihilator as a 
U(g)/ker $-module. This contradicts the fact that ker + = Jo is a maximal 
ideal. 1 

Remark. Not only is O(X) a factor of a Verma module, but it is a factor 
of a generalised Verma module, induced from a l-dimensional represen- 
tation of p. This is because cp(m Or+). 1 c C. 1. 

3.6. When g = sZ(n + l), there is no unique completely prime primitive 
ideal associated to the minimal orbit, and so a little extra work is required 
to identify ker $ as a specific J(p). The rest of Section 3 deals with this 
question. 

For the rest of Section 3, let CJ = sl(n + l), and let pi be the parabolic 
obtained by deleting 0~~. Write g = r,? @ ntj@ r,:, and let Xjc_rit be the 
closure of the cone of highest weight vectors. Let ll/j: U(g) + g(Xj) be as in 
(3.4). To explicitly identify the various ker tij, and hence to show they are 
distinct, we will compute the highest weight of O(f3,). Write wj for the fun- 
damental weight corresponding to the simple root 0~~. For 1 < j < n, it will 
be shown that the highest weight is -wj (Corollary 3.7), that O(Xj) is a 
simple module, and that ker $j= J(p - oj) is a maximal ideal. All these 
statements are false when j= 1 or n. See (3.9) for a discussion of these two 
special cases. 

Fix j, 16 j d n, and drop the subscript j from pi, Xi, etc. Let r] denote 
the highest weight of O(X). Write 1’ = 2(n + 1). This constant will frequently 
appear because the Killing form on sl(n + 1) satisfies B(ea6, eba) = 2(n + l), 
where the elements cab (1 d a, b <n + 1) are the usual matrix units. Set 
d=dimr+=j(n-j+l), and let {xl,...,xd}={enbll<a<j, j+lgb< 
n + 1> be a basis for r +. As in (2.3), { JJ~, . . . . yd} is the dual basis for r -. 
Hence if xi = cab, then yi= Y-‘esa. We shall sometimes write yab := y-‘eab. 

LEMMA. The highest weight q of Co(X) is given by q(H) = trace,-(H) - 
AB(x, y)) where HE $ satisfies H = [x, y] for x E r+, y E r- (and 1 is 
chosen as in Theorem 3.3). In particular, q( H,;) = 0 for i# j, and 
vl(ff,) = -10 + 4,. 
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Proof: Recall Corollary 2.5, with V= E-. With the notation of (2,5), 
(S ,: L)(H) = a(H) + trace,-(H). However, E(H) = C:‘=, [H, >jlj a/~$~, and 
in particular cc(H). 1 =O. Thus F(LH). 1 = trace,-(H), and by (3.59, 
1 E G(R) is the highest weight vector. By Theorem 3.3, the action of 9 on 
9(R) defined through $ is such that 

t)(H). 1 = .SF( L’,) .l = F(LH). 1 - M(x, y). 1 = trace,-(H) - i, 

where HE h satisfies H= [x, y] with XE rfr YE r-. In particular, for 
H= H,, note that trace,-(H) = -(n + 1 j, whence q(H) = -(FI + 1 j - Ai; = 
-?(A+ $). On the other hand, we observed in (3.5) that [m, m] . I = 0, 
Hence q(H,;)=O if i#j. 1 

3.7 (Notation 3.6). By Lemma 3.6, in order to calculate q(H) we need 
to know the value of 1 and thus, by (3.3) we need to compute F(L,)(d) for 
XEr+, where I is the ideal of E(r + ) = S(r ~ ) that defines R. By (3.2(G)), 1 is 
generated by the polynomials ( yab .I’=~ - ~~~~~~~ / 1 d II, it < j, j-t 1 6 a, 
d,< tz + 11. Theorem 3.3 says that to find 1. one must look at the action of 
L, + X on the various yab Y’,~ - yod ycv when XET+. We shall adopt the 
notation and conventions outlined in Section 2. 

PR~P~SITIQN. Let X= cob E r + trith l<a,<j, jfl<b<n+k. Then 
(with i= (- 1)‘:‘) 

ProoJ Recall from (2.4 j that Lx= C(L,(e,,)(S/de,,) 1 I.< c 6 Ja 
j+ 1 6 d< tl + 1 }, and for z E r + L,(z) = & z(~+‘X)xj’,!J!. Fix z = ecd. Since 
X is of weight E,-E~, and z is of weight E,- sd, it follows that if 
z(#X) f 0, then 1.I = 2, and JIM= ~1~)‘~ with the sum of the weights of .I’! 
and yk eqUal t0 (Eb-E,)+(Ed-&,)=(Eb-E<)+(&-Eu). h t 

z(.#xj==([L’f[)-k, x]]j=B(z, []‘[[l’k, xl]). 

If a # c and b # d, then JJ~ is either y P2e6nedr or 7 Pzehce,;a. Note that 
B(ecd, Lebc[IedcT e,,]]) =O, and therefore L,(ec,) = --~-‘e,~e~~. If a = c and 
b id, then y’= l’-‘ebOedO, and therefore L,(ecd) = -y-‘eabead. If a + c and 
b= d, then 1,’ =>fP2ebaebc, and L,(ecd) = -ljdiecbead. Bf a= c and /J =8, 
then #= yP2ein, and L,(ecn)= -y-‘ecdead. This proves (a). 

jbj Note that F(e,,e,,(a/ae,,)) = -i(c?/ayc,)(d/$vad) jlrd. If Q + c and 
b + d, this equals -i~‘di)/d~~~)(a/a~,,). If 0 = c and b # d9 this equals 
- i( yrd(8/dynd) + 1 )(a/$~,,). If a # c and b = d, this equals - i( ~~~(Fldy,~) 
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+ l)(a/a~t,,). If a = c and b = d, this equals - i(yrd(8/8yrb) + 2)(a/Jy,,). 
Summing completes the proof of (b). 

(c) This follows easily from (b). 1 

The condition in (c) is vacuous if j= 1 or n. 

COROLLARY. Let 1 <j< n. If A. is as in Goncharou’s Theorem (3.3) then 
(a) A= -q-l, and (b) the highest weight of c?(K~) is -oj. 

Proof (a) Let X=eobEr+, with 1 da< j, and j+ 1 <b<n+ 1. Note 
that 9(X)( ynb llIk - yak Y/d = i~(~/%‘a&‘a, )Ilk - I?nk I!d = iLYlk. Thus by 

Proposition 3.7(c), A must satisfy (irry -’ + in) ylk = 0. 
(b) By part (a) and Lemma 3.6, u](H,) = -y(A + t) = -y( -ny-’ + t) 

= n - (n + 1) = -1. Since q(H,) = 0 for i # j, this gives the result. 1 

3.8 THEOREM. Let g = sl(n + l), and p = pj with 1 < j < n. Then 

(a) O(Xj)zL(p-co,), 
(b) ker tij = J(p - oj). 
(c) In particular, for 1 < j < n, the ker I,!I~ are distinct maximal ideals 

of U(sl(n + 1)). 

ProoJ Corollary 3.7 implies that L(p - wj) is a quotient of 0(a). Now 
by Remark 3.4(b), for any U(g)-module factor module N of O(X), one has 
GK dim,(x, N = GK dim,,,,, N. In particular, since S(X) is a domain 
GK dim,,,, N < GK dim 0(X) whenever N is a proper factor of O(x). 

But GKdim E’(x) = dim x = (4) dim amin. In particular, either O(x) = 
L(p-o,), or GKdim L(p-wj) < (t) dim-O,i,, in which case L(p -wj) is 
finite dimensional (by [12, 131). But the latter cannot occur as p --mj is 
not dominant integral. Hence c(it) = L(p - ojj. Part (b) now follows from 
Proposition 3.5(d). 

For distinct j (1 < j < n), the orbits of the p - oj under the Weyl group 
are distinct (the p - oj are all in the dominant chamber and are distinct). 
Hence the J(p - wj) are distinct. The maximality of the J(p - w,) follows, 
for example from [6]. 1 

3.9. It is clear from our earlier remarks that the case when g = sl(n + 1) 
and p = pi or p, is “exceptional.” This is essentially because in that case 
X = c +, and I= 0. Thus Theorem 3.3 holds for every 1 E C, and so for each 
1 there is a ring homomorphism $*: U(g) +g(r+). Set Jn= ker $A. Let 
j= 1 or n. By (3.4)-(3.6) S(X,) is the generalized Verma module 
U(g) @G.(P) @ of highest weight -2(n + l)(A + +)w,. Thus, sometimes 0(it,) 
is simple, in which case J, = J(p - 2(n + l)(A + $)a,). 

To show that $1 is not surjective in either of these cases, we use the 
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following argument shown to us by A. Joseph. In fact, if g is any semi-sim- 
ple Lie algebra then a factor ring R = U(g)/J cannot contain elements X: 1’ 
such that XJ’-- J’X= 1. To see this note that, as an ad-g module, R decom- 
poses as R = C . 1 @ b’ for some submodule P’. For any a, b, c E R one 
has [ah. c] = Cu. bc] + .[b, ca]; hence [R, R] = [g, R] = [g, ‘v’] c V. So 
1 I CR, RI. 

4. THE MINIFAAL ORBIT 

4.1. In Section 4, g will denote one of the Lie algebras with parabohc 
subalgebra p described in Table 3.1. One of the key steps in proving tha: 
Goncharov’s map $: U(g) + $2(X) is surjective is to prove that 
dim(aKi, n Q-) <dirn(omi,,) -2. In this section we prove that this 
inequality holds except in the case when g = s!(rr + l,)> and p = pi or P,: 
(Notation 3.1). It is only at this point that the proof of the surjectivity of $ 
will fail for (g, p) = (si(n + l), p1 or p,). Since $ is not scrjective in this case 

(3,9)), one is forced to conclude that dim( 
irect proof of this fact is given in (4.8). 

4.2. Given an orbit 0 in g, and WEO, then the tangent space to 
61’ is T,B = [ JV? g]. Given XE g, view X as a function on g via the K 

Then the differential &C is an element of T*g = g*, and ae may 
again identify d/X’ with X via dX= B(X, - ) E g”. Thus, if [IV. .Z] E T,8. 
then d2’. [ W, Z] = B(X, [ W, Z] j = B( [X, W], Zj. In rticular if qve set 
g(W)= (X~gl [A’, W]=Ol then (X~gId2’=0 on T, ) = g( 3k). 

4.3, The strategy is to use the observation in (4.2) to obtain an upper 
bou on the dimension of the local 
YE -, and so obtain a bound on dim 

Broaf Observe that @(O,,, n p ~ ) = CC since Ihe k&d 
in 5’(g) = C?(g) of functions vanishing ated by r-. te: 
JVEO,~* n p-, and write R for the lo w, with EC&TM~ 
ideal m &+,. If Y,, . . . . Y, are as in the statement of the lemma, then 

m ST. Furthermore, by (4.2) dY,, . ..) nYS are linearly Inde 
nin. Since T&O,,, = muz/(mPV)’ and R is regular, this is e 

to saying that YI, ..~, Y, form part of a system of parameters for R. Thus 
dim(R,/r ~~ R) < dim( R/x Yi R) = dim R - s, as required. 
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4.4. To apply Lemma 4.3 we must consider some special cases. Let 
WeOminnpP- and write W= W,+ W-, where W,~rtt and W-EC. 
A standard density argument (given in detail in Theorem 4.7) will show 
that we only need an upper bound on dim O(Omin n p -) w for W, # 0, SO 
we will assume for the rest of (4.4) that W, # 0. 

As in (3.l(vii)), write m= [m, m] @@H with HER. If W,,ECH then, 
since r ~ is abelian, W acts ad-semi-simply on r-, contradicting the fact 
that WE Omin. Thus W has a non-zero component in [m, m]. If 
g=sl(n+l),andp=pifor l<j<n,then [m,m]=m,@m,witheachmi 
simple. Order the m, such that W has a non-zero component in mi, and set 
a = m2 0 CH. If g is not of type A, then m, := [m, m] is simple, and we set 
ll=@H. 

CLAIM. With the above notation and assumptions, we may assume, in 
applying Lemma 4.3 to determine dim S(o,, n p ~ )w, that W, = bX, + Z, 
where p is the highest root of m i, 0 # b E @, and Z is a sum of root vectors in 
m, having weights distinct from p. 

ProoJ: Write W, = W, + W, with 0 # W, em1 and W, E a. Since m, is 
simple, M, . W, spans m,. Thus there exists gE M, such that g. W, = 
bX, + Z is as in the claim. But multiplication by gE M, acts as 
an automorphism on O(O,i,) that preserves r-Co(O,i,). Thus 
~(O,i,np~),=8(0,i,),/r-o(O,i,),~~(O,i,np-),., and SO these 
algebras certainly have the same dimension. 1 

4.5. Assume that W= IV, + W- E Omin n p ~ with W, as in the claim 
above (so W, # 0). We intend to find elements that satisfy the hypotheses 
of Lemma 4.3. To do this choose positive roots y(l), . . . . y(s) of g such that 

(4.5.1) X--y,l), . . . . X&,Er-; 
(4.5.2) for 1 < i<s, p--y(i) is a root not equal to any -y(j) for 

ldjds; 
(4.5.3) [a, 1 @X-j,,j,] c C CXyCj), where a is defined as in (4.4); 
(4.5.4) s is maximal with respect to (4.5.1)-(4.5.3). 

We remark that if g # sZ(iz + l), then (4.5.3) is trivially satisfied since 
ad HI,= 1. 

LEMMA. If the roots y(j) are as above, then (C @Xp,,j,) n g(W) = 0. 

ProoJ This is a routine highest weight argument. Partially order the 
roots R of g, such that CL < /I if and only if fi- a E R+. Write 
W, = bX,, + W’ + T, -where W’ E m, has no component of weight p, 
and TE a. Suppose that 0 # YE (CCX-,,j,) n g(W). Write Y= 1 a,X-, + 
Z aDXpB, where a,, aPEa=\( and the cl’s are the minimal elements 
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among the l)(j) under the partial ordering on R. Since r- is abelian and 
YE cd v, 

+[Y, q-t-[Y, W’] 

By (4.5.2), the [X,, Jx’~] are distinct non-zero roots vectors, so they mus: 
cancel with terms from one of the other three sums. Since the a’s are 
minimal they cannot cancel with the [X-,, Xfi] terms. y (4.5.2) and 
(4.5.3) they cannot cancel with the [Y, r] terms. Hence [A’-,, k;] must 
have the same weight as some [Ksci,, X,] with A’,. a component of 8”. 
But then x-l!(j) = p - v > 0, by the choice of .u. This contradicts the 
minimahty of the x’s. 1 

4.6. A case by case examination is needed to determine the s of (4.5). 
We adopt Bourbaki’s notation [S, Planches I-VI, pp. 25&266] for the 
root system of g. We also retain the notation of (3.1) and (4.5) except that 
we write yj rather than y(j). 

(4.6.1) (g of type A,, p = pi, 1 d j< n). There are two possibilities for 
m,. If m1 has simple roots a,, ..,, o(~- I then ,U = s1 -si and 
\~l,...~r,,~i+l)={El-&X-Ij+l~k~II+lj. If m, has simple’ roots I., “C 
31j+ L 7 ...2 Tt~ then Pi~j+l-En+I and (1’1,...*~i)=(~ic-~,+1/1~~k6i]i~ 
Thus s=min{i,n-j+l). 

(4.6.2) (g of type B,, ~233). ~=E~+E~, ;‘1=s,+~,, ;~,=E,+E~, 
Thus s = 2. 

(4.6.3) (g of type C,,, ~32). ~=E~-E,,, ;fi=2s1 and ~i=~l+~, 
for 2616~7. Thus s=li. 

(4.6.4) (g of type D,,, n > 4). There are two cases. First if p = pi) then 
~=E~+E~, ~l=~l+~z, yz=sl+s3, and s=2. Secondly, if p=~,~, then 
P=El-E,, and Yl=.si+l+s,, for 1 <idn--2. Thus s=rz--2. 

(4.65) (g of type E, j. We only need to consider the case p = p,. The 

p = 01221, y, = 11221, 1’2 = 12221, y3 = 12321, y4 = 12321 

Thus sL4. 
1 1 1 2 

(4.6.6) (g of type E,). We have 

,p = 1232 10, 7, = 123211, y* = 123221, yz = 123321. 
2 2 2 2 

y4 = 124321, ys = 134321, y6 = 234321. 
2 2 2 

Thus s = 6. 
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4.7. The peceding results are now combined to give 

THEOREM. Let (g, p) be as in Table 3.1, and suppose that (g, p)# 
(sZ(n+ l), pi) or (sl(n+ I), p,). Let s be as in (4.6). Then 

dim(O,i, n p ~ ) d dim(Omi,) --s < dim(Omi,) - 2. 

Remark. For the classical groups, one of us (the first author) can prove 
that these inequalities are actually equalities. 

ProojI The second inequality has been proved in (4.6). It is enough to 
prove that dim S(O,i, n p -)w 6 dim(Omi,) -s for all IV in some dense 
subset of Omin n p -. As in (4.4) write W= W, + W-. We have already 
proved in (4.4) and (4.5) that the inequality holds if W, #O. Since rP is 

~ closed in p , the subset U := { WeO,in n p- 1 W, #O} is open in 
Omin n p -. Let V be an irreducible component of Omin n p -. Either 
VcOminnrp=X, or VnU#(25. In the first case dim VddimX< 
dim(O,,,)-s, by Table 3.1, and (4.6). In the second case dim V<dim U, 
and we have already seen that dim Ud dim(O,i,) -s. 1 

4.8. For g = sZ(n + 1) and p = pi or p,,, we have s = 1. One can show 
that in this case dim(O,;, n p ~ ) = dim(O,,,) - 1. One roundabout proof is 
to note that, although the conclusion of Theorem 5.2 fails in this case (as 
was shown in Section 3.9),- the only step in its proof which fails is 
Theorem 4.7. A direct proof is as follows: 

PROPOSITION. Let g = sl(n + 1 ), and p = p, or p,,. Then 

dim(Oi,, n p-) = dim(Omi,) - 1. 

ProoJ: We consider only the case p = p,,. Consider the natural represen- 
tation of g on V= Cn+ i. Then Omin= {XEgjrank.(X)< l}. It is easy to 
see that dim Omin = 2n. Note that m z s/(n) @ CH, where d(n) c sl(n + 1) is 
identified with those matrices whose final row and column are zero. 

Let 7~: p- + m be the projection, with kernel r-, and consider the 
restriction of 7~ to Omin n p-. The image is clearly Omin n m, which coin- 
cides with the minimal nilpotent orbit in m. Hence dim ~(a,~,, n p - ) = 
2(n - 1). Let 0 #x E ~C(Omin n p-), and let y E n-‘(x). Thus the component 
of y in m equals x, and the last row of y is a scalar multiple of some row 
of x, since rank(x) = rank(y) = 1. In particular, dim U’(X) = 1. Thus 
dim(O,i, n p-) = 2(n - 1) + 1 = 2n - 1, as required. 1 

4.9 Remark. The fact that Theorem 4.7 does not hold for sl(n + 1 j 
when p = p1 or p,, was a surprise to us. In fact, we once believed the 
opposite. Our error was in part due to our not believing the following fact 
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which is a consequence of Proposition 4.8, and still strikes us as rather a 
surprise. 

Let S=p(A”) be the nth Weyl algebra; say, S=C[f,, ..,, t,, S,, .~.: ?:i]. 
Then there exists a finitely generated noetherian @-algebra R c S (in fact R 
is a homomorphic image of U(sl(n + I ))) such that 6Kdim R = 
GKdim S= 2n> Fract R = Fract S, t, ,.~., i,, E R and GKdim(Ri’Ri! -I- 
+ Rl,,) = GKdim R - 1 = 2n - 1. In contrast GK dim(S.‘Sr, + . . + St,,) = 
GKdimS-n=n. 

The algebra R is obtained as cp( U(si(n + 1))) when p = p1 or p,,, R Is 
generated by the elements ti, ti8j, and (t:d, +- ..-!,,?,,)I?~, for I <i, j<x 

5. THE MAIN THEOREM 

5.1. En this section we prove the main theorem of the introduction. This 
follows very easily by combining the earlier resuhs with the foilowing 
lemma due to 0. Gabber. First, however, recall that a finitely generated left 
U(g)-module M is called d-homogeneous if GK dim M = h;K dim N = d for 
all non-zero submodules N of M (see [ 14. p. 681). 

EE~~MA. L.e: g be an)’ finite dimensional Lie algebra OL’PI’ C. Let M be a 
finitely generated d-homogeneous left U(g)-module. Let Q be an). CT(g)- 
module (not necessarily- finitely generated) that contains M as an esseniiai 
submodule. Then the set of left U(g)-modules 

Y : = {M’ 1 M c M’ c Q, l\lith M’ finitely generated and 
GKdim(M’/M)dd-2) 

contains a unique maximal element. 

ProoJ The argument of the third step in rke proof of CS. 
Theortme 4.2. I ] may be used unaltered. 

5.2 THEOREM. Let g be a finite dimensional simple Lie algebra not C$ 
t;*pe G,, FAr or E,. Let p be a parabolic suba!gebra with abeiian nilpotent 
radical (but exclude the parabolics p, and p, ;“or g = si(n -+ 1) )‘ Let 
irreducible component of amin A n + contained in the nilpotent radical o;C p. 
L.et $: U(g) --+9(x) be the map defined b>* Goncharorl (see 3.3). Then a$ is 
surjec?ice. 

ProoJ We will apply Lemma 5.1 with M=R=$(U(g)) and Q-g(x). 
Proposition 3.5(a) says that R is an essential submodule of Q as an 
R-module, and hence as a U(g)-module. Furthermore R is d-bomogeneo~s~ 
since it is a domain. 
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We first show that, for all q~ Q = g(X), one has Rq + RE Y, the set 
defined in Lemma5.1. Let qEQ, and set K={a~O(f3)laq~R}. By 
(3.4(c)), KC R, and there is a surjection R/RK -+ (Rq + R)/R. Hence 
GKdim(Rq + R/R) < GKdim(R/RK). Let p E Spec c”(X), not equal to m 
the maximal ideal of the singular point 0 E X. The local ring Ox,p is regular, 
so 9x,, is generated by I?& and Der 0x,,,, By Remark 3.4(c), 6Z&p = R,. 
Hence q E R,, and K = OX,, . Thus mr c K for some r 2 0, and in order to 
prove that GKdim:R/RK) d GKdim R - 2 it suffices to prove that 
GK dim(R/Rm) d GK dim R - 2. To prove this inequality we may pass to 
the associated graded algebras; therefore it suffices to prove that 
GK dim( gr( R/Rm)) < GK dim(grR) - 2. The GK-dimension of these factor 
rings of S(g) = grU(g) equals the dimension of the corresponding sub- 
varieties of g. Hence GK dim( grR) = dim amin, and since m is generated by 
r ~, it follows that GK dim( gr( R/Rm)) = dim(O,, n p - ) (because the sub- 
variety of g defined by the vanishing of r ~ c 0(g) is p - ). Now Theorem 4.7 
gives the desired inequality, and therefore Rq + R E Y. 

Since Rq + R E Y for all q E g(X), the only possible maximal element of 
Y is g(X) itself. Thus Lemma 5.1 implies that g(X) is a finitely generated 
left R-module. By Proposition 3.5(a), R c a(X) c Fract R, and therefore 
we may write these generators as dj= eif -I for some ej, f~ R. Thus 
$@(X)fc R and the right annihilator, r-Ann,(g(X)/R), is a non-zero two- 
sided ideal of R. However, by Proposition 3.5(e) and Theorem 3.8(b), R is 
a simple ring. Thus r-Ann(g(X)/R) = R and g,(X) = $( U(g)). 1 

5.3. We emphasise the two contrasting special cases of the Theorm. 

COROLLARY A. Let g be a simple of type B,, C,, D,, E,, or E,, and let 
JO be the Joseph ideal of U(g). Then there exists an irreducible component 53 
of Omin n II + such that U(g)/Jo g 9(X). 

COROLLARY B. Let g be of type A,,. Then for n - 2 of the n irreducible 
components Xj of Omin n n+, there exist (distinct) maximal ideals Jj of U(g) 
such that U(g)/Jj 2 9(xj). 

5.4. Remarks. (a) It is a consequence of Theorem 5.2 that (with the 
notation of 5.2) Der o(X) c $( U(g)). This is satisfying to observe, because 
prior to the Theorem all one knows is that Der 0s,, c $( U(g)), for 
pEX=R\{O). 

(b) Theorem 5.2 also gives some information about gZ, the simple 
Lie algebra of type G,. Let JO be the Joseph ideal in U(so(7)). By [17, 
Theorem 3.93 there is a completely prime ideal J, in U(g,) associated to 
083 the g-dimensional nilpotent orbit in g2, such that U(g,)/J, z 
U(so(7))/J,. Hence if X is the variety occurring in the Theorem for SO(~), 
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then U&)/J, z g(X). However, it is also shown in [IT, Sect. 5] that X is 
isomorphic to an irreducible component of as n n+, where n: is the upper 
triangular part of gz. This naturally leads one to ask whether there is a 
more extensive version of the theorem, realising other primitive factor rings 
as differential operators on certain components of 0 A n iv where 
associated variety of the given primitive ideal. 

(c) The main result of Moeglin in [ 191 together with [3] shows that 
every completely prime primitive factor ring of U(sQ.8 + 1 j) is of the form 
QU(G/B), the global sections of a sheaf of twisted differential o 
G/P, for a suitable parabolic P, and a suitable twisting ~1. 
arguments show that if the primitive ideal is associated to the mirmmal 
orbit then Lie P must be either p, or p,,, whence G/F’2 P”, projective 
n-space. Hence we have the curious fact that for the singular aftine varieties 
Xj occurring in Corollary B, ?3(Xj) z 33JP) for a suitable choice of p. It 
would be interesting if there were an a priori explanation of this 

6. THE RING OF DIFFERENTIAL OPERATORS 
DOES Nor DETERMINE THE VARIETY 

6. I. If X is an irreducible afIine variety it is interesting to see how the 
geometric properties of X are reflected in the algebraic structure of 9 
For example, Makar-Limanov [26] has recently shown that if X an 
are non-isomorphic curves of genus >O, then g(X) and S?(Y) are non- 
isomorphic rings. In fact, he shows how the curve X may be recovered from 
S?(X), The following proposition shows that for higher dimensional 
varieties, it is no longer true that X is completely determined by 2(X j. Our 
example involves a singular variety. As far as we ow it is not known 
whether for smooth X, g(X) completely determines 

PRO~OSTION. Consider the parabolics pi and p, in .so(Z?n), jar I? 2 5, and 
the corresponding components X, and X,, 5f rr.in n n+. Therz 9( 
9(x,), but x1 and x, are non-isomorphic varieties. In f&t H*(X,, Z!) f 
ff*ix,,, Z). 

Proej: The fact that the rings of differential operators are isomorphic 
follows from Theorem 5.2, since both are isomorphic to U(so(2n j)/Job,. 

Recall the explicit descriptions of X, and X,, in (3.2). It is easy to see that 
X, and X, are non-isomorphic varieties. To see this, let mi be tbe maximal 
ideal of the unique singular point on Xi (i= I, n). It IS generated by the 
image in 0(X,) of ric 0(x’) = §(r; j. The ideal in &(r,?) defining Xi is 
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generated by homogeneous polynomials of degree 2, hence dim, rnJrn:= 
dim r+. But dim r: = 2(n - l), and dim r,’ = n(n - 1)/2, whence X, & X,,. 

Write Li = [M,, Mi], and note that Xi = Lj ‘xi, where xi E r+ is a highest 
weight vector. Write Qi = Stab,,(@xi), and Bj = Li/Qi. There is a tibration 
C\{O} = @* -+ Xi + Bi. Let Yic Xi be the S-bundle over Bj obtained by 
collapsing each libre @* to the unit circle. Then H*( Yi, Z) = H*(Xi, Z). 

Viewing Y, as a real manifold, it is a Steiffel manifold S2”-” + Y, + 
S2’lP3. To see this recall that X, = {(t,,..., t2n-2)~a=2”-2\{0}1~rt?=O}. 
If f~Y~cx~c@~‘~-~=iW~“-~Oi[W’~~~, is written as r=(x,~,)= 
(X , , . . . . x2,, _ 2, ~‘i, . . . . y2,, ~ 2) then c xf = c 1’: = 4 and c xk yk = 0. The pro- 
jection Y, -+ RZn-2, onto the first component, tibres Y, over SznP3, with 
libres the spheres SznP4 living in the tangent space to SznP3. Hence by 
[18] Y, is (2n-5)-connected, and H2”~4(YI,Z)=HZ”~3(Y,,Z)=Z. In 
particular, since n 3 5, H4( Y, , Z) = 0. 

Since B,, is the Grassmanian of 2-planes in @“, [IS] gives for n 2 5, 
H”( B,l, Z) = ;Z and H4(B,,, Z) = 77’. The cohomology of B,, is concentrated 
in even degree, so the Gysin sequence [23] for the libration S’ + Y, + B, 
collapses to give short exact sequences 

In particular for r = 2, c cannot be surjective, whence H”( Y,,, Z) # 0. 
Hence H’(X,, Z) # H4(X,,.Z), and the proof is complete. 1 
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